Quantum Free Electron Laser From 1D to 3D

Size: px
Start display at page:

Download "Quantum Free Electron Laser From 1D to 3D"

Transcription

1 Quantum Free Electron Laser From 1D to 3D Luca Volpe Dipartimento di Fisica and INFN Milano University of Milano (Italy) Tutore: Dott. Nicola Piovella Cotutore: Prof. Roberto Pozzoli Milan QFEL group: R.Bonifacio, N.Piovella, M.M. Cola, L. Volpe and R. Gaiba A.Schiavi Universitá La Sapienza, Roma G.R.M Robb University Stranthclyde, Glasgow Scottland Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.1/29

2 OUTLOOK Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

3 OUTLOOK REVIEW OF 1D QFEL MODEL Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

4 OUTLOOK REVIEW OF 1D QFEL MODEL EXTENSION FROM 1D 3D HOW TO Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

5 OUTLOOK REVIEW OF 1D QFEL MODEL EXTENSION FROM 1D 3D HOW TO DISCRETE WIGNER DISTRIBUTION Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

6 OUTLOOK REVIEW OF 1D QFEL MODEL EXTENSION FROM 1D 3D HOW TO DISCRETE WIGNER DISTRIBUTION NEW 3D MODEL FOR QFEL Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

7 OUTLOOK REVIEW OF 1D QFEL MODEL EXTENSION FROM 1D 3D HOW TO DISCRETE WIGNER DISTRIBUTION NEW 3D MODEL FOR QFEL WORKING EQUATIONS Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

8 OUTLOOK REVIEW OF 1D QFEL MODEL EXTENSION FROM 1D 3D HOW TO DISCRETE WIGNER DISTRIBUTION NEW 3D MODEL FOR QFEL WORKING EQUATIONS CONCLUSION Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.2/29

9 HISTORY OF 1D QFEL MODEL Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.3/29

10 HISTORY OF 1D QFEL MODEL First quantization with Collective Operators by Bonifacio and Casagrande (1984) Steady State Regime Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.3/29

11 HISTORY OF 1D QFEL MODEL First quantization with Collective Operators by Bonifacio and Casagrande (1984) Steady State Regime Path integral approach by Preparata PRA 38 (1988) Steady State Regime Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.3/29

12 HISTORY OF 1D QFEL MODEL First quantization with Collective Operators by Bonifacio and Casagrande (1984) Steady State Regime Path integral approach by Preparata PRA 38 (1988) Steady State Regime Second Quantization by Bonifacio, Piovella, Cola, PRA 67 (2003) Steady State Regime Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.3/29

13 HISTORY OF 1D QFEL MODEL First quantization with Collective Operators by Bonifacio and Casagrande (1984) Steady State Regime Path integral approach by Preparata PRA 38 (1988) Steady State Regime Second Quantization by Bonifacio, Piovella, Cola, PRA 67 (2003) Steady State Regime Propagation effects by Bonifacio, Piovella, Robb, Cola, Opt. Commun. 252 (2005) Multiple scaling approach Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.3/29

14 FEL PARAMETER λ r = 1 β γ r = β λ w λ w 1+a 2 w 2γ 2 λ l = 2λ w Resonant Wavelength λ w (1+a 2 w) 2λ Resonant energy p = mc(γ γ 0) k Momentum in k unit θ = (k + k w )z c(k k w )t Phase ρ = 1 γ r ( aw ω p 4k w c ) 2/3 Classical Fel parameter ρ = ρ mcγ r k = γ r ρ λ r λ c Quantum Fel parameter z = z/l g p = p/ ρ Rescaled Position and Momentum δ = γ 0 γ r ργ r L g = λ w /4πρ Detuning and Gain length Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.4/29

15 1D QFEL MODEL I Hamiltonian and particle equations H I (θ, p) = H I j (θ, p) = N Hj I (θ, p) [θ j, p k ] = iδ jk [a, a ] = 1 j=1 { p 2 j 2 ρ i ρ ( ) ae iθ j h.c. N e δa a } z θ j = p j ρ = p j H ρ ( ) z p j = ae iθ j + h.c. N e ρ N d z a = e iθ j + iδa N e j=1 = θj H Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.5/29

