Gyrokinetic Transport Driven by Energetic Particle Modes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Gyrokinetic Transport Driven by Energetic Particle Modes"

Transcription

1 Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009

2 Outline I. Background Alfvén (TAE/EPM) modes are destabilized by an energetic particle (EP) radial density gradient. Increased EP transport expected. EP destabilized modes in GYRO vs. Berk-Breizman model: different transport and saturation mechanisms, different dynamical limits GYRO code used to study transport enhancement caused by steady-state Alfvén microturbulence. II. Linear stability analysis Identification of multiple, coexisting, low-k θ drift-alfvén modes driven unstable by a sparse EP population. A new eigenvalue solver within GYRO maps these overlapping modes. III. Non-linear transport Saturated states with finite, low-k θ Alfvén drive are elusive, but can be found. Preliminary studies show transport enhancement in most species channels, especially in EPs

3 EPs can de-stabilize Alfvén turbulence. Multiple Alfvén eigenmodes, created or destabilized by an EP plasma component, are predicted by high-n ballooning mode theory. Toroidal Alfvén Eigenmode (TAE): MHD mode existing in the toroidally induced gap in the Alfvén continuum. De-stabilized by EPs. TAE gap: ω TAE 1 with 1+ 2 r R ω ω TAE 1 ω TAE = v A 2qR 1 2 r R Energetic Particle Mode (EPM): Exist in the Alfvén continuum when kinetic EP drive exceeds continuum damping. Don t exist without EPs. Both modes are fed by the free energy in a radial density gradient in the EPs. F. Zonca, L. Chen, PoP 3, 323 (1996) G. Y. Fu and C. Z. Cheng, Phys. Fluids B 2, (1990)

4 Two Alfvén-induced transport pictures have different mechanisms. Global, Berk-Breizman High-n microturbulence, GYRO ν ν d Wave-trapped particles are constrained by an adiabatic invariant to move perpendicular to the field as they slow. Transport behavior depends sensitively on velocity space diffusion regime: ω ω b Fig. 1 from Berk- Breizman, 1990 : slowing down rate : velocity diffusion rate ω ω b ν ν d 2 ω ω b : mode frequency : trapped particle bounce frequency Self-consistent local fluctuations induce particle and heat flux. Q = δv E B δe Γ = δv E B δn heat flux particle flux Strictly analogous to collisionless ITG/ TEM and ETG turbulent transport. Particle trapping by the wave is not invoked in this picture. Saturation amplitude is generally much lower than the point where wave particle trapping becomes significant. H. L. Berk and B. N. Breizman, Phys. Fluids B 2 (9), 1990

5 GYRO microturbulence saturates by mode-mode interaction. Berk-Breizman model One-mode saturation: Saturation occurs when finite-amplitude power transfer to the wave falls below the background plasma damping or when local profile gradient relaxes. Saturation amplitude varies with collisional regime. GYRO microturbulence Multi-mode saturation: Total mode growth rate (including damping) is determined self-consistently. Saturation is primarily from interaction with n=0 zonal flow. n EP =0.007n e, al nep -1 =4, all others GA standard

6 GYRO microturbulence assumes steady-state dynamics. In B-B model, radially overlapping modes create a conveyor belt to the edge. GYRO presumes a steady-state with finite instability drive. Radial gradient is fixed. nep nep with overlap no mode overlap r r A burst cycle develops as the driving radial gradient is reduced by wave transport and restored by the EP source. Berk, TTF modes, nep=0.007ne with alnep-1=4 and all others GA standard. Only long-time average of saturated state is physically relevant in this view.

