Spin Diffusion and Dynamical Defects in a Strongly interacting Fermi gas

Size: px
Start display at page:

Download "Spin Diffusion and Dynamical Defects in a Strongly interacting Fermi gas"

Transcription

1 ECT Workshop, May 13 th, 2014 Spin Diffusion and Dynamical Defects in a Strongly interacting Fermi gas Tarik Yefsah Massachusetts Institute of Technology

2 10-15 m Many-body physics Length scales 1 m 10 7 m Nuclei High-T c Superfluid White Superconductors Helium dwarf Small Extremely difficult Far Can we provide a more accessible playground to benchmark theories? Can we realize clean tunable experimental systems that can directly be compared to N-Body theories?

3 Ultracold gases as practical model systems Potential Feynman s quantum simulator Interactions The diluteness of the gas is a key! n~10 14 atoms/cm 3 or 100 atoms/μm 3 Composition a million times thinner than air and more

4 When does wave mechanics matter? d n 1/3 Interparticle distance

5 When does wave mechanics matter? x d n 1/3

6 When does wave mechanics matter? x d n 1/3

7 When does wave mechanics matter? x d n 1/3

8 How cold is ultracold? Atoms move at: ~ 1 mm/s ~ 100 m/s ~ 10 6 m/s Paris in 10 seconds T(K) Ultracold atom experiments Outer space Your living room Center of the sun Supernova explosion

9 From BEC to BCS Interparticle Distance Scattering Length Weakly Interacting Bosons Strongly Interacting Bosons Strongly Interacting Fermions Weakly Interacting Fermions =

10 What can experiments teach us on BEC-BCS Crossover strongly interacting Fermi gases? Leggett (1980) Nozières & Schmitt-Rink (1985) Experiments Boulder, ENS, Innsbruck, MIT (2003) Superfluidity And Coherence + 1/k F a MIT (2005)

11 What can experiments teach us on strongly interacting Fermi gases? e.g.: ground-state energy: (at unitarity) ξ Mean-Field =0.59 Leggett Ansatz ξ advanced-theories = T-Matrix (Zwerger et al.) Epsilon expansion (Arnold, Drut & Son) Fixed-node Monte-Carlo (Giorgini et al.) ξ Experiment =0.37(1) MIT (2012) N. Navon, S. Nascimbène, F. Chevy, C. Salomon Science 328, (2010) M. Ku, A. Sommer, L. Cheuk, M. Zwierlein, Science 335, (2012)

12 Experiments as a Quantum Simulator Density equation of state 3 n f kt B Unitary Gas (Expt.) Meanfield Non- Interacting Gas M. Ku, A. Sommer, L. Cheuk, M. Zwierlein, Science 335, (2012) K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, M. Zwierlein, Nature Physics 8, 366 (2012)

13 We know the equilibrium properties But: How about dynamics?

14 Spin Diffusion in a Strongly interacting Fermi gas

15 Large Hadron Collider (LHC)

16 4 ft

17 Little Fermi Collider (LFC) A Fermi gas collides with a cloud with resonant interactions Collision at 100 pev 23 orders of magnitude smaller than LHC Harmonic Trap A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

18 Little Fermi Collider (LFC) A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011) Without Interactions

19 Distance [mm] Little Fermi Collider (LFC) 1.5 Without Interactions Time [ms] A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011) 60

20 Little Fermi Collider (LFC) A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011) With resonant interactions

21 mm mm 1.3 mm The bouncing gas First collision Difference density Total density Time (1ms per frame)

22 Distance [mm] Later times Time [ms] A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

23 Distance [mm] Much later times ms Time [ms] A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

24 Distance [mm] Much later times ms Time [ms] A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

25 Quantum limit of spin diffusion Mean free path ~ Interparticle spacing Diffusion constant: D ~ mean free path average velocity Planck s constant D ~ = m Particle mass Quantum Limit of Diffusion In a hot relativistic fluid (e.g. Quark-Gluon Plasma): mc d md 2 T (0.1 mm) 2 = 1s D d ~ c T 2

