Dynamics of Nonholonomic Systems

Size: px
Start display at page:

Download "Dynamics of Nonholonomic Systems"

Transcription

1 Dynamics of Nonholonomic Systems 1

2 Example: When is the skate in equilibrium? x 2 Number of degrees of freedom n = 3 degrees of freedom m= 1 nonholonomic constraint Generalized coordinates (x 1, x 2, x 3 ) Generalized speeds (coordinates of C and angle formed with x axis) C l A v P = x 1 a 1 + x 2 a 2 + lsin x 3 a 1 + lcos x 3 a 2 P x 3 u x 1 ( ) = u 1 a 1 + u 2 ( lsin x 3 a 1 + lcos x 3 a 2 ) + u 3 a 2 F x 3 Static equilibrium for a holonomic system i.e., the force must be zero! Yet, a force passing through C (i.e., when l=0) perpendicular to u will keep the nonholonomic skate in equilibrium 2

3 Nonholonomic Systems Key Idea in Principle of Virtual Work Project forces along directions that are unconstrained (i.e., along directions of motion These directions are given by the partial velocities Key Idea for Extension to Nonholonomic systems Project forces along directions that are unconstrained (i.e., along directions of motion 3

4 Example x 2 Number of degrees of freedom for the nonholonomic system n m = 2 degrees of freedom l P u Generalized coordinates (x 1, x 2, x 3 ) C x 3 x 1 Generalized speeds 4

5 Nonholonomic Systems Key Idea in Principle of Virtual Work Project forces along directions that are unconstrained (i.e., along directions of motion) These directions are given by the partial velocities Key Idea for Extension to Nonholonomic systems Project forces along directions that are unconstrained (i.e., along directions of motion) These directions are given by nonholonomic partial velocities Partial Velocities do not account for directions that are unavailable because of nonholonomic constraints Introduce nonholonomic partial velocities = subset of directions available after incorporating the nonholonomic constraints 5

6 Principle of Virtual Work for Nonholonomic Systems Are Q j = 0? n generalized coordinates p speeds The speeds are not independent! k = p + 1,, n Q j δw = (a F ) i r P i q j δq j p N n N (a + F ) i j=1 i=1 i=1 k= p +1 p = N (a F ) P i v i j r Pi q k n [ ] + N (a F ) P [ i v i k ] j=1 i=1 δq j k= p +1 i=1 p N n (a = F ) P i v i P j + A kj v i k i=1 k= p +1 δq j j=1 p N (a = F ) P [ i v i j ] δq j j=1 i=1 δq k 6 p j=1 A kj δq j

7 Principle of Virtual Work for Nonholonomic Systems A nonholonomic system of N particles (P 1, P 2,, P N ) with n speeds (u 1, u 2,, u n ), p of which are independent is in static equilibrium if and only if the p nonholonomic generalized forces are all zero. The jth nonholonomic generalized force given by must equal zero! δw = Q j = p N (a F ) i v [ P i ] j δq j = 0 j=1 N i=1 i=1 (a F ) P [ i v i j ] 7

8 Example x 2 Static Equilibrium if and only if l P u C (F x, F y ) x 3 x 1 F x = F y = 0 Unless l =0 If l =0, equilibrium when 8

9 Nonholonomic system with m dependent speeds n 1 p 1 A = [A lj ] is a n p matrix whose rank is equal to p: 9

10 Example x 2 Number of degrees of freedom n m = 2 degrees of freedom l P u Generalized coordinates (x 1, x 2, x 3 ) C x 3 x 1 Generalized speeds 10

11 Generalized coordinates to independent speeds MEAM 535 Generalized coordinates Derivatives of Generalized coordinates Generalized speeds Independent Generalized speeds q u n 1 = [ Y] n n q n 1 + Z n 1 q n 1 = [ W] n n u n 1 + X n 1 [ W] = [ Y] 1 q n 1 = W ( n n A n p u p 1 + B ) n 1 + X n 1 = ( W n n A n p )u p 1 ( W n n B n 1 + X n 1 ) Γ n p Θ n 1 11

