Multiscale turbulence, electron transport, and Zonal Flows in DIIID


 Giles Cunningham
 1 years ago
 Views:
Transcription
1 Multiscale turbulence, electron transport, and Zonal Flows in DIIID L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4, L. Zeng1, E. J. Doyle1, C.C. Petty4, J. Kinsey4, G. Staebler4, K. H. Burrell4, M.E. Austin6, and the DIIID Team4 1 University of California, Los Angeles of California, San Diego 3 Massachussets Institute of Technology 4 General Atomics, San Diego 5 University of Wisconsin, Madison 6 University of Texas at Austin 2 University Kinetic Scale Turbulence in Laboratory and Space Plasmas Workshop Cambridge, July 1923, 2010
2 Why is intermediate/smallscale turbulence important? Understanding electron thermal transport in Hmode plasmas is critical for nextstep burning plasma experiments such as ITER (αparticle heating). Electron transport is driven by multiscale phenomena. Local measurements of intermediate/smallerscale density fluctuations (kρ e 0.2) have become available (Doppler Backscattering, DBS). Gyrokinetic code results (GENE, GYRO) predict that intermediate/smallscale turbulence may be important (or possibly dominant) in HMode. Local multiscale turbulence measurements provide critical tests and validation of Gyrokinetic predictive codes.
3 Outline Introduction Core turbulence behavior across the LH transition Multiscale turbulence in high temperature, low collisionality Hmode plasmas:  radial profiles  wavenumber spectra, linear stability  GYRO simulations ECHHeated QHmodes: T e /T i ~1 Zonal Flows and intermediatescale turbulence
4 Intermediate/highk turbulence may drive 50% or more of the electron heat flux once ITG modes are subdominant Cyclone ITG/TEM/ETG simulation: 50% of electron heat flux driven for k θ r s 0.5. R/L T e = 6.9 R/L Ti = 5.5 R/L n = 0 Coupled TEM/ETG simulation (ITG linearly stable): 70% of electron heat flux driven for k θ r s 0.5. R/L T e = 6.9 R/L Ti = R/L n = 0 Accessible By BES and CECE Accessible by Doppler Backscattering (Goerler and Jenko, PRL 2008).
5 Doppler Backscattering (DBS) measures local density fluctuation level and E B velocity versus wavenumber Xmode cutofflayer ω = ω c,x Radial resolution: Δr < 0.5 cm Fluctuation level vs. k θ from backscattered amplitude: ñ(k θ ) ~ A(k θ ) k θ k i k s Wavenumber resolution: Δk /k ~ 0.3 ExB velocity evaluated from Doppler shift Δω D of the backscattered signal: v E B =v meas v ph = Δω D /2k i α The probed wavenumber is set by the beam tilt angle α. k θ is obtained from GENRAY ray tracing: ω,k i Backscattering off density fluctuations with k s = k i  k θ, k θ = 2k i k i /k vac Several Effects localize backscattering to the cutoff layer. cutoff R (m)
6 GENRAY ray tracing is used to obtain the DBS probed radius and wavenumber Measures (relative) local fluctuation levels (0.5 k θ 15 cm 1 ) Radial resolution Δr < 0.5 cm Wavenumber resolution: Δk 2λ 2 = 0 k 2πW 0 sinθ 1+ (2πW 0 ) 2 λ 0 R p Δk/k = / 2
7 Core electron thermal diffusivity decreases within ~10 ms of Hmode edge barrier formation LH transition Electron heat diffusivity (from TRANSP) decreases rapidly across minor radius
8 At the LH transition, core fluctuations (0.4 r/a 0.8) are reduced across a range of wavenumbers ~ CECE (T e /T e )*, BES (ñ/n), r/a=0.7 Doppler Backscattering, r/a=0.4 L H L H *L. Schmitz, A.E. White et al., Phys. Rev. Lett. 100 (2008). Moderate reduction before LH transition due to increasing E B shear; ñ drops at transition within ~510 ms.