26 Spin Diffusion vs Temperature Spin current = -D Spin density gradient dn dn js ntot d ntot sdd Ds dx dx Universal high-t behavior: Quantum Limit of Spin Diffusion 5.8(2) ħ m T T F 3/2 6.3(3) ħ m A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

27 Dynamical defects in a Fermionic Superfluid

28 What kind of strong excitation? Dark Soliton Vortex π 2π 0 W.D Phillips group (2000) 0 π phase jump J. Dalibard group (2000) 2π phase widing Far from the ground state non-linear excitation Long-lived state stationary or topological excitation One-defect state Particle-like (energy E and effective mass M* )

29 Experiments with Fermionic Superfluids

30 Pulse off-resonant light Phase imprinting After the pulse: φ = 2Ut ħ Needs to be fast enough: t < ħ μ ~100μs superfluid Solitons in BECs by phase imprinting: Hamburg, NIST,...

31 Pulse off-resonant light Phase imprinting After time-of-flight + ramp to the BEC side of the Feshbach resonance 20μm 300μm superfluid Solitons in BECs by phase imprinting: Hamburg, NIST,...

32 Pulse off-resonant light Phase imprinting After time-of-flight + ramp to the BEC side of the Feshbach resonance 20μm 300μm piège harmonique T z = 0.1s superfluid Solitons in BECs by phase imprinting: Hamburg, NIST,...

33 Long-lived solitary wave oscillate in a superfluid Time (in s) 1s 2s 3s 4s

34 Stronger Interactions 700 G Regime of strongly interacting Molecular BEC T 4.4T 2T s z z 760 G 815 G 832 G

35 Heavy Defects BEC BdG theory for planar soliton BCS

36 An experimental riddle Long-lived solitary waves in a fermionic superfluid Inconsistent with current theories for planar solitons what did we observe?

37 In the following months Also supporting the vortex ring scenario W. Wen, C. Zhao, X. Ma, arxiv: M. D. Reichl, E. J. Mueller arxiv: A. Bulgac, M. McNeil Forbes arxiv: Against the vortex ring scenario L. Pitaevskii arxiv: From Eric Mueller s webpage

38 Origin of the debate : Integrated profile vs slice slice from numerical simulation Measured integrated density profile Z axis Bulgac et al. arxiv: Probe Probe Z axis

39 Slicing our Cloud Mask Z axis After slicing Blaster What do we see from top? Probe It is not a vortex ring

40 Tomography Top Slice ~Central slice This is not a planar but a linear defect Bottom Slice

41 Can we infer the gyroscopic nature of the defect? M. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L.W. Cheuk, T. Yefsah, M.W. Zwierlein, arxiv: (2014) The trap exerts an expelling force V trap As a gyroscope the vortex experiences a Magnus force follows a trajectory along x V trap superfluid Axe z

42 Can we infer the gyroscopic nature of the defect? M. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L.W. Cheuk, T. Yefsah, M.W. Zwierlein, arxiv: (2014) The trap exerts an expelling force V trap As a gyroscope the vortex experiences a Magnus force follows a trajectory along x V trap superfluid Axe z Precession as the signature of a vortex

43 Theoretical model for the vortex motion Hydrodynamic picture : v = ħ φ/2m ( φ the phase of the order parameter) Effective potential acting on the vortex E v = πħ2 4m n s r v ln( R ξ ) (valid in the limit ln( R ξ ) 1 ) (ξ vortex core size) We find Ω = 2γ+1 ω ax 8 ħω μ ln(r ξ ) At unitarity γ = 3 2 and ξ~ 1 k F For BEC Lundh, Ao, PRA 2000 Fetter, Kim, JLTP 2001