16 1D QFEL MODEL II N particle described by matter-wave field ˆψ(θ, z) ˆψ(θ, z) = n Z ĉ n ( z)e iθn, 2π 0 dθ ˆψ (θ) ˆψ(θ) = ˆN The electrons are treated like BOSONS!!! ] [ [ĉ n, ĉ n = δ nn ˆψ(θ), ˆψ (θ )] = δ(θ θ ) Ĥ II = 2π 0 dθ ˆψ (θ) H I (θ, i θ, a, a ) ˆψ(θ) N. Piovella, M.M. Cola and R. Bonifacio PRA 67. (2003) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.6/29

17 1D QFEL MODEL III 1 ρ ( i z ˆψ = 2 ρ 2 θ ˆψ i ae iθ c.c.) ˆψ N e ρ 2π d z a = dθ ˆψ (θ) e iθ ˆψ(θ) + iδa N e 0 Preparata Hypotesis (N e ) ˆψ N e ψ and â ρn e A introducing the time-dependence in field A( z) A( z, θ) i z ψ(θ, z) = 1 ( ) 2 ρ 2 θψ(θ, z) i ρ A( z, θ)e iθ c.c. ψ(θ, z) z A( z, θ) + 1 2ρ θa( z, θ) = ψ(θ, z) 2 e iθ + iδa( z, θ) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.7/29

18 MULTIPLE SCALING APPROACH Including propagation effect we introduce a slow scale: z 1 = ɛθ = z v rt ɛ = 2ρ L c = λ β r L c 4πρ 1 ɛ θ 1 ɛ θ + z 1 β r = v r = ck k + k w performing a perturbation expansion to the first order in ɛ we obtain: i z ψ(θ, z, z 1 ) = 1 2 ρ 2 θψ(θ, z, z 1 ) i ρ z A( z, z 1 ) + z1 A( z, z 1 ) = 2π 0 ( ) A( z, z 1 )e iθ c.c. ψ(θ, z, z 1 ) dθ ψ(θ, z, z 1 ) 2 e iθ + iδa( z, z 1 ) R. Bonifacio, N.Piovella, G.R.M. Robb, M.M. Cola, Opt. Commun. 252 (2005) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.8/29

19 1D WORKING EQUATIONS ψ(θ, z, z 1 ) = 1 2π n Z c n ( z, z 1 )e in(θ+δ z) 2π 0 dθ ψ(θ, z, z 1 ) 2 = I(z 1 ) z c n = i ( n 2 ) 2 ρ + nδ c n ρ {Ac n 1 A c n+1 } z A + z1 A = n Z c n c n 1 c n ( z, z 1 ) 2 = Probability to find an electron whit momentum p = n( k) at z and z 1 1 N e n Z c nc n 1 = Bunching operator Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.9/29

20 THE ENERGY SPREAD We must include the more physical consistent situation of an initial distribution for the electron energy. Infact each electron of the beam has different initial energy. δ = γ γ 0 ργ r δ i = γ γ 0 i ργ r c n ( z, z 1 ) c n (δ, z, z 1 ) n Z c nc n 1 R dδ G(δ) n Z c n(δ)c n 1 (δ) G(δ) is normalized distribution center around δ = 1/2 ρ Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.10/29

21 Self Aplified Spontaneus Emission SASE Ingredient of SASE: Starting from noise Propagation effects Superradiant instability (the electrons radiate as N 2 e ) Each cooperation length in the e-beam radiates a SR spike which is amplified when it propagates forward on the beam SASE in the quantum regime: In the quantum regime the FEL behaves like a two level system Electrons emit coherent photons as in a LASER in the quantum SASE mode the spectrum is intrinsically narrow (quantum purification) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.11/29

22 CLASSICAL AND QUANTUM REGIME ρ = ρmcγ r / k If ρ 1,since δγ γ ρ mc(δγ) k Classical behavior Many recoils implies many photons, hence classically, each electron emits many photons ρ A 2 N ph /N e 1 If ρ 1 mc(δγ) k Quantum behavior Each electron emits only a single photon therefore quantum FEL behaves like a two-level system ρ A 2 N ph /N e 1 Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.12/29