9 The E B shearing rate exceeds the linear growth rate in the ITG/TEM range in the core plasma in Hmode Linear growth rate γ l is calculated by TGLF. The radial electric field/shear in the core is dominated by toroidal rotation (E r ~ v φ B θ ). Fluctuation suppression expected for k ρ s 4 in Hmode (r/a=0.4). Only ETG expected unstable for r/a ~0.4 DBS DBS L H
10 Electron temperature and density profiles and E B shearing rate in L and HMode, # LMode (875ms) HMode (1100 ms) Radial Electric Field LMode HMode WaltzMiller Shearing Rate HMode (1100 ms): strong shear in the core plasma (r/a <0.7) in addition to the pedestal region Low collisionality ν e* (0.4) ~0.04
11 Radial profile of Density Fluctuations in L and HMode Both ITGscale and Intermediatescale fluctuations are substantially reduced in Hmode across the core plasma. ñ/n is reduced by more than an order of magnitude for r/a < 0.45 Very low Hmode intermediatek turbulence for r/a <0.45
12 In Hmode, core fluctuations are reduced in the wavenumber range where α<ω ExB > > γ l Exponential spectra found in LMode: ñ/n ~ e β(kρ s ) with β = TGLF growth rate of most unstable mode α E ω ExB a/c s is the normalized shear quench rate
13 Initial multiscale GYRO calculations indicate importance of ETG range (k θ ρ s > 3) for electron thermal transport Spectrum of potential fluctuations (outboard midplane) r/a=0.6 Electron transport spectrum ~kρ s 3.5 ~kρ s 6 Fixed gradient simulation; Q e GYRO = 0.28 Q e, exp Electron Heat flux almost entirely driven by modes with k θ ρ s > 2
14 2D wavenumber spectrum (k r /k θ asymmetry) Outboard midplane reconstruction (GYRO) DBS measurement r/a=0.6 Measured DBS spectral index is increased compared to index averaged over <k r >
15 Achieved T e /T i > 1 and T e > 10 kev in ECHassisted QHmode plasma Reduced toroidal rotation and reduced central ion temperature with ECH Collisionality ν* ~ (r/a~0.4; comparable to ITER!)
16 Transport Dependence on T e /T i : Radial Profiles with/without ECH (#141407, 2.8 MW ECH) Electron Temperature Ion Temperature Electron ITB With ECH With ECH r/a T e /T i T e /T i Large variation in T e /T i provides good basis for investigating electron transport Ion thermal transport increases with T e /T i
17 Increasing T e /T i (ECH) leads to increased ion heat transport (flat T i profile) and ITG/TEM transition ECH TEM ECH TEM ITG TEM γa/c s (3.2,0.55) ωa/c s (3.2,0.55)
18 ITGTEM transition in core plasma with ECH (r/a = 0.4) (using correct L Te during ECH phase) ECH TEM ECH TEM ITG TEM γa/c s (3.2,0.55) ωa/c s (3.2,0.55)
19 Electron Temperature gradient stays above ETG critical gradient w/ech γa/c s (3.3,0.55)
20 Evidence of intermediatescale turbulence regulation by Zonal Flows in an electron ITB gradients shearing transport turbulence v v trapping Zonal flows no transport damping Zonal Flows thought to regulate ITGscale turbulence saturation; the influence on intermediatescale turbulence is less well understood. We present evidence of a ZFinduced shear layer and intermediatescale fluctuation suppression at/near the q=1 rational surface. Fluctuation suppression sustains an LMode electron transport barrier at the q=2 surface in the data shown.