7 The GYRO code GYRO is a versatile, parallel initial-value solver of the gyrokinetic equations (electrostatic or electromagnetic) in toroidal geometry. Tracks up to four kinetic species (electrons and three ions), each with a Maxwellian velocity distribution and independent temperature. Local (flux tube) or global simulations. Treats one toroidal number mode number n at a time (linear) or a spectrum of interacting n numbers (non-linear). Linear operation Growth rate, frequency, and eigenfunction of the leading mode. Linear diffusion for one toroidal n. Non-linear operation Saturated amplitude of linearly driven turbulence. Total non-linear diffusion and n-dependence. Well benchmarked against several linear, nonlinear, and electromagnetic flux tube gyrokinetic codes (e.g. GS2, GENE, GEM). J. Candy, R.E. Waltz, JCP (2003)

8 GYRO has been used to study fusion α transport by ITG turbulence. An equivalent Maxwellian F M (v) at temperature T is defined for a given slowing-down distribution F S (v) by equating pressure. v 2 F M ( v)v 2 dv = v 2 F S ( v)v 2 dv T = 2I 1 4 E α I n dx 0 3I 2 v c /v α x n ( ) 3 + x 3 Electrostatic simulations give transport of α particles by ITG turbulence. GA standard case with: n α /n e = L Tα -1 = 0.5 L nα -1 = 5 Normalized energy and particle flux for α particles as a function of α temperature T α. C. Estrada-Mila, J. Candy, R.E. Waltz, PoP 13, (2006)

9 Maxwellian and slowing-down distributions give similar results. Slowing-down and Maxwellian distributions weighted by v 2 for T e = 15 kev. C. Estrada-Mila, J. Candy, R.E. Waltz, PoP 13, (2006) Diffusion coefficient for α particles in a slowingdown and equivalent Maxwellian distribution. C. Angioni, A.G. Peeters, PoP 15, (2008) Maxwellian EP distribution required by GYRO is qualitatively justified for studying interaction with spatially driven turbulence.

10 Parameters of the simulations Electromagnetic, flux-tube simulations to study destabilized Alfven turbulence Simulation requirements: Include a Maxwellian EP species with a sufficiently large density gradient to drive Alfvén turbulence. Background species gradients to drive the usual ITG-TEM turbulence. Physically relevant parameters that can be easily compared to previous simulations. Care must be taken to stay below the MHD critical β gradient. A GYRO subcritical β requires an even lower β in non-linear simulations. Choose a deuterium plasma (GA standard case) with sparse, hot α particles: β e = T i = T e al ne -1 = al ni -1 = 1 al Te -1 = al Ti -1 = 3 q = 2 s = 1 R = 3a r = 0.5a T EP =100T e al nep -1 = 4 al TEP -1 = n EP Energetic particle parameters Note: v EP c s = 7.07 << v A c s = 31.6

11 EPs drive instability at low k θ. Frequency ω and growth rate γ of leading mode for n EP = GA standard case with EP density gradient GA standard case with no EP gradient Ballooning space potential eigenfunction for k θ ρ s = k θ ρ EP = 50k θ ρ s =1 Drift-like frequency dependence on k θ. φ Usual ballooning mode representation: Φ(ψ,θ,ζ) = φ(ψ,θ 2πl,δ)e in ( ζ q(ψ )θ + θ k (ψ )dq) l= θ/π

12 New GYRO eigensolver reveals TAE and EPM existing side-by-side. ω, γ vs. k θ ρ s, n EP = ω, γ vs. n EP, k θ ρ s = 0.03 Drive increases with n EP for leading high-frequency modes. Frequency scaling changes from Alfvénlike to drift-like at cross point. Frequency and growth rate for unstable modes found by the GYRO eigensolver.

13 Low-k θ Alfvén drive dominates the turbulent spectrum as n EP increases Potential power spectrum for 16-mode nonlinear simulations TAE/EPM Low density spectrum is consistent with ITG/TEM turbulence. At higher n EP, low k θ drive kicks in. Low k θ, Alfvén component clearly dominates the turbulent spectrum at sufficient EP density. Zonal flows Greater mode density is required to fully resolve the low-k θ peak.