23 QUANTUM 1D LINEAR THEORY I Performing a linear analysis and looking for solutions proportional to e i(λ z+ ωz 1) we obtain the dispersion relation: (λ n ) ( ) λ ρ = 0 n = δ + Note that: ( ) For n = 0 and ω = 0 (λ δ) λ 2 4 ρ = 0 2 Quantum steady state dispersion relation And for ρ 1 (λ δ) λ = 0 Classical steady state dispersion relation n ρ ω, R. Bonifacio, N. Piovella, G.R.M. Robb and A. Schiavi PRST 9, (2006) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.13/29

24 QUANTUM 1D LINEAR THEORY II Im λ (a) (b) (c) (d) (e) (f) when ρ 1 δ = 1 2 ρ, width=4 ρ Peak of Iλ = ρ δ a : 0, b : 1/2, c : 3, d : 5, e : 7, f : 10 ρ a :, b : 1, c : 1/6, d : 1/10, e : 1/14, f : 1/20 δ Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.14/29

25 QUANTUM 1D LINEAR THEORY III The regions of the spectrum that corrisponding to gain Iλ > 0 appear like a series of discret line corresponding to different value of n. Each of this line is center in ω = (2n 1)/2 ρ with distance 1/ ρ and has a width of 4 ρ, this corrispond in the momentum space to shift of k/2 with a width 4 ρ 3/2 ( k) ρ = 0.1, 0.2, 0.4 Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.15/29

26 FROM 1D TO 3D, PROBLEM AND SOLU PROBLEM the tranverse motion is essentially classical. So we look for a model which describes the quantum behavior on the longitudinal dimension and at the same time the classical behavior on the tranverse dimension. extension via Shroedinger equation ˆψ(θ) ˆψ(θ, x, y)? NO because it describes a cold beam with a quantum emittance equal to compton vawelength λ c 2π SOLUTION! Write a Discrete Wigner function W n (θ, x t, p t ) and perform the classical limit only for the transverse motion in the limit: α λ c ɛ n 0 Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.16/29

27 1D DISCRETE WIGNER FUNCTION In longitudinal dimension θ is periodic then the momentum of the electron must be discrete Therefore we write the 1D Discrete Wigner function introduced for the first time in the (1994) by Bizarro. π/2 π/2 W n (θ) = 1 dθ e i2nθ θ + θ ˆϱ θ θ π = w n (θ) + sinc[(n n 1/2)π]w n +1/2(θ) w s (θ) = 1 2π π π n dθ e i2sθ θ + θ ˆϱ θ θ, s = k or s = k + 1/2 J.P. Bizarro, PRA (1994) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.17/29

28 1D WIGNER MODEL FOR QFEL Evolution equation ( z + s ρ θ ) w s ρ ( Ae iθ + c.c.) {ws+1/2 w s 1/2 } = 0 z A + z1 A = n π π dθ w n+1/2 (θ, z, z 1 )e iθ + iδa For ˆϱ = ψ ψ pure state, n Z W n(θ, z) = ψ(θ, z) 2 π π W n(θ, z) = c n (z) 2 Beam profile Density probability n Z π π W n(θ, z) = 1 Normalization Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.18/29

29 CLASSICAL LIMIT for ρ 1 p = s/ ρ becomes a continuos variable ρ ( ( ) w s+1/2 w s 1/2 ρ [W p + 1 ) ( W p 1 )] p W 2 ρ 2 ρ In the momentum space p ± 1 2 ρ become p ± k 2 MAXWELL-WIGNER MAXWELL-VLASOV ( ) ( z + p θ ) W ρ Ae iθ + c.c. p W = 0 ( z + z1 ) A = d p π π dθ W (θ, p, z, z 1 )e iθ + iδa Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.19/29

30 3D QFEL WIGNER MODEL HOW TO Write the 3d quantum Hamiltonian Define the statistic operator ˆϱ Define the 3D Discrete Wigner rappresentation of ˆϱ Write the 3D Wigner Evolution equations Perform the classical limit only on the transverse coordinate Or similary: w s (θ, z, z 1 ) w s (θ, z, z 1, x t, p t ) A( z, z 1 ) A( z, z 1, x t ), a w a w g l ( x t ) g l = spatial profile of laser Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.20/29