21 LMode electron transport barrier at the q = 2 rational surface Previous evidence in DIIID of ion ITBs and transient electron ITBs formed near q min as the q=2 surface enters the plasma.* We investigate the interaction of ZF s with turbulence in a sustained electron ITB (Lmode). *M. Austin et al., Phys. Plasmas 13, (2006). LMode, P NB = 7 MW 1150 ms 1190 ms
22 Localized shear layer (Zonal Flow structure) detected near q=2 surface by Doppler Backscattering Turbulence velocity v ExB + v ph 1 cm Phase velocity is neglected (v ph < 0.05 v ExB from TGLF, V t ~ v ExB )
23 Localized Zonal Flows are observed near the q=2 surface ZMF (zeromean frequency) and low frequency Zonal Flows are observed near the q = 2 surface (r/a ~ 0.5) Flow velocity spectrum from Doppler Backscattering r/a r/a~0.5 1 km/s A 3/2 tearing mode grows at 1190 ms and is transiently observed at the same radius. An island forms at 1230 m (observed on ECE data), collapsing the shear layer. GAM Zonal Flows 0.1km/s Lmode plasma, coinjected 7 MW
24 Intermediatescale fluctuations are reduced in local shear layer near the q=2 surface ZF E B shear is calculated from adjacent DBS channels: ω E B ~ (v r2 v r1 )/Δr 12 E B shear reverses across q=2 surface (measured by DBS) Local ExB shearing rate ω ZF+ ω eq Barrier collapses Density Fluctuation Amplitude k θ ~ 6 cm 1 k θ ρ s 3
25 ExB flow shear is anticorrelated with intermediatescale density fluctuation amplitude 1200 ms First experimental evidence of Zonal Flow interaction with Intermediate scale turbulence Anticorrelation is consistent with theoretical expectations. r/a~0.48 Probed k ~6 cm 1 k ρ s 3
26 Anticorrelation is most pronounced in regions of high shear Turbulence velocity (DBS) 1200 ms
27 Summary Core electron transport and ITG/intermediate scale core turbulence are substantially reduced across the LH transition in lowcollisionality Hmode plasmas. Wavenumber spectra (measured by Doppler Backscattering) and TGLF/GYRO simulations indicate that core turbulence reduction is consistent with E B shear. Initial GYRO multiscale modeling results indicate dominance of highk turbulence in the core. Fixedflux runs are in preparation to allow quantitative comparisons to experimentally measured density fluctuation wavenumber spectra. T e /T i ~ 1 achieved with ECH; reduced ExB shear: interesting regime for studying electron transport. DBS data indicate intermediatescale turbulence regulation by Zonal Flows in an electron ITB near the q=2 rational surface (LMode).
Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H and QHmode Plasmas
Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H and QHmode Plasmas EX/P535 L. Schmitz 1), A.E. White 1), G. Wang 1), J.C. DeBoo 2),
More informationReduced Electron Thermal Transport in Low Collisionality Hmode Plasmas in DIIID and the Importance of Smallscale Turbulence
1 Reduced Electron Thermal Transport in Low Collisionality Hmode Plasmas in DIIID and the Importance of Smallscale Turbulence L. Schmitz, 1 C. Holland, 2 T.L. Rhodes, 1 G. Wang, 1 L. Zeng, 1 A.E. White,
More informationGA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY HMODE PLASMAS IN DIIID AND THE IMPORTANCE OF SMALLSCALE TURBULENCE
GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY HMODE PLASMAS IN DIIID AND THE IMPORTANCE OF SMALLSCALE TURBULENCE by L. SCHMITZ, C. HOLLAND, T.L. RHODES, G. WANG, L. ZENG, A.E. WHITE,
More informationTransport Improvement Near Low Order Rational q Surfaces in DIII D
Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink
More informationMeasurements of Core Electron Temperature Fluctuations in DIIID with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations
Measurements of Core Electron Temperature Fluctuations in DIIID with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations A.E. White,a) L. Schmitz,a) G.R. McKee,b) C. Holland,c) W.A. Peebles,a)
More informationGA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS
GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, L. SCHMITZ, W.M. SOLOMON, B.J. TOBIAS, G.
More informationGA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS
GA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS by L. SCHMITZ, L. ZENG, T.L. RHODES, J.C. HILLESHEIM, W.A. PEEBLES, R.J. GROEBNER,
More informationParticle transport results from collisionality scans and perturbative experiments on DIIID
1 EX/P326 Particle transport results from collisionality scans and perturbative experiments on DIIID E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck
More informationGA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS
GA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, J.C. ROST, L. SCHMITZ, W.M. SOLOMON, B.J.