44 Heavy Defects BEC BCS

45 Heavy Defects Hydrodynamic model BEC BCS

46 Decay cascade of non linear excitations Right after imprint: Soliton? Vortex ring? 150μm 1. we observe the propagation of sound waves 2...then emerges a dark soliton that breaks into 3... a Vortex rings 4...and then the vortex ring breaks into vortices 5. Eventually, one vortex remains

47 Conclusion We observed long-lived heavy defects Excluded the vortex ring scenario It is a vortex which results from a decay cascade Benchmark for out-of-equilibrium dynamics T. Yefsah, A. Sommer, M.Ku, L. Cheuk, W. Ji, W. Bakr, M. Zwierlein, Nature 499, (2013) M. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. Cheuk, T. Yefsah, M. Zwierlein arxiv: Controlled creation of Topological excitations

48 The MIT Team Martin Zwierlein Ariel Sommer (PhD 2013) Mark Ku Waseem Bakr Lawrence Cheuk Wenjie Ji Biswaroop Mukherjee T. Yefsah, A. Sommer, M. J.-H. Ku, L. Cheuk, W. Ji, W. Bakr, M. Zwierlein, Nature 499, (2013)

49 A new kind of excitation Energy of the defect ω r ħω μ V(r) Type equation here. more 3D μ/ħω Komineas & Papanicolaou PRA 68, (2003)

50 A new kind of excitation Energy of the defect ω r ħω μ V(r) Type equation here. more 3D μ/ħω Komineas & Papanicolaou PRA 68, (2003)

51 A new kind of excitation Energy of the defect ω r ħω μ V(r) Type equation here. more 3D μ/ħω Komineas & Papanicolaou PRA 68, (2003)

52 A new kind of excitation Soliton Ground state of 2D BEC via GP equation after imprint : n mod Solitonic Vortex The S-vortex obeys a current-phase relation just like the soliton At rest the S-vortex has the far-field phase profile of a dark soliton

53

54

55 More slides on Fermionic Superfluid

56 Speed of Sound v s mm 8.8 v s 3 F

57 Making Solitons by phase imprinting B = 815G

58 What is a soliton? Localized wave-packet Maintains its shape during propagation Dispersion (broadening) Non-linearity (localization)

59 Solitons in a Fermionic Superfluid

60 What kind of strong excitation? Dark Soliton Vortex Solitonic vortex Vortex ring W.D Phillips group (2000) J. Dalibard group (2000) Brand & Reinhardt (2001) A vortex ring maker Far from the ground state non-linear excitation Long-lived state stationary or topological excitation One-defect state Particle-like (energy E and effective mass M* )

61 What is the mass of a soliton in a Fermionic Superfluid? Wave function = pairing gap Δ(z) We do not know the current-phase relation BEC BCS (k F a) 1 GP equation still valid Bogoliubov-de Gennes equations

62 Soliton mass in the BCS limit n(x) n(z) No Cooper pairing inside soliton But fraction of Cooper pairs is very small Soliton almost completely filled with normal fluid z/ξ x/ Bare mass (= mass of missing atoms)

63 Dark Soliton in a Fermionic Superfluid (z)/ 0 z/ξ

64 Dark Soliton in a Fermionic Superfluid Andreev bound state fill the soliton (z)/ 0 z/ξ

65 Effective Mass vs Interaction Strength Solitons are filled in Effective mass M* >> M bare mass Period of oscillations should get much longer On Resonance: BEC BCS Scott, Dalfovo, Pitaevskii, Stringari, Phys. Rev. Lett. 106, (2011) Brand, Liao, PRA 83, (2011)

66 Ramp to Final Field Imaging Solitons

67 The cooling methods Laser Cooling ~ 1 mk Evaporative Cooling ~ 10 nk

68 Chu, Cohen-Tannoudji, Phillips, Pritchard, Ashkin, Lethokov, Hänsch, Schawlow, Wineland Laser Cooling Laser beams Zeeman Slower Hot atomic beam from oven, 400 C Laser cooled cloud Less than 1 mk