31 3D QFEL HAMILTONIAN ˆ H(θ, p, x t, p t ; z) = ˆp2 2 ρ + αb 2 ˆp2 t [ ξ + p 2ρ (1 g l 2 ) bx 2 α2 p 2 t ( gl Aeiθ c.c. + ρξ 2ρ 2 g l 2 + i ρ ] ), x t = x t /σ, p = mc(γ γ 0), p t = mcγ 0 k b = L g β, d x t dz, β = σ2, X = kɛ r, ξ = a2 w ɛ r 1 + a 2, α = w [θ, p] = [ x, p x] = i mcγ 0 ɛ r. Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.21/29

32 3D DISCRETE WIGNER FUNCTION W m (θ, x, p t ) = w m (θ, x, p t ) + n Z sinc[(m n µ/2)π]w n+µ/2 (θ, x t, p w s (θ, x, p t ) = 1 2π 3 +π π R 2 dθ e i2θ s ] From the evolution equation z ˆϱ = i [Ĥ, ˆϱ d x te i2 x t p t θ θ, x t + x t ˆϱ x t x t, θ + θ a = L g /Z r = b/2x, Z r = 4πσ/λ we obtain Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.22/29

33 QFEL MAXWELL-WIGNER EQUATION z w s + { s ρ + δ + ξ 2ρ (1 g l 2 ) bx } 2 p2 t θ w s ( ) [ws+1/2 ρ gl ] Aeiθ + c.c. w s 1/2 + iα ρ ( )] { [ xt gl w s+1/2 + w s 1/2 Aeiθ c.c. 2 [ + (1 + αx) b p t xt ξ 2ρX } self focusing ( xt g l 2) pt ] w s = 0, ( z + z1 ) A ia 2 x t A = g l m Z R 2 d 2 p t 2π 0 dθ w m+1/2 (θ, x t, p t )e iθ. Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.23/29

34 ANALYSIS OF TRANSVERSE TERM I θ = Affect the QFEL resonance { s ρ + δ + ξ 2ρ (1 g l 2 ) bx } 2 p2 t λ = λ l 4γ 2 0 [ 1 + a 2 w + γ 2 0 (θ2 x + θ 2 y) ] δ 0 = γ 0 γ r ργ 0 ( γ ργ 0 )1D 1 Longitudinal detuning ξ 2ρ (1 g l 2 ) ( ) γ ργ 0 a w 1 2ρ a 2 w 1+a 2 w Off-resonance due to laser profile variation ( ) bx 2 p2 t γ ργ 0 x,y 1 2ρ γ 2 0 θ 2 t 1+a 2 w Off-resonance due to beam divergence Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.24/29

35 ANALYSIS OF TRANSVERSE TERM II x t = b p t Tranverse motion of the electron (divergenze of beam) p t = ξ 2ρX ( xt g l 2) β = 1 2γ 0 x a 2 l (x) Ponderomotive force due to the transverse laser profile (defocusing) Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.25/29

36 QFEL 3D WORKING EQUATIONS I z w k s + ik + { s w k s = 1 2π k Z wk s e ikθ ρ + δ + ξ 2ρ (1 g l 2 ) bx } 2 p2 t θ ws k ( gl Awk 1 s+1/2 g l Awk 1 s 1/2 + g la w k+1 s+1/2 g la w k+1 s 1/2 ( xt g l 2) ] pt ρ [ b p t xt ξ 2ρX w k s = 0, ) ( z + z1 ) A ia 2 x t A = g l m Z R 2 d 2 p t w 1 m+1/2 (θ, x t, p t ). Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.26/29

37 QFEL 3D WORKING EQUATIONS II w 2k n k Z n + k ˆϱ n k w 2k+1 n+1/2 k Z n + k + 1 ˆϱ n k { w 0 n n ˆϱ k 1d c n 2 w 1 n+1/2 n + 1 ˆϱ n 1d c n+1 c n = c nc n 1 w0 0 = 0 ˆϱ 0 1d c 0 2 w 1 0 = 1 ˆϱ 1 1d c 1 2 two level n=0,-1 w 1 1/2 = 0 ˆϱ 1 1d c 0 c 1 Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.27/29

38 3D QFEL TWO LEVEL APPROXIMATION D = w0 0 w 1 0 Population difference B = w 1/2 1 Bunching (polarizzation) L g = L g / ρ Quntum Gain length ρ 0.4 n = 0, 1 g l = 1 static wigler ( z + b p t xt ) D + 2 (AB + c.c.) = 0 ( z + b p t xt i X2 p t 2 ) B = AD ( z + z 1 i 2 x t ) A = R 2 d 2 p t B A = A ρ z = z ρ = z/l g b = L g /β a = L g /Z r z 1 = z 1 ρ Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.28/29