14 40 mode cases underway show less noise and better saturation. Saturation above n EP =0.007n e is still problematic. Runs with E B shear will hopefully push this boundary to higher density. 16 mode cases (6 cheaper) are still instructive and give qualitative physics.

15 EP density below the stability threshold does not affect background plasma transport. Energy flux per particle Q for all species vs. time at n EP = (16 modes). Density flux per particle Γ for all species vs. time at n EP = (16 modes). Q i /T i n i Region of average Γ ι /n i Γ e /n e Region of average Q e /T e n e Γ EP/n EP Q EP /T EP n EP n EP = : Q EP /T EP n EP = 0.93 Γ EP /n EP = 2.23 Q i /T i n i = 40.4 Γ i /n i = 0.84 Q e /T e n e = 21.2 Γ e /n e = 0.86 Results consistent with previously observed transport 1,2. 1 Ron Waltz, private communication 2 C. Estrada-Mila, J. Candy, R.E. Waltz, PoP 13, (2006)

16 Transport k θ ρ s dependence at n EP =0.005 Energy: Density: At n EP =0.005, electron and ion results are consistent with simulations where no EPs are present. EPs are a passive tracer.

17 Initial unsaturated time trace shows increased transport in most species channels with higher EP density. Energy flux per particle Q for all species vs. time at n EP = (16 modes). Density flux per particle Γ for all species vs. time at n EP = (16 modes). Region of average Γ EP /n EP Region of average Q e /T e n e Q i /T i n i Γ e /n e Γ ι /n i Q EP /T EP n EP n EP = : Q EP /T EP n EP = 4.45 Γ EP /n EP = 4.27 Q i /T i n i = 49.0 Γ i /n i = 0.65 Q e /T e n e = 24.1 Γ e /n e = 0.71 Oscillation at ωa/c s =2.2 corresponds to linearly unstable k θ ρ s =0.05 TAE.

18 Transport k θ ρ s dependence above threshold Energy: Density:

19 Summary Electromagnetic GYRO simulations have been run with an EP component. The TAE and EPM can be simultaneously destabilized at k θ ρ EP < 1 by the EPs. Linear flux tube studies with initial value and spectral solvers show multiple such modes coexisting with large growth rates at modest EP density. When n EP is below the linear stability threshold, transport is the same as in finite β simulations without EPs. At higher n EP, destabilized, low-k θ Alfvén modes enhance transport across most channels. Alfvén drive rises rapidly and saturated states can be elusive. Preliminary results show TAE/EPM turbulence, like ITG/TEM, can achieve a finite-drive steady state. Additional physics, such as E B drift, will be required to get well saturated states above n EP 0.007n e.

20 Unanswered Questions What role do velocity space instabilities play in transport? An inverted EP distribution can excite n=0 EGAMS. Will EGAMS suppress finite k θ turbulence and reduce transport? How much does the transport picture change in a global simulation? Certain Alfvén eigenmodes such as RSAEs are absent in the flux tube model. Do high-n approximations made in GYRO accurately describe very long wavelength Alfvén turbulence? Does large TAE/EPM incremental transport create a soft limit on the EP profile gradient?

21 Medium density n EP =0.007 is an intermittent case. Energy flux per particle Q for all species vs. time at n EP = Density flux per particle Γ for all species vs. time at n EP = Q i /T i n i Region of average Γ e /n e Γ ι /n i Region of average Γ EP /n EP Q e /T e n e Q EP /T EP n EP n EP = : Q EP /T EP n EP = 1.24 Γ EP /n EP = 2.45 Q i /T i n i = 42.8 Γ i /n i = 0.35 Q e /T e n e = 20.8 Γ e /n e =

22 Transport k θ ρ s dependence at n EP =0.007 Energy: Density:

International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.