More informationVariation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas
Variation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. UzunKaymak, G. Wang6,
More informationValidating Simulations of MultiScale Plasma Turbulence in ITERRelevant, Alcator CMod Plasmas
Validating Simulations of MultiScale Plasma Turbulence in ITERRelevant, Alcator CMod Plasmas Nathan Howard 1 with C. Holland 2, A.E. White 1, M. Greenwald 1, J. Candy 3, P. Rodriguez Fernandez 1, and
More informationThe role of zonal flows and predatorprey oscillations in triggering
The role of zonal flows and predatorprey oscillations in triggering the formation of edge and core transport barriers L. Schmitz, 1 L. Zeng, 1 T.L. Rhodes, 1 J.C. Hillesheim 2 W.A. Peebles, 1 R.J. Groebner,
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationTowards Multiscale Gyrokinetic Simulations of ITERlike Plasmas
Frank Jenko MaxPlanckInstitut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITERlike Plasmas 23 rd IAEA Fusion Energy Conference 1116 October 2010, Daejeon,
More informationGA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIOLIKE DISCHARGES IN DIIID
GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE by R.I. PINSKER, M.E. AUSTIN, D.R. ERNST, A.M. GAROFALO, B.A. GRIERSON, J.C. HOSEA, T.C. LUCE, A. MARINONI,
More informationECH Density Pumpout and Small Scale Turbulence in DIIID
ECH Density Pumpout and Small Scale Turbulence in DIIID By K.L. Wong, T.L. Rhodes, R. Prater, R. Jayakumar, R. Budny, C.C. Petty, R. Nazikian, and W.A. Peebles Background It has been known for more than
More informationElectron Transport Stiffness and Heat Pulse Propagation on DIIID
Electron Transport Stiffness and Heat Pulse Propagation on DIIID by C.C. Petty, J.C. DeBoo, C.H. Holland, 1 S.P. Smith, A.E. White, 2 K.H. Burrell, J.C. Hillesheim 3 and T.C. Luce 1 University of California
More informationProgress and Plans on Physics and Validation
Progress and Plans on Physics and Validation T.S. Hahm Princeton Plasma Physics Laboratory Princeton, New Jersey Momentum Transport Studies: Turbulence and Neoclassical Physics Role of Trapped Electrons
More informationQTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.
LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference
More informationRelating the LH Power Threshold Scaling to Edge Turbulence Dynamics
Relating the LH Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and
More informationCMod Transport Program
CMod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where CMod
More informationQTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*
ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado
More informationControlling HMode Particle Transport with Modulated Electron Heating in DIIID and Alcator CMod via TEM Turbulence
Controlling HMode Particle Transport with Modulated Electron Heating in DIIID and Alcator CMod via TEM Turbulence D.R. Ernst 1, K.H. Burrell 2, W. Guttenfelder 3, T.L. Rhodes 4, L. Schmitz 4, A.M. Dimits
More informationGA A27948 FIRST DIRECT EVIDENCE OF TURBULENCEDRIVEN ION FLOW TRIGGERING THE L TO HMODE TRANSITION
GA A27948 FIRST DIRECT EVIDENCE OF TURBULENCEDRIVEN ION FLOW TRIGGERING THE L TO HMODE TRANSITION By L. SCHMITZ, B.A. GRIERSON, L. ZENG, J.A. BOEDO, T.L. RHODES, Z. YAN, G.R. McKEE, P. GOHIL, D. ELDON,
More informationGA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID
GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,
More informationValidation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling
Validation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling by B.A. Grierson1, C. Chrystal2, W.X. Wang1, J.A. Boedo3, J.S. degrassie2, W.M. Solomon2,
More informationStudies of Turbulence and Transport in Alcator C Mod HMode Plasmas with Phase Contrast Imaging and Comparisons with GYRO*
Studies of Turbulence and Transport in C Mod HMode Plasmas with Phase Contrast Imaging and Comparisons with GYRO* M. Porkolab 1, L. Lin 1, E.M. Edlund 1, J.C. Rost 1, C.L. Fiore 1, M. Greenwald 1, Y.
More informationCoexistence and interference of multiple modes in plasma turbulence: Some recent GENE results
Coexistence and interference of multiple modes in plasma turbulence: Some recent GENE results Frank Jenko IPP Garching, Germany University of Ulm, Germany Acknowledgements: F. Merz, T. Görler, D. Told,
More informationGyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C Mod *
Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C Mod * Miklos Porkolab in collabora.on with J. Dorris, P. Ennever, D. Ernst, C. Fiore, M. Greenwald, A. Hubbard, E. Marmar, Y. Ma,
More informationNonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM
Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM by R. Nazikian In collaboration with G.Y. Fu, R.V. Budny, G.J. Kramer, PPPL G.R. McKee, U. Wisconsin T. Rhodes, L. Schmidt,
More informationValidation Study of gyrokinetic simulation (GYRO) near the edge in Alcator CMod ohmic discharges
Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator CMod ohmic discharges C. Sung, A. E. White, N. T. Howard, D. Mikkelsen, C. Holland, J. Rice, M. Reinke, C. Gao, P. Ennever, M.