69

70 Evaporative Cooling Invented for spin-polarized H: Hess, Kleppner, Greytak, Silvera, Walraven

71 Observation of the atom cloud Trapped Expanded Atom cloud Lens Laser beam CCD Camera Shadow image of the cloud 1 mm

72 Observation of the atom cloud Expanded Atom cloud Lens Laser beam CCD Camera Shadow image of the cloud 1 mm

73 Observation of the atom cloud Expanded Atom cloud Lens Laser beam CCD Camera Shadow image of the cloud 1 mm

74 JILA, Juni 95 (Rubidium) MIT, Sept. 95 (Sodium)

75 The cooling methods on the temperature scale Evaporative Cooling Laser to BEC cooling Room temperature Sun (center) 1 K 1 mk 1 K 100 K 10 4 K 10 6 K T Nobel Prize 2001 E. Cornell, W. Ketterle, C. Wieman Nobel Prize 1997 S. Chu, C. Cohen-Tannoudji, W. Phillips

76 Solitons as strong excitation Order Parameter Y(x) x A localized, long-lived, highly non-linear excitation An excellent probe for the medium in which it propagates

77 Heavy Solitons Aspect ratio = 6 Aspect ratio = 15 BdG theory for planar soliton BEC BCS

78 Heavy Solitons Aspect ratio = 3 Aspect ratio = 6 Aspect ratio = 15 BdG theory for planar soliton BEC BCS

79 When does wave mechanics matter? h Planck s constant Louis de Broglie Mass mv Velocity T(K) Temperature = Uncertainty of velocity 2 Size of a wave packet = Uncertainty of position Werner Heisenberg x p mt

80 How much do we need to cool? T(K) Temperature = Uncertainty of velocity 2 Size of a wave packet = Uncertainty of position Werner Heisenberg x p mt

81 Anti-Damping of Soliton Oscillations T Anti- Damping M*<0 Phase fluctuations

82 Solitons at finite temperature Period Anti-Damping Time Long period and large M*/M is a Quantum Effect Lifetime

83 Bosons versus Fermions Fermions (unsociable): Half-Integer Spin Pauli blocking Fermi sea No phase transition at low Temperature Bosons (sociable): Integer Spin Can share quantum states At low temperatures: Bose-Einstein condensation

84 Bosons N bosons sharing one and the same macroscopic matter wave (Artist s conception)

85 Fermions N fermions avoiding each other (Artist s conception)

86 Soliton effective mass phase change across soliton implies superfluid backflow Scott, Dalfovo, Pitaevskii, Stringari, PRL 106, (2011) 1 PS mn v x mn x n 2m 2 1D d 1D d 1D Effective Mass: P 1 u * S M M n1d us 2 Requires Josephson Current-Phase Relation For BEC: u s c cos 2 M s * 2M

87 Local density approximation (LDA) How to get the thermodynamics of the homogeneous gas from trapped samples? Trapped gas Homogeneous equivalent The trapping potential tunes for us the chemical potential: A single profile contains the full EoS from μ k B T = to μ 0 k B T

88 Comparison to the data T v /T axial μ/ħω

89 Comparison to the data T v /T axial T v T ax = 8 3 For BEC Lundh, Ao, PRA 2000 Fetter, Kim, JLTP 2001 μ 1 ħω ln R + 3 ξ 4 R ξ = 4 μ ħω μ/ħω

90 Comparison to the data T v /T axial T v T ax = 8 3 For BEC Lundh, Ao, PRA 2000 Fetter, Kim, JLTP 2001 μ 1 ħω ln R + 3 ξ 4 R ξ = 4 μ ħω μ/ħω T v T ax = 2 μ 1 ħω ln ξ R ξ = μ R ħω Logarithmic corrections unknown