International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence. 1953-43 International Workshop on the Frontiers of Modern Plasma Physics 14-25 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko Max-Planck Institute fuer Plasmaphysik Garching bei Munchen Germany

More information

Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results

Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results Frank Jenko IPP Garching, Germany University of Ulm, Germany Acknowledgements: F. Merz, T. Görler, D. Told,

More information

Advances in stellarator gyrokinetics

Advances in stellarator gyrokinetics Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos 1 Background Wendelstein 7-X will start experiments in 2015 optimised

More information

Gyrokinetic Turbulence Simulations at High Plasma Beta

Gyrokinetic Turbulence Simulations at High Plasma Beta Gyrokinetic Turbulence Simulations at High Plasma Beta Moritz J. Pueschel Thanks to F. Jenko and M. Kammerer Ringberg Theory Meeting, Nov. 18, 2008 1 Motivation 2 3 The Beta Parameter Definition β β e

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model 1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

More information

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas Frank Jenko Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas 23 rd IAEA Fusion Energy Conference 11-16 October 2010, Daejeon,

More information

DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni

DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni Max-Planck-Institut für Plasmaphysik DPG School The Physics of ITER Physikzentrum Bad Honnef, 23.09.2014 Energy Transport, Theory (and Experiment) Clemente Angioni Special acknowledgments for material

More information

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015 Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,

More information

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November IAEA-CN-116/TH/-1 Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. Garcia-Munoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,

More information

GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL

GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL by J.E. KINSEY, G.M. STAEBLER, J. CANDY and R.E. WALTZ NOVEMBER 20 DISCLAIMER This report was prepared

More information

Tokamak Edge Turbulence background theory and computation

Tokamak Edge Turbulence background theory and computation ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts

More information

Modelling of Frequency Sweeping with the HAGIS code

Modelling of Frequency Sweeping with the HAGIS code Modelling of Frequency Sweeping with the HAGIS code S.D.Pinches 1 H.L.Berk 2, S.E.Sharapov 3, M.Gryaznavich 3 1 Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Garching, Germany 2 Institute

More information

Microturbulence in optimised stellarators

Microturbulence in optimised stellarators Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Plasma instability during ITBs formation with pellet injection in tokamak

Plasma instability during ITBs formation with pellet injection in tokamak Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

TAE induced alpha particle and energy transport in ITER

TAE induced alpha particle and energy transport in ITER TAE induced alpha particle and energy transport in ITER K. Schoepf 1, E. Reiter 1,2, T. Gassner 1 1 Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria;

More information

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory. SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 59-5292, Japan Special contributions from:

More information

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak

More information

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA PFC/JA-88-38 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted

More information

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

IAEA INTERNATIONAL ATOMIC ENERGY AGENCY

IAEA INTERNATIONAL ATOMIC ENERGY AGENCY IAEA INTERNATIONAL ATOMIC ENERGY AGENCY 21 st IAEA Fusion Energy Conference Chengdu, China, 16-21 Oct 2004 IAEA-CN-149 / TH / 1-1 Studies of the Tokamak Edge with Self Consistent Turbulence, Equilibrium,

More information

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

More information

Theory and Simulation Support for Alcator C-Mod

Theory and Simulation Support for Alcator C-Mod Theory and Simulation Support for Alcator C-Mod Paul Bonoli Alcator C-Mod PAC Meeting February 6-8, 2008 Outline Review plans for theory and simulation support for Alcator C-Mod over the next five years

More information

UCLA POSTECH UCSD ASIPP U

UCLA POSTECH UCSD ASIPP U Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL

More information

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas 1 Nuclear Fusion Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas Y.J.Shi 1, J.M. Kwon 2, P.H.Diamond 3, W.H.Ko 2, M.J.Choi 2, S.H.Ko 2, S.H.Hahn 2, D.H.Na

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

Continuum Edge Gyrokinetic Theory and Simulations 1

Continuum Edge Gyrokinetic Theory and Simulations 1 1 TH/P6-23 Continuum Edge Gyrokinetic Theory and Simulations 1 X.Q. Xu 1), K. Bodi 2), J. Candy 3), B. I. Cohen 1), R. H. Cohen 1), P. Colella 4), M. R. Dorr 1), J. A. Hittinger 1), G. D. Kerbel 1), S.

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

Computer Physics Communications

Computer Physics Communications Computer Physics Communications 181 010) 148 1437 Contents lists available at ScienceDirect Computer Physics Communications www.elsevier.com/locate/cpc On the role of numerical dissipation in gyrokinetic

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

Thesis for the degree of Doctor of Philosophy. Turbulent and neoclassical transport in tokamak plasmas. István Pusztai

Thesis for the degree of Doctor of Philosophy. Turbulent and neoclassical transport in tokamak plasmas. István Pusztai Thesis for the degree of Doctor of Philosophy Turbulent and neoclassical transport in tokamak plasmas István Pusztai Nuclear Engineering Department of Applied Physics Chalmers University of Technology

More information

Interaction of fast particles and Alfvén modes in burning plasmas

Interaction of fast particles and Alfvén modes in burning plasmas Interaction of fast particles and Alfvén modes in burning plasmas G. Vlad, S. Briguglio, G. Fogaccia and F. Zonca Associazione EURATOM-ENEA, CR ENEA-Frascati, Via E. Fermi 45, 44 Frascati, (Rome) Italy

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE by R.I. PINSKER, M.E. AUSTIN, D.R. ERNST, A.M. GAROFALO, B.A. GRIERSON, J.C. HOSEA, T.C. LUCE, A. MARINONI,

More information

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping. Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle

More information

Comparisons and Physics Basis of Tokamak Transport. Models and Turbulence Simulations

Comparisons and Physics Basis of Tokamak Transport. Models and Turbulence Simulations Comparisons and Physics Basis of Tokamak Transport Models and Turbulence Simulations A. M. Dimits, 1 M. A. Beer, 2 G. W. Hammett, 2 C. Kim, 3 S. E. Parker, 3 D. E. Shumaker, 1 R. Sydora, 4 A. J. Redd,

More information

Supported by. Role of plasma edge in global stability and control*

Supported by. Role of plasma edge in global stability and control* NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

More information

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals

Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals Y. Kishimoto + and T. Tajima *,** + Kyoto university, Uji, Kyoto, Japan, 611 11, Japan * University of California, Irvine, CA 92697, USA

More information

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod PSFC/JA-15-83 Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod A.J. Creely 1, A.E.White 1, E.M. Edlund 2, N.T Howard 3, A.E. Hubbard 1 1 MIT Plasma Science and Fusion Center,

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

A global collisionless PIC code in magnetic coordinates

A global collisionless PIC code in magnetic coordinates A global collisionless PIC code in magnetic coordinates S. Jolliet a,, A. Bottino b, P. Angelino a, R. Hatzky c, T. M. Tran a, B. F. Mcmillan a, O. Sauter a, K. Appert a, Y. Idomura d, L. Villard a a Ecole

More information

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004 Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

Zonal flows in plasma a review

Zonal flows in plasma a review INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (2005) R35 R161 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/47/5/r01 TOPICAL REVIEW Zonal flows in plasma a review P H Diamond

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

More information

Interfacial waves in steady and oscillatory, two-layer Couette flows

Interfacial waves in steady and oscillatory, two-layer Couette flows Interfacial waves in steady and oscillatory, two-layer Couette flows M. J. McCready Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 Page 1 Acknowledgments Students: M.

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract

More information

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

More information

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT 2 tokamak and modelled by full f gyrokinetic ELMFIRE code

Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT 2 tokamak and modelled by full f gyrokinetic ELMFIRE code Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT tokamak and modelled by full f gyrokinetic ELMFIRE code E. Gusakov1, V. Bulanin, A. Gurchenko1, J. Heikkinen3, S. Janhunen4,

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

Fast Secondary Reconnection and the Sawtooth Crash

Fast Secondary Reconnection and the