12 Nonholonomic system with m dependent speeds But We define the n p matrix Γ 12

13 D Alembert s Principle for Nonholonomic Systems Apply the Principle of Virtual Work to a system of particles F i - m i a i = 0 (-m i a i ), the inertial force, is an applied force acting on the ith particle Nonholonomic active generalized forces Nonholonomic generalized active inertial forces 13

14 Kane s equations for nonholonomic systems The motion of a nonholonomic system with N particles and n speeds, with p of them independent, is governed by p equations of motion given by: Main Advantage Kane s equations: Only p equations of motion As many equations as there are independent speeds (degrees of freedom) 14

15 Example 1 Single particle, mass m Coordinates x, y, and z Generalized speeds External force F x, F y, and F z Nonholonomic constraint Generalized active and inertial forces 15

16 The jth Generalized Inertial Force Kane s equations Kane - Lagrange equations for a holonomic system with n speeds u 1, u 2,, u n : The jth Generalized Inertial Force Kane s equations Kane - Lagrange equations for a nonholonomic system with n speeds u 1, u 2,, u p : 16

17 Summary Coordinate transformation (Jacobian) matrix W kj Generalized speeds: u n u 1 u 1, u 2,, u n Generalized active and inertial forces: u 2 Projection Γ kj Only p of the speeds are independent n Q ʹ + * ( Q ʹ k k )W kj = 0 k=1 u p n Q ʹ + * ( Q ʹ k k )Γ kj = 0 k=1 u 1, u 2,, u p 17

18 Lagrange s Equations for a Nonolonomic Conservative System Kane - Lagrange equations for a nonholonomic system with p speeds u 1, u 2,, u p : If we further assume that the forces acting on the system are conservative, we can find a potential function, V(q 1, q 2,..., q n, t) such that all (holonomic) generalized active forces can be expressed as partial derivatives of the potential function: 18

19 Example 2: Rolling Disk (Simplified) τ d θ C (x, y) τ s radius R φ 19

20 Example 2: Rolling Disk (Simplified) τ d θ C (x, y) τ s radius R φ 20

Lagrange s Equations of Motion with Constraint Forces

Lagrange s Equations of Motion with Constraint Forces Lagrange s Equations of Motion with Constraint Forces Kane s equations do not incorporate constraint forces 1 Ax0 A is m n of rank r MEAM 535 Review: Linear Algebra The row space, Col (A T ), dimension

More information

Generalized Coordinates, Lagrangians

Generalized Coordinates, Lagrangians Generalized Coordinates, Lagrangians Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2012 August 10, 2012 Generalized coordinates Consider again the motion of a simple pendulum. Since it is one

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Generalized Forces. Hamilton Principle. Lagrange s Equations

Generalized Forces. Hamilton Principle. Lagrange s Equations Chapter 5 Virtual Work and Lagrangian Dynamics Overview: Virtual work can be used to derive the dynamic and static equations without considering the constraint forces as was done in the Newtonian Mechanics,

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Solving high order nonholonomic systems using Gibbs-Appell method

Solving high order nonholonomic systems using Gibbs-Appell method Solving high order nonholonomic systems using Gibbs-Appell method Mohsen Emami, Hassan Zohoor and Saeed Sohrabpour Abstract. In this paper we present a new formulation, based on Gibbs- Appell method, for

More information

Generalized coordinates and constraints

Generalized coordinates and constraints Generalized coordinates and constraints Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Generalized coordinates and constraints Semester 1, 2014-15 1 / 25 Coordinates A rigid

More information

B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics

B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics 1 B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics Question Bank UNIT: I Multiple choice questions: (1) The gravitational force between two masses is (a) Repulsive (b) Attractive

More information

LAGRANGIAN AND HAMILTONIAN

LAGRANGIAN AND HAMILTONIAN LAGRANGIAN AND HAMILTONIAN A. Constraints and Degrees of Freedom. A constraint is a restriction on the freedom of motion of a system of particles in the form of a condition. The number of independent ways

More information

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples Physics 106a, Caltech 16 October, 2018 Lecture 5: Hamilton s Principle with Constraints We have been avoiding forces of constraint, because in many cases they are uninteresting, and the constraints can

More information

MSMS Basilio Bona DAUIN PoliTo

MSMS Basilio Bona DAUIN PoliTo MSMS 214-215 Basilio Bona DAUIN PoliTo Problem 2 The planar system illustrated in Figure 1 consists of a bar B and a wheel W moving (no friction, no sliding) along the bar; the bar can rotate around an

More information

Some history. F p. 1/??