More informationTURBULENT TRANSPORT THEORY
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical
More informationGyrokinetic Turbulence in Tokamaks and Stellarators
Gyrokinetic Turbulence in Tokamaks and Stellarators Frank Jenko IPP, Germany Acknowledgements: P. Xanthopoulos, F. Merz, T. Görler, M. Pueschel, D. Told; A. Boozer, G. Hammett, D. Mikkelsen, M. Zarnstorff,
More informationPSFC/JA D.R. Ernst, N. Basse, W. Dorland 1, C.L. Fiore, L. Lin, A. Long 2, M. Porkolab, K. Zeller, K. Zhurovich. June 2006
PSFC/JA634 Identification of TEM Turbulence through Direct Comparison of Nonlinear Gyrokinetic Simulations with Phase Contrast Imaging Density Fluctuation Measurements D.R. Ernst, N. Basse, W. Dorland
More informationNSTX. Investigation of electron gyroscale fluctuations in the National Spherical Torus Experiment. David Smith. Advisor: Ernesto Mazzucato
NSTX Supported by Investigation of electron gyroscale fluctuations in the National Spherical Torus Experiment David Smith Advisor: Ernesto Mazzucato Final public oral exam February 26, 2009 Investigation
More informationW.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29November 2, 2012
Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty
More informationRole of Density Gradient Driven Trapped Electron Mode Turbulence in the Hmode Inner Core with Electron Heating a)
Role of Density Gradient Driven Trapped Electron Mode Turbulence in the Hmode Inner Core with Electron Heating a) D. R. Ernst, K. H. Burrell, W. Guttenfelder, T. L. Rhodes, A. M. Dimits 5, R. Bravenec,
More informationNonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas
Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas R.D. Sydora, J.N. Leboeuf, J. M. Dawson, V.K. Decyk, M.W. Kissick, C. L. Rettig, T. L. Rhodes,
More informationAdvances in the Physics Basis of the Hybrid Scenario on DIIID
Advances in the Physics Basis of the Hybrid Scenario on DIIID C.C. Petty 1), W.P. West 1), J.C. DeBoo 1), E.J. Doyle 2), T.E. Evans 1), M.E. Fenstermacher 3), M. Groth 3), J.R. Ferron 1), G.R. McKee 4),
More informationPossible Experimental Tests of Pedestal Width/ Structure, Motivated by Theory/Modeling
Possible Experimental Tests of Pedestal Width/ Structure, Motivated by Theory/Modeling R.J. Groebner PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at DIIID Pedestal
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationDavid R. Smith UWMadison
Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL
More informationBounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas
Bounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationElectron Transport and Improved Confinement on Tore Supra
Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOMCEA. CEACadarache, 38, St PaullezDurance, France
More informationMicrotearing Simulations in the Madison Symmetric Torus
Microtearing Simulations in the Madison Symmetric Torus D. Carmody, P.W. Terry, M.J. Pueschel  University of Wisconsin  Madison dcarmody@wisc.edu APS DPP 22 Overview PPCD discharges in MST have lower
More informationInvestigation of Intrinsic Rotation Dependencies in Alcator CMod
Investigation of Intrinsic Rotation Dependencies in Alcator CMod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the CMod and ASDEX
More informationGA A25566 COUPLED ITG/TEMETG GYROKINETIC SIMULATIONS
GA A25566 COUPLED ITG/TEMETG GYROKINETIC SIMULATIONS by J. CANDY and R.E. WALTZ SEPTEMBER 2006 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.