91 Comparison to the data T v /T axial T v T ax = 8 3 For BEC Lundh, Ao, PRA 2000 Fetter, Kim, JLTP 2001 μ 1 ħω ln R + 3 ξ 4 R ξ = 4 μ ħω μ/ħω T v T ax = 2 μ 1 ħω ln ξ R ξ = R μ ħω Logarithmic corrections unknown

92 The vortex ring scenario T/T z ~1.9 Snake instability more effective than observed A. Bulgac, M. McNeil Forbes, M. M. Kelley, K. J. Roche, G. Wlazłowski Phys. Rev. Lett (2014)

93 Origin of the debate : Integrated profile vs slice slice from numerical simulation Measured integrated density profile Z axis Bulgac et al. arxiv: Probe Z axis

94 Why the data does not speak for vortex rings 1. The soliton to vortex ring decay is a stochastic mechanism But the trajectory we measure is deterministic 760 G 2. Bulgac et al. : Ts/Tz ~10 requires small vortex rings (R ~ 0.3 Rx) 815 G But the depletion we observe goes through the whole transverse size

95 Spin relaxation rate Magnetization d decays due to spin drag 2 d d sdd 0 d(t) ~ e -gt 1 g s / sd Spin relaxation gives spin drag coefficient: sd / g 10 s ~ E / F

96 Spin drag vs Temperature On resonance, spin drag must be universal: E T F sd f TF For a 50/50 mixture: Control temperature by cooling after collision 22.8 Hz 11.2 Hz 37.5 Hz

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover NewSpin, College Station, 1/16/011 Strongly Interacting ermi Gases: Universal hermodynamics, Spin ransport, and Dimensional Crossover Martin Zwierlein Massachusetts Institute of echnology Center for Ultracold

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Equation of State of Strongly Interacting Fermi Gas

Equation of State of Strongly Interacting Fermi Gas he 19 th Particle and Nuclei International Conference (PANIC11) Equation of State of Strongly Interacting ermi Gas Mark Ku, Ariel Sommer, Lawrence Cheuk, Andre Schirotzek, Martin Zwierlein heory collaborators

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo Equilibrium and nonequilibrium properties of unitary ermi gas from Quantum Monte Carlo Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas Second sound and the superfluid fraction in a resonantly interacting Fermi gas Meng Khoon Tey Tsinghua University China Workshop on Probing and Understanding Exotic Superconductors and Superfluids Trieste,

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Superfluidity and Superconductivity Macroscopic Quantum Phenomena Superfluid Bose and Fermi gases Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/11/2013 Universal Themes of Bose-Einstein Condensation Leiden Superfluidity

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Lecture 3 : ultracold Fermi Gases

Lecture 3 : ultracold Fermi Gases Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation Many-Body Physics with Cold Gases Diluteness:

More information

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

Thermodynamics of the unitary Fermi gas

Thermodynamics of the unitary Fermi gas Ludwig-Maximilians-University, Faculty of Physics, Chair of Theoretical Solid State Physics, Theresienstr. 37, 80333 Munich, Germany E-mail: O.Goulko@physik.uni-muenchen.de M. Wingate DAMTP, University

More information

EQUATION OF STATE OF THE UNITARY GAS

EQUATION OF STATE OF THE UNITARY GAS EQUATION OF STATE OF THE UNITARY GAS DIAGRAMMATIC MONTE CARLO Kris Van Houcke (UMass Amherst & U of Ghent) Félix Werner (UMass Amherst) Evgeny Kozik Boris Svistunov & Nikolay Prokofev (UMass Amherst) (ETH

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 L.P. Pitaevskii Dipartimento di Fisica, Universita di Trento, INFM BEC CNR,Trento, Italy; Kapitza Institute for Physical Problems, ul.