39 CONCLUSION We propose a new 3D Quantum FEL Model based on a MAXWELL-WIGNER equations The Wigner approach let us mix the different behaviour between the longitudinal and tranverse dynamics The MAXWELL-WIGNER equations switch into the classical MAXWELL-VLASOV equations for ρ 1 Future Developments: Implementation 3D Maxwell-Wigner code and simulations Search of particular analytic solution Dottorato di ricerca in fisica XXI Ciclo, Seminario di fine II anno p.29/29

3D Wigner model for a quantum free electron laser with a laser wiggler

3D Wigner model for a quantum free electron laser with a laser wiggler 3D Wigner model for a quantum free electron laser with a laser wiggler M.M. Cola,, L. Volpe,, N. Piovella,, A. Schiavi 3, and R. Bonifacio,4 Dipartimento di Fisica, Università Degli Studi di Milano, via

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

Three-dimensional Free Electron Laser numerical simulations for a laser wiggler in the quatum regime

Three-dimensional Free Electron Laser numerical simulations for a laser wiggler in the quatum regime Three-dimensional Free Electron Laser numerical simulations for a laser wiggler in the quatum regime A. Schiavi, R. Bonifacio 2,4, N. Piovella 2,3, M.M. Cola 2,3, and L. Volpe 2,3 Dipartimento di Energetica,

More information

3D Quantum Theory of Free Electron Lasers

3D Quantum Theory of Free Electron Lasers Università degli Studi di Milano Facoltà di Scienze Matematiche, Fisiche e Naturali Dottorato di Ricerca in Fisica, Astrofisica e Fisica Applicata 3D Quantum Theory of Free Electron Lasers Coordinatore

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Entanglement in a Bose Einstein condensate by collective atomic recoil

Entanglement in a Bose Einstein condensate by collective atomic recoil INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 37 (004) S87 S94 PII: S0953-4075(04)7330-9 Entanglement in a Bose Einstein condensate

More information

Collective Atomic Recoil in Ultracold Atoms: Advances and Applications

Collective Atomic Recoil in Ultracold Atoms: Advances and Applications Università degli Studi di Milano Facoltà di Scienze Matematiche, Fisiche e Naturali Dottorato di Ricerca in Fisica, Astrofisica e Fisica Applicata Collective Atomic Recoil in Ultracold Atoms: Advances

More information

arxiv: v2 [physics.plasm-ph] 31 May 2017

arxiv: v2 [physics.plasm-ph] 31 May 2017 Coherent π-pulse emitted by a dense relativistic cold electron beam J. A. Arteaga 1, L. F. Monteiro 1, A. Serbeto 1, K. H. Tsui 1, J. T. Mendonça 2 1 Instituto de Física, Universidade Federal Fluminense,

More information

arxiv: v1 [physics.acc-ph] 23 Mar 2016

arxiv: v1 [physics.acc-ph] 23 Mar 2016 Modelling elliptically polarised Free Electron Lasers arxiv:1603.07155v1 [physics.acc-ph] 3 Mar 016 Submitted to: New J. Phys. J R Henderson 1,, L T Campbell 1,, H P Freund 3 and B W J M c Neil 1 1 SUPA,

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract SLAC PUB 10694 August 2004 Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator Z. Huang Stanford Linear Accelerator Center, Menlo Park, CA 94025 S. Reiche UCLA,

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Robb, G.R.M. and McNeil, B.W.J. (2005) Four-wave mixing with self-phase matching due to collective atomic recoil. Physical Review Letters, 94 (2). pp. 023901-1. ISSN 0031-9007 http://eprints.cdlr.strath.ac.uk/2929/

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Coherent states, beam splitters and photons

Coherent states, beam splitters and photons Coherent states, beam splitters and photons S.J. van Enk 1. Each mode of the electromagnetic (radiation) field with frequency ω is described mathematically by a 1D harmonic oscillator with frequency ω.