More informationGA A26148 VALIDATING SIMULATIONS OF CORE TOKAMAK TURBULENCE: CURRENT STATUS AND FUTURE DIRECTIONS
GA A26148 VALIDATING SIMULATIONS OF CORE TOKAMAK TURBULENCE: CURRENT STATUS AND FUTURE DIRECTIONS by C. HOLLAND,* J. CANDY, R.E. WALTZ, A.E. WHITE, G.R. McKEE, M.W. SHAFER, L. SCHMITZ, and G.R. TYNAN*
More informationTRANSPORT PROGRAM CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER
TRANSPORT PROGRAM CMod CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER CMOD  OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals
More informationUCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEACN116/TH14
AEACN116/TH14 Gyrokinetic Studies of Turbulence Spreading T.S. Hahm, Z. Lin, a P.H. Diamond, b G. Rewoldt, W.X. Wang, S. Ethier, O. Gurcan, b W. Lee, and W.M. Tang Princeton University, Plasma Physics
More informationFlow, turbulence and transport in laboratory plasmas (at least in LAPD and DIIID)
Flow, turbulence and transport in laboratory plasmas (at least in LAPD and DIIID) T.A. Carter, D. Schaffner, B. Friedman, J. Hillesheim, W.A. Peebles, G. Rossi, M.V. Umansky 2, D. Guice, S. Vincena, J.E.
More informationTheory Work in Support of CMod
Theory Work in Support of CMod 2/23/04 CMod PAC Presentation Peter J. Catto for the PSFC theory group MC & LH studies ITB investigations Neutrals & rotation BOUT improvements TORIC ICRF Mode Conversion
More informationCORE TURBULENCE AND TRANSPORT REDUCTION IN DIIID DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR
I JUL 2 5 m 7 GAA22617 CORE TURBULENCE AND TRANSPORT REDUCTION IN DIIID DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR by G.M. STAEBLER, C.M. GREENFIELD, D.P. SCHISSEL, K.H. BURRELL, T.A. CASPER, J.C.
More informationGTC Simulation of Turbulence and Transport in Tokamak Plasmas
GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPSTTBP Team Supported by SciDAC GPSTTBP, GSEP & CPES Motivation Firstprinciples
More informationGyrokinetic Simulations of Tokamak Microturbulence
Gyrokinetic Simulations of Tokamak Microturbulence W Dorland, Imperial College, London With key contributions from: S C Cowley F Jenko G W Hammett D Mikkelsen B N Rogers C Bourdelle W M Nevins D W Ross
More informationRole of Magnetic Configuration and Heating Power in ITB Formation in JET.
Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA
More informationCMod Core Transport Program. Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center
CMod Core Transport Program Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
More informationPredicting the Rotation Profile in ITER
Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton
More informationGA A23428 IMPROVEMENT OF CORE BARRIERS WITH ECH AND COUNTERNBI IN DIII D
GA A348 IMPROVEMENT OF CORE BARRIERS WITH ECH by C.M. GREENFIELD, K.H. BURRELL, T.A. CASPER, J.C. DeBOO, E.J. DOYLE, P. GOHIL, R.J. GROEBNER, J.E. KINSEY, J. LOHR, M. MAKOWSKI, G.R. McKEE, M. MURAKAMI,
More informationPlasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA
PSFC/JA753 The effect of electron cyclotron heating on density fluctuations at ion and electron scales in ITER baseline scenario discharges on the DIIID tokamak A. Marinoni, R.I. Pinsker, M. Porkolab,
More informationDependence of nonlocal effects on plasma parameters during coldpulse experiments in Alcator CMod
Dependence of nonlocal effects on plasma parameters during coldpulse experiments in Alcator CMod P. RodriguezFernandez 1, N.M. Cao 1, A. Creely 1, M. Greenwald 1, S. Houshmandyar 2, N.T. Howard 1,
More informationABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIIID
ABSTRACT, POSTER LP1 1 THURSDAY 11/7/1, APS DPP CONFERENCE, LONG BEACH Recent Results from the Quiescent Double Barrier Regime on DIIID E.J. Doyle, K.H. Burrell, T. Casper, J.C. DeBoo, A. Garofalo, P.