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

BEC and superfluidity in ultracold Fermi gases

BEC and superfluidity in ultracold Fermi gases Collège de France, 11 Apr 2005 BEC and superfluidity in ultracold Fermi gases Rudolf Grimm Center of Quantum Optics Innsbruck University Austrian Academy of Sciences two classes Bosons integer spin Fermions

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology Equilibrium and nonequilibrium properties of unitary Fermi gas Piotr Magierski Warsaw University of Technology Collaborators: Aurel Bulgac (U. Washington) Kenneth J. Roche (PNNL) Joaquin E. Drut (U. North

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn Two-dimensional atomic Fermi gases Michael Köhl Universität Bonn Ultracold Fermi gases as model systems BEC/BCS crossover Search for the perfect fluid: Cold fermions vs. Quark-gluon plasma Cao et al.,

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) 100 years of superconductivity and superfluidity in Fermi systems Discovery: H. Kamerlingh

More information

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto The discovery of Bose-Einstein condensation ( BEC ) in 1995 in dilute, ultracold trapped atomic gases is one of the most exciting developments

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Condensation of pairs of fermionic lithium atoms

Condensation of pairs of fermionic lithium atoms Condensation of pairs of fermionic lithium atoms Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/10/04 KITP workshop, Santa Barbara BEC I Ultracold fermions

More information

hal , version 1-9 Jan 2007

hal , version 1-9 Jan 2007 Expansion of a lithium gas in the BEC-BCS crossover L. Tarruell 1, M. Teichmann 1, J. McKeever 1, T. Bourdel 1, J. Cubizolles 1, L. Khaykovich 2, J. Zhang 3, N. Navon 1, F. Chevy 1, and C. Salomon 1 1

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 8.044, LECTURE 33, SPRING 2004 BOSE-EINSTEIN CONDENSATION IS A QUANUM MECHANICAL EFFECT Image removed due to copyright

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Dimensional BCS-BEC crossover

Dimensional BCS-BEC crossover Dimensional BCS-BEC crossover Igor Boettcher Institute for Theoretical Physics, Heidelberg University ERG 2014 Outline Ultracold atoms BCS-BEC Crossover 2D Experiments with... Theory Experiment C. Wetterich

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases APCTP Focus Program on Quantum Condensation (QC12) Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases Munekazu Horikoshi Photon Science Center of University of Tokyo Grant-In-Aid

More information

Publications. Articles:

Publications. Articles: Publications Articles: 1. R. Combescot Coupling between Planes and Chains in Y Ba 2 Cu 3 O 7 : A Possible Solution for the Order Parameter Controversy, Phys. Rev. Lett. 75 (1995) 3732-3735 2. X. Leyronas

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions 2030-24 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Recent advances on ultracold fermions SALOMON Christophe Ecole Normale Superieure Laboratoire Kastler Brossel 24 Rue Lhomond F-75231

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions Lecture 4 Bose Einstein condensate (BEC) Optical lattices Nano in Dubna and Russia Conclusions Bose Einstein condensate (BEC) - definition -history - main characteristics - laser cooling - role of interaction

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids Daniel E. Sheehy Ames Laboratory Iowa State University Work in collaboration with L. Radzihovsky (Boulder)

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

From Optical Pumping to Quantum Gases

From Optical Pumping to Quantum Gases From Optical Pumping to Quantum Gases Claude Cohen-Tannoudji 22 nd International Conference on Atomic Physics Cairns, Australia, 26 July 2010 Collège de France 1 2010 : three anniversaries 60 th anniversary

More information

Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW

Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW 100 years of superconductivity and superfluidity Discovery: H. Kamerlingh Onnes in 1911 cooled a metallic sample

More information

Universal quantum transport in ultracold Fermi gases

Universal quantum transport in ultracold Fermi gases Universal quantum transport in ultracold Fermi gases How slowly can spins diffuse? Tilman Enss (U Heidelberg) Rudolf Haussmann (U Konstanz) Wilhelm Zwerger (TU München) Aarhus, 26 June 24 Transport in

More information