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

arxiv: v1 [physics.acc-ph] 1 Jan 2014

arxiv: v1 [physics.acc-ph] 1 Jan 2014 The Roads to LPA Based Free Electron Laser Xiongwei Zhu Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 arxiv:1401.0263v1 [physics.acc-ph] 1 Jan 2014 January 3, 2014 Abstract

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

Statistical mechanics and Vlasov equation allow for a simplified hamiltonian description of single pass free electron laser saturated dynamics

Statistical mechanics and Vlasov equation allow for a simplified hamiltonian description of single pass free electron laser saturated dynamics Statistical mechanics and Vlasov equation allow for a simplified hamiltonian description of single pass free electron laser saturated dynamics Andrea Antoniazzi, Yves Elskens, Duccio Fanelli, Stefano Ruffo

More information

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY Short Wavelength SASE FELs: Experiments vs. Theory Jörg Rossbach University of Hamburg & DESY Contents INPUT (electrons) OUTPUT (photons) Momentum Momentum spread/chirp Slice emittance/ phase space distribution

More information

Quantum effects in high-gain free-electron lasers

Quantum effects in high-gain free-electron lasers PHYSICAL REVIEW E, VOLUE 64, 056502 Quantum effects in high-gain free-electron lasers C. B. Schroeder,, * C. Pellegrini, and P. Chen 2 Department of Physics and Astronomy, University of California, Los

More information

Short Wavelength Regenerative Amplifier FELs (RAFELs)

Short Wavelength Regenerative Amplifier FELs (RAFELs) Short Wavelength Regenerative Amplifier FELs (RAFELs) Neil Thompson, David Dunning ASTeC, Daresbury Laboratory, Warrington UK Brian McNeil Strathclyde University, Glasgow, UK Jaap Karssenberg & Peter van

More information

Single spike operation in SPARC SASE-FEL

Single spike operation in SPARC SASE-FEL SPARC-BD-07-006 December 2007 Single spike operation in SPARC SASE-FEL M. Boscolo a,*, M. Ferrario a, I. Boscolo b, F. Castelli b, S. Cialdi b, V. Petrillo b, R. Bonifacio c, L. Palumbo d L. Serafini e

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Chapter 9. Electromagnetic Radiation

Chapter 9. Electromagnetic Radiation Chapter 9. Electromagnetic Radiation 9.1 Photons and Electromagnetic Wave Electromagnetic radiation is composed of elementary particles called photons. The correspondence between the classical electric

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

arxiv:quant-ph/ v1 20 Apr 2004

arxiv:quant-ph/ v1 20 Apr 2004 Robust generation of entanglement in Bose-Einstein condensates by collective atomic recoil Mary M. Cola, Matteo G. A. Paris and Nicola Piovella Dipartimento di Fisica dell Università di Milano and I.N.F.N.

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Quasi-stationary-states in Hamiltonian mean-field dynamics

Quasi-stationary-states in Hamiltonian mean-field dynamics Quasi-stationary-states in Hamiltonian mean-field dynamics STEFANO RUFFO Dipartimento di Energetica S. Stecco, Università di Firenze, and INFN, Italy Statistical Mechanics Day III, The Weizmann Institute

More information

A Review of X-ray Free-Electron Laser Theory. Abstract

A Review of X-ray Free-Electron Laser Theory. Abstract SLAC PUB 12262 December 2006 A Review of X-ray Free-Electron Laser Theory Zhirong Huang Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Kwang-Je Kim Advanced Photon Source,

More information

X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory

X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory SLAC-PUB-494 June 4 X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory Juhao Wu Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Beam-Wave Interaction in Periodic and Quasi-Periodic Structures

Beam-Wave Interaction in Periodic and Quasi-Periodic Structures Particle Acceleration and Detection Beam-Wave Interaction in Periodic and Quasi-Periodic Structures Bearbeitet von Levi Schächter 1. Auflage 2011. Buch. xvi, 441 S. Hardcover ISBN 978 3 642 19847 2 Format

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Marty Zwikel Department of Physics, Grinnell College, Grinnell, IA, 50 Abstract Free

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

Simple Physics for Marvelous Light: FEL Theory Tutorial

Simple Physics for Marvelous Light: FEL Theory Tutorial Simple Physics for Marvelous Light: FEL Theory Tutorial Kwang-Je Kim ANL, U of C, POSTECH August 22, 26, 2011 International FEL Conference Shanghai, China Undulators and Free Electron Lasers Undulator