More information2017 US/EU Transport Task Force Workshop April 26 th 2017 Williamsburg, VA
Pablo RodriguezFernandez 1, A. E. White 1, N. M. Cao 1, A. J. Creely 1, M. J. Greenwald 1, N. T. Howard 1, A. E. Hubbard 1, J. W. Hughes 1, J. H. Irby 1, C. C. Petty 2, J. E. Rice 1 1 Plasma Science and
More informationEFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*
EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* by K.H. BURRELL Presented at the Transport Task Force Meeting Annapolis, Maryland April 3 6, 22 *Work supported by U.S. Department of Energy
More informationINTERNAL TRANSPORT BARRIERS WITH
INTERNAL TRANSPORT BARRIERS WITH COUNTERNEUTRAL BEAM INJECTION IN C.M. GREENFIELD, E.J. SYNAKOWSKI, K.H. BURRELL, M.E. AUSTIN, D.R. BAKER, L.R. BAYLOR, T.A. CASPER, J.C. DeBOO, E.J. DOYLE, D. ERNST, J.R.
More informationPRATER, G.M. STAEBLER, R.E. WALTZ, M.A. MAKOWSKI,
GA A26094 A CORRELATION ELECTRON CYCLOTRON EMISSION DIAGNOSTIC AND THE IMPORTANCE OF MULTIFIELD FLUCTUATION MEASUREMENTS FOR TESTING NONLINEAR GYROKINETIC TURBULENCE SIMULATIONS by A.E. WHITE, L. SCHMITZ,
More informationMHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges
MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.
More informationNonlocal Heat Transport in Alcator CMod Ohmic Lmode Plasmas
Nonlocal Heat Transport in Alcator CMod Ohmic Lmode Plasmas C. Gao 1, J.E.Rice 1, H.J. Sun 2,3, M.L.Reinke 1, N.T.Howard 1, D. Mikkelson 4, A.E.Hubbard 1, M.Chilenski 1, J.R.Walk 1, J.W.Hughes 1, P.Ennever
More informationUCLA. Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIIID Edge Pedestal. Presented by G. Wang a, In collaboration with
Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIIID Edge Pedestal Presented by G. Wang a, In collaboration with W.A. Peebles a, P.B. Snyder b, T.L. Rhodes a, E.J. Doyle a,
More informationEdge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas
Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu
More informationInternational Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.
195343 International Workshop on the Frontiers of Modern Plasma Physics 1425 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko MaxPlanck Institute fuer Plasmaphysik Garching bei Munchen Germany
More informationFineScale Zonal Flow Suppression of Electron Temperature Gradient Turbulence
FineScale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker, J.J. Kohut, Y. Chen, Z. Lin, F.L. Hinton and W.W. Lee Center for Integrated Plasma Studies, University of Colorado,
More informationReduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection
Reduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.
More informationUnderstanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation. Abstract
Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation W. X. Wang, B. A. Grierson, S. Ethier, J. Chen, and E. Startsev Plasma Physics Laboratory, Princeton University,
More informationObservations of Rotation Reversal and Fluctuation Hysteresis in Alcator CMod Plasmas
Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator CMod Plasmas N.M. Cao 1, J.E. Rice 1, A.E. White 1, S.G. Baek 1, M.A. Chilenski 1, P.H. Diamond 2, A.E. Hubbard 1, J.W. Hughes 1,
More informationLowcollisionality densitypeaking in GYRO simulations of CMod plasmas
Lowcollisionality densitypeaking in GYRO simulations of CMod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division
More informationExcitation of Alfvén eigenmodes with subalfvénic neutral beam ions in JET and DIIID plasmas
Excitation of Alfvén eigenmodes with subalfvénic neutral beam ions in JET and DIIID plasmas D. Borba 1,9, R. Nazikian 2, B. Alper 3, H.L. Berk 4, A. Boboc 3, R.V. Budny 2, K.H. Burrell 5, M. De Baar
More informationarxiv: v1 [physics.plasmph] 10 Oct 2017
Resolving ECRH deposition broadening due to edge turbulence in DIIID by heat deposition measurement M W Brookman, 1, M B Thomas, 4 J Leddy, 4 C C Petty, 3 R J La Haye, 3 K Barada, 5 T L Rhodes, 5 Z Yan,
More informationComparison of Critical Values of R/L Te. for ETG Modes Based on an Analytic Expression. with GKS Simulations for DIIID Discharges
Comparison of Critical Values of R/L Te for ETG Modes Based on an Analytic Expression with GKS Simulations for DIIID Discharges J.C. DeBoo, D.R. Baker and G.M. Staebler DIIID National Fusion Facility
More informationValidation studies on local gyrokinetic simulations of tokamak ITGTEM driven turbulent transport
Validation studies on local gyrokinetic simulations of tokamak ITGTEM driven turbulent transport *Motoki Nakata 1, Mitsuru Honda 1, Maiko Yoshida 1, Hajime Urano 1, Shinya Maeyama 1, Masanori Nunami 2,
More informationGA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES
GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report
More informationLocalized Electron Cyclotron Current Drive in DIII D: Experiment and Theory
Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. LinLiu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,
More informationAddressing Experimental Challenges of Fusion Energy with Computational Physics
Addressing Experimental Challenges of Fusion Energy with Computational Physics TS Taylor/OSDOE/Mar 2010 04910/TST/jy R J Buttery, 1 New Era in Fusion Energy Now Emerging A burning plasma experiment is
More informationDIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by
UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.