Some history. F p. 1/?? Some history F 12 10 18 p. 1/?? F 12 10 18 p. 1/?? Some history 1600: Galileo Galilei 1564 1642 cf. section 7.0 Johannes Kepler 1571 1630 cf. section 3.7 1700: Isaac Newton 1643 1727 cf. section 1.1 1750

More information

Lecture 10 Reprise and generalized forces

Lecture 10 Reprise and generalized forces Lecture 10 Reprise and generalized forces The Lagrangian Holonomic constraints Generalized coordinates Nonholonomic constraints Generalized forces we haven t done this, so let s start with it Euler Lagrange

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

Lagrangian Dynamics: Derivations of Lagrange s Equations

Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and Degrees of Freedom 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 4/9/007 Lecture 15 Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo December 2009 2 Preface These notes are prepared for the physics course FYS 3120,

More information

Line following of a mobile robot

Line following of a mobile robot Line following of a mobile robot May 18, 004 1 In brief... The project is about controlling a differential steering mobile robot so that it follows a specified track. Steering is achieved by setting different

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo 2 Preface FYS 3120 is a course in classical theoretical physics, which covers

More information

4.1 Important Notes on Notation

4.1 Important Notes on Notation Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

More information

Motion of deformable bodies

Motion of deformable bodies Karlstad university Faculty for health, science and technology FYGB08 Motion of deformable bodies Author: Axel Hedengren. Supervisor Professor Jürgen Fuchs. - January 23, 2017 Abstract Abstract This work

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Lagrange-d Alembert integrators for constrained systems in mechanics

Lagrange-d Alembert integrators for constrained systems in mechanics Lagrange-d Alembert integrators for constrained systems in mechanics Conference on Scientific Computing in honor of Ernst Hairer s 6th birthday, Geneva, Switzerland Laurent O. Jay Dept. of Mathematics,

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich Advanced Dynamics - Lecture 4 Lagrange Equations Paolo Tiso Spring Semester 2017 ETH Zürich LECTURE OBJECTIVES 1. Derive the Lagrange equations of a system of particles; 2. Show that the equation of motion

More information

28. Rolling Sphere. Introduction. Holonomic Constraints and non-holonomic Constraints. x origin, and its radius a. We see immediately that its

28. Rolling Sphere. Introduction. Holonomic Constraints and non-holonomic Constraints. x origin, and its radius a. We see immediately that its 8 Rolling Sphere Michael Fowler Introduction We ll now consider an interesting dynamics problem not covered in most introductory texts, a rolling ball on a rotating, possibly tilted, surface As we ll see,

More information

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction D. S. Stutts, Ph.D. Associate Professor of Mechanical Engineering Missouri University of Science and Technology Rolla,

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts Michael Wolf wolf@caltech.edu 6 June 2005 1 Introduction 1.1 Motivation While most mechanics and dynamics

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Video 3.1 Vijay Kumar and Ani Hsieh

Video 3.1 Vijay Kumar and Ani Hsieh Video 3.1 Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Dynamics of Robot Arms Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Lagrange s Equation of Motion Lagrangian Kinetic Energy Potential

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

On mechanical control systems with nonholonomic constraints and symmetries

On mechanical control systems with nonholonomic constraints and symmetries ICRA 2002, To appear On mechanical control systems with nonholonomic constraints and symmetries Francesco Bullo Coordinated Science Laboratory University of Illinois at Urbana-Champaign 1308 W. Main St,