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

FREE ELECTRON LASER THEORY USING TWO TIMES GREEN FUNCTION FORMALISM HIROSHI TAKAHASHI. Brookhaven Natioanal Laboratory Upton New York, 11973

FREE ELECTRON LASER THEORY USING TWO TIMES GREEN FUNCTION FORMALISM HIROSHI TAKAHASHI. Brookhaven Natioanal Laboratory Upton New York, 11973 FREE ELECTRON LASER THEORY USING TWO TIMES GREEN FUNCTION FORMALISM HIROSHI TAKAHASHI Brookhaven Natioanal Laboratory Upton New York, 11973 In this paper, we present a quatum theory for free electron laser

More information

Accelerator Physics Homework #7 P470 (Problems: 1-4)

Accelerator Physics Homework #7 P470 (Problems: 1-4) Accelerator Physics Homework #7 P470 (Problems: -4) This exercise derives the linear transfer matrix for a skew quadrupole, where the magnetic field is B z = B 0 a z, B x = B 0 a x, B s = 0; with B 0 a

More information

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017 Quantum Optics exam M LOM and Nanophysique 8 November 017 Allowed documents : lecture notes and problem sets. Calculators allowed. Aux francophones (et francographes) : vous pouvez répondre en français.

More information

Prospects for a superradiant laser

Prospects for a superradiant laser Prospects for a superradiant laser M. Holland murray.holland@colorado.edu Dominic Meiser Jun Ye Kioloa Workshop D. Meiser, Jun Ye, D. Carlson, and MH, PRL 102, 163601 (2009). D. Meiser and MH, PRA 81,

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

arxiv:physics/ v1 [physics.acc-ph] 30 Jun 2005

arxiv:physics/ v1 [physics.acc-ph] 30 Jun 2005 Generation and Propagation of Nonlinear Waves in Travelling Wave Tubes Stephan I. Tzenov Dipartimento di Fisica E.R. Caianiello, Universitá degli Studi di Salerno and INFN Sezione di Napoli Gruppo Collegato

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller and Mikhail Yurkov Deutsches Elektronen-Synchrotron DESY, Hamburg

More information

Beam Shape Effects in Non Linear Compton Scattering

Beam Shape Effects in Non Linear Compton Scattering Beam Shape Effects in Non Linear Compton Scattering Signatures of High Intensity QED Daniel Seipt with T. Heinzl and B. Kämpfer Introduction QED vs. classical calculations, Multi Photon radiation Temporal

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Nonperturbative Study of Supersymmetric Gauge Field Theories

Nonperturbative Study of Supersymmetric Gauge Field Theories Nonperturbative Study of Supersymmetric Gauge Field Theories Matteo Siccardi Tutor: Prof. Kensuke Yoshida Sapienza Università di Roma Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

arxiv: v1 [quant-ph] 7 Nov 2018

arxiv: v1 [quant-ph] 7 Nov 2018 Dynamical Mechanism for Coherence in the Resonant System of Ion-solvated Water Molecules and Radiation Eiji Konishi Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 66-851, Japan

More information

Coherence Properties of the Radiation from X-ray Free Electron Lasers

Coherence Properties of the Radiation from X-ray Free Electron Lasers Proceedings of the CAS CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May 10 June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol.

More information

Synchrotron radiation

Synchrotron radiation Synchrotron radiation When a particle with velocity v is deflected it emits radiation : the synchrotron radiation. Relativistic particles emits in a characteristic cone 1/g The emitted power is strongly

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Collective atomic recoil in a moving Bose-Einstein condensate: From superradiance to Bragg scattering

Collective atomic recoil in a moving Bose-Einstein condensate: From superradiance to Bragg scattering Collective atomic recoil in a moving Bose-Einstein condensate: From superradiance to Bragg scattering L. Fallani, 1,2, * C. Fort, 1,2 N. Piovella, 1,3 M. Cola, 1,3 F. S. Cataliotti, 1,4 M. Inguscio, 1,2