More informationRole of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation
22 nd IAEA Fusion Energy Conference Geneva, Switzerland, 38 October 2008 IAEACN65/TH/P839 Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation D. R.
More informationStudies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D
Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of
More informationSpatial, temporal and spectral structure of the turbulenceflow interaction at the LH transition
Spatial, temporal and spectral structure of the turbulenceflow interaction at the LH transition T Estrada 1, E. Ascasíbar 1, E. Blanco 1, A. Cappa 1, P. H. Diamond 2, T. Happel 3, C. Hidalgo 1, M. Liniers
More informationin tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2
Isotope mass and charge effects in tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2 (1) Chalmers University of Technology, Applied Physics, SE412 96, Göteborg, Sweden (2) General Atomics, P.O.
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationThe EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions
The EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi
More informationTurbulence and transport reduction with innovative plasma shapes in TCV  correlation ECE measurements and gyrokinetic simulations
Turbulence and transport reduction with innovative plasma shapes in TCV  correlation ECE measurements and gyrokinetic simulations A. Pochelon, and the TCV team 1 Ecole Polytechnique de Lausanne (EPFL)
More informationNSTX. Electron gyroscale fluctuations in NSTX plasmas. David Smith, PPPL. Supported by
NSTX Supported by Electron gyroscale fluctuations in NSTX plasmas College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U
More informationObservation of NeoClassical Ion Pinch in the Electric Tokamak*
1 EX/P629 Observation of NeoClassical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.L. Gauvreau, P.A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,
More informationTuomas Tala. Core Density Peaking Experiments in JET, DIIID and CMod in Various Operational Scenarios Driven by Fueling or Transport?
Tuomas Tala Core Density Peaking Experiments in JET, DIIID and CMod in Various Operational Scenarios Driven by Fueling or Transport? Core Density Peaking Experiments in JET, DIIID and CMod in Various
More informationSize Scaling and Nondiffusive Features of Electron Heat Transport in MultiScale Turbulence
Size Scaling and Nondiffusive Features of Electron Heat Transport in MultiScale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University
More informationTests of Profile Stiffness Using Modulated Electron Cyclotron Heating
Tests of Profile Stiffness Using Modulated Electron Cyclotron Heating by T.C. Luce in collaboration with J.C. DeBoo, C.C. Petty, J. Pino, J.M. Nelson, and J.C.M. dehaas Presented at 9th EUUS Transport
More informationHeating and Current Drive by Electron Cyclotron Waves in JT60U
EX/W Heating and Current Drive by Electron Cyclotron Waves in JT6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )
More informationDevelopment and Validation of a Predictive Model for the Pedestal Height (EPED1)
Development and Validation of a Predictive Model for the Pedestal Height (EPED1) P.B. Snyder 1 with R.J. Groebner 1, A.W. Leonard 1, T.H. Osborne 1, M. Beurskens 3, L.D. Horton 4, A.E. Hubbard 5, J.W.
More informationInnovative Concepts Workshop Austin, Texas February 1315, 2006
Don Spong Oak Ridge National Laboratory Acknowledgements: Jeff Harris, Hideo Sugama, Shin Nishimura, Andrew Ware, Steve Hirshman, Wayne Houlberg, Jim Lyon Innovative Concepts Workshop Austin, Texas February
More information