More information

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015 EN53.678 Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 25 Prof: Marin Kobilarov. Constraints The configuration space of a mechanical sysetm is denoted by Q and is assumed

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

(r i F i ) F i = 0. C O = i=1

(r i F i ) F i = 0. C O = i=1 Notes on Side #3 ThemomentaboutapointObyaforceF that acts at a point P is defined by M O (r P r O F, where r P r O is the vector pointing from point O to point P. If forces F, F, F 3,..., F N act on particles

More information

Tribhuvan University Institute of Science and Technology 2065

Tribhuvan University Institute of Science and Technology 2065 1CSc. MTH 104-2065 Tribhuvan University Institute of Science and Technology 2065 Bachelor Level/First Year/ First Semester/ Science Full Marks: 80 Computer Science and Information Technology (MTH. 104)

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO?

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO? Proceedings of the ASME 214 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 214 August 17-2, 214, Buffalo, New York, USA DETC214-3479

More information

Physics 11 Fall 2012 Practice Problems 6

Physics 11 Fall 2012 Practice Problems 6 Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

More information

THE CINDERELLAS OF ANALYTICAL MECHANICS i.e. THE LAGRANGE EQUATIONS, FIRST FORM.

THE CINDERELLAS OF ANALYTICAL MECHANICS i.e. THE LAGRANGE EQUATIONS, FIRST FORM. THE CINDERELLAS OF ANALYTICAL MECHANICS i.e. THE LAGRANGE EQUATIONS, FIRST FORM. DE 3 rd Edition CENERENTOLA https://upload.wikimedia.org/wikipedia/commons/8/86/john_everett_millais_-_cinderella.jpg John

More information

Euler-Lagrange's equations in several variables

Euler-Lagrange's equations in several variables Euler-Lagrange's equations in several variables So far we have studied one variable and its derivative Let us now consider L2:1 More:1 Taylor: 226-227 (This proof is slightly more general than Taylor's.)

More information

A consistent dynamic finite element formulation for a pipe using Euler parameters

A consistent dynamic finite element formulation for a pipe using Euler parameters 111 A consistent dynamic finite element formulation for a pipe using Euler parameters Ara Arabyan and Yaqun Jiang Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721,

More information

More Examples Of Generalized Coordinates

More Examples Of Generalized Coordinates Slides of ecture 8 Today s Class: Review Of Homework From ecture 7 Hamilton s Principle More Examples Of Generalized Coordinates Calculating Generalized Forces Via Virtual Work /3/98 /home/djsegal/unm/vibcourse/slides/ecture8.frm

More information

Non-holonomic constraint example A unicycle

Non-holonomic constraint example A unicycle Non-holonomic constraint example A unicycle A unicycle (in gray) moves on a plane; its motion is given by three coordinates: position x, y and orientation θ. The instantaneous velocity v = [ ẋ ẏ ] is along

More information

In most robotic applications the goal is to find a multi-body dynamics description formulated

In most robotic applications the goal is to find a multi-body dynamics description formulated Chapter 3 Dynamics Mathematical models of a robot s dynamics provide a description of why things move when forces are generated in and applied on the system. They play an important role for both simulation

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

Finite dimensional thermo-mechanical systems and second order constraints

Finite dimensional thermo-mechanical systems and second order constraints Finite dimensional thermo-mechanical systems and second order constraints arxiv:1609.05156v2 [math-ph] 28 Sep 2016 Hernán Cendra Departamento de Matemática Universidad Nacional del Sur, Av. Alem 1253 8000

More information

ESTIMATION STRATEGIES FOR CONSTRAINED AND HYBRID DYNAMICAL SYSTEMS. A Dissertation JULIE MARIE JONES PARISH

ESTIMATION STRATEGIES FOR CONSTRAINED AND HYBRID DYNAMICAL SYSTEMS. A Dissertation JULIE MARIE JONES PARISH ESTIMATION STRATEGIES FOR CONSTRAINED AND HYBRID DYNAMICAL SYSTEMS A Dissertation by JULIE MARIE JONES PARISH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016 AN INTRODUCTION TO LAGRANGE EQUATIONS Professor J. Kim Vandiver October 28, 2016 kimv@mit.edu 1.0 INTRODUCTION This paper is intended as a minimal introduction to the application of Lagrange equations