More information

Quantum Optomechanical Heat Engine

Quantum Optomechanical Heat Engine Quantum Optomechanical Heat Engine ~Ando-Lab Seminar on Sep. 2nd~ Kentaro Komori 1 Optomechanics Thermodynamics 2 Contents Ø What is the heat engine? Ø Hamiltonian and polaritons Ø Otto cycle Ø Work and

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

A two-oscillator echo enabled tunable soft x-rays

A two-oscillator echo enabled tunable soft x-rays A two-oscillator echo enabled tunable soft x-rays FLS 2010 Workshop SLAC J.S. Wurtele Co workers: P. Gandhi, X.-W. Gu, G. Penn, A. Zholents R. R. Lindberg, K.-J. Kim 1. Overview of scheme 2. Walkthrough

More information

Quantization of the E-M field

Quantization of the E-M field Quantization of the E-M field 0.1 Classical E&M First we will wor in the transverse gauge where there are no sources. Then A = 0, nabla A = B, and E = 1 A and Maxwell s equations are B = 1 E E = 1 B E

More information

Analysis of FEL Performance Using Brightness Scaled Variables

Analysis of FEL Performance Using Brightness Scaled Variables Analysis of FEL Performance Using Brightness Scaled Variables Michael Gullans with G. Penn, J. Wurtele, and M. Zolotorev Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Outline Introduce brightness

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Review of x-ray free-electron laser theory

Review of x-ray free-electron laser theory PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 1, 3481 (7) Review of x-ray free-electron laser theory Zhirong Huang Stanford Linear Accelerator Center, Stanford, California 9439, USA Kwang-Je

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Coherence properties of the radiation from SASE FEL

Coherence properties of the radiation from SASE FEL CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs), 31 May 10 June, 2016 Coherence properties of the radiation from SASE FEL M.V. Yurkov DESY, Hamburg I. Start-up

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

3D WIGNER FUNCTION MODEL FOR A QUANTUM FREE ELECTRON LASER

3D WIGNER FUNCTION MODEL FOR A QUANTUM FREE ELECTRON LASER 3D WIGNER FUNCTION MODEL FOR A QUANTUM FREE ELECTRON LASER N. Piovella (,), M.Cola (), L.Vole (), A. Schiavi (3), ad R. Boifacio (,4) () INFN-MI, Mila, Italy. () Diatimeto di Fisica, Uiv. of Mila, Italy

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

Wave propagation in an inhomogeneous plasma

Wave propagation in an inhomogeneous plasma DRAFT Wave propagation in an inhomogeneous plasma Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX NP, UK This version is of 7 February 208. Introduction In

More information

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems Miniworkshop talk: Quantum Monte Carlo simulations of low temperature many-body systems Physics, Astrophysics and Applied Physics Phd school Supervisor: Dott. Davide E. Galli Outline Interests in quantum

More information

Lecture 25. atomic vapor. One determines how the response of the medium to the probe wave is modified by the presence of the pump wave.

Lecture 25. atomic vapor. One determines how the response of the medium to the probe wave is modified by the presence of the pump wave. Optical Wave Mixing in o-level Systems () Saturation Spectroscopy setup: strong pump + δ eak probe Lecture 5 atomic vapor δ + measure transmission of probe ave One determines ho the response of the medium

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

JQI summer school. Aug 12, 2013 Mohammad Hafezi

JQI summer school. Aug 12, 2013 Mohammad Hafezi JQI summer school Aug 12, 2013 Mohammad Hafezi Electromagnetically induced transparency (EIT) (classical and quantum picture) Optomechanics: Optomechanically induced transparency (OMIT) Ask questions!

More information

Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms

Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms Robin Kaiser CLXXIII International School of Physics "Enrico Fermi" "Nano optics and atomics: transport of light and matter

More information

Photon-atom scattering

Photon-atom scattering Photon-atom scattering Aussois 005 Part Ohad Assaf and Aharon Gero Technion Photon-atom scattering Complex system: Spin of the photon: dephasing Internal atomic degrees of freedom (Zeeman sublevels): decoherence

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

Numerical Modeling of Collective Effects in Free Electron Laser

Numerical Modeling of Collective Effects in Free Electron Laser Numerical Modeling of Collective Effects in Free Electron Laser Mathematical Model and Numerical Algorithms Igor Zagorodnov Deutsches Elektronen Synchrotron, Hamburg, Germany ICAP 1, Rostock 1. August

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information