More information

Lecture Notes Multibody Dynamics B, wb1413

Lecture Notes Multibody Dynamics B, wb1413 Lecture Notes Multibody Dynamics B, wb1413 A. L. Schwab & Guido M.J. Delhaes Laboratory for Engineering Mechanics Mechanical Engineering Delft University of Technolgy The Netherlands June 9, 29 Contents

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Economics 101A (Lecture 3) Stefano DellaVigna

Economics 101A (Lecture 3) Stefano DellaVigna Economics 101A (Lecture 3) Stefano DellaVigna January 24, 2017 Outline 1. Implicit Function Theorem 2. Envelope Theorem 3. Convexity and concavity 4. Constrained Maximization 1 Implicit function theorem

More information

5. Nonholonomic constraint Mechanics of Manipulation

5. Nonholonomic constraint Mechanics of Manipulation 5. Nonholonomic constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 5. Mechanics of Manipulation p.1 Lecture 5. Nonholonomic constraint.

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text:

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: 1.3 1.6 Constraints Often times we consider dynamical systems which are defined using some kind of restrictions

More information

Energy and Equations of Motion

Energy and Equations of Motion Energy and Equations of Motion V. Tanrıverdi tanriverdivedat@googlemail.com Physics Department, Middle East Technical University, Ankara / TURKEY Abstract. From the total time derivative of energy an equation

More information

Problem Goldstein 2-12

Problem Goldstein 2-12 Problem Goldstein -1 The Rolling Constraint: A small circular hoop of radius r and mass m hoop rolls without slipping on a stationary cylinder of radius R. The only external force is that of gravity. Let

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

PHYS 705: Classical Mechanics. Examples: Lagrange Equations and Constraints

PHYS 705: Classical Mechanics. Examples: Lagrange Equations and Constraints 1 PHYS 705: Classical Mechanics Examples: Lagrange Equations and Constraints x R Note: an object rolls because of friction but static friction does no work this is different from our previous case with

More information

Part of the advantage : Constraint forces do no virtual. work under a set of virtual displacements compatible

Part of the advantage : Constraint forces do no virtual. work under a set of virtual displacements compatible FORCES OF CONSTRAINT Lagrangian formalism : Generalized coordinate Minimum set of Eqns Part of the advantage : Constraint forces do no virtual work under a set of virtual displacements compatible with

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

On Virtual Displacement and Virtual Work in Lagrangian Dynamics

On Virtual Displacement and Virtual Work in Lagrangian Dynamics On Virtual Displacement and Virtual Work in Lagrangian Dynamics Subhankar Ray Department of Physics, Jadavpur University, Calcutta 700 032, India and C. N. Yang Institute for Theoretical Physics, Stony

More information

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Marion and Thornton Tyler Shendruk October 1, 2010 1 Marion and Thornton Chapter 7 Hamilton s Principle - Lagrangian and Hamiltonian dynamics. 1.1 Problem 6.4 s r z θ Figure 1: Geodesic on circular cylinder

More information

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i Notes on Torque We ve seen that if we define torque as rfsinθ, and the moment of inertia as N, we end up with an equation mr i= 1 that looks just like Newton s Second Law There is a crucial difference,

More information

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction D. S. Stutts, Ph.D. Associate Professor of Mechanical Engineering Missouri University of Science and Technology Rolla,

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces

More information

Variational Collision Integrators and Optimal Control

Variational Collision Integrators and Optimal Control Variational Collision Integrators and Optimal Control David Pekarek, and Jerrold Marsden 1 Abstract This paper presents a methodology for generating locally optimal control policies for mechanical systems

More information

ON COLISSIONS IN NONHOLONOMIC SYSTEMS

ON COLISSIONS IN NONHOLONOMIC SYSTEMS ON COLISSIONS IN NONHOLONOMIC SYSTEMS DMITRY TRESCHEV AND OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 119899, MOSCOW,

More information

Lecture 17. Conditions of Equilibrium

Lecture 17. Conditions of Equilibrium MIT 3.00 Fall 2002 c W.C Carter 114 Last Time Lecture 17 Conditions of Equilibrium The behavior of G near equilibrium Survey Molar Entropies Extrapolation to Unstable States Microscopic Origins of Entropy

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane

Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane Eugeny A. Mityushov Ural Federal University Department of Theoretical Mechanics Prospect Mira 19 62 2

More information

12. Rigid Body Dynamics I

12. Rigid Body Dynamics I University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 015 1. Rigid Body Dynamics I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Chapter 2 Principles of Analytical Mechanics

Chapter 2 Principles of Analytical Mechanics Chapter 2 Principles of Analytical Mechanics 2.1 Constraints As we have already mentioned in Chap. 1, a particle (or a system of particles) is subject to constraints if its motion is restricted by a constraint

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

A Student s Guide to Lagrangians and Hamiltonians

A Student s Guide to Lagrangians and Hamiltonians A Student s Guide to Lagrangians and Hamiltonians A concise but rigorous treatment of variational techniques, focusing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering

More information

Lagrangian Mechanics I

Lagrangian Mechanics I Lagrangian Mechanics I Wednesday, 11 September 2013 How Lagrange revolutionized Newtonian mechanics Physics 111 Newton based his dynamical theory on the notion of force, for which he gave a somewhat incomplete

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison Engineering Mechanics STATICS & DYNAMICS SECOND EDITION Francesco Costanzo Department of Engineering Science and Mechanics Penn State University Michael E. Plesha Department of Engineering Physics University

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR The 6nx6n matrices of manipulator mass M and manipulator angular velocity W are introduced below: M = diag M 1, M 2,, M n W = diag (W 1, W 2,, W n ) From this definitions

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) Homework #2 Due April 17, 2016 This homework focuses on developing a simplified analytical model of the longitudinal dynamics of an aircraft during

More information

Constrained motion of Hamiltonian systems

Constrained motion of Hamiltonian systems Constrained motion of Hamiltonian systems Firdaus E. Udwadia Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems ISSN 0924-090X Volume 84 Number 3 Nonlinear

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Dirac Structures in Lagrangian Mechanics

Dirac Structures in Lagrangian Mechanics Dirac Structures in Lagrangian Mechanics Part II: Variational Structures Hiroaki Yoshimura Jerrold E. Marsden Department of Mechanical Engineering Control and Dynamical Systems Waseda University California

More information

The Jacobian. Jesse van den Kieboom

The Jacobian. Jesse van den Kieboom The Jacobian Jesse van den Kieboom jesse.vandenkieboom@epfl.ch 1 Introduction 1 1 Introduction The Jacobian is an important concept in robotics. Although the general concept of the Jacobian in robotics

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

2.003 Engineering Dynamics Problem Set 4 (Solutions)

2.003 Engineering Dynamics Problem Set 4 (Solutions) .003 Engineering Dynamics Problem Set 4 (Solutions) Problem 1: 1. Determine the velocity of point A on the outer rim of the spool at the instant shown when the cable is pulled to the right with a velocity

More information

D Alembert s principle of virtual work

D Alembert s principle of virtual work PH101 Lecture 9 Review of Lagrange s equations from D Alembert s Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces D Alembert s principle of virtual

More information

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics What is MEAM 535? Advanced topics in dynamics Audience Review of Newtonian mechanics MEAM 535 Introduction Analytical mechanics: Lagrangian and Hamiltonian Special topics: Stability of dynamical systems,

More information

STATICS Chapter 1 Introductory Concepts

STATICS Chapter 1 Introductory Concepts Contents Preface to Adapted Edition... (v) Preface to Third Edition... (vii) List of Symbols and Abbreviations... (xi) PART - I STATICS Chapter 1 Introductory Concepts 1-1 Scope of Mechanics... 1 1-2 Preview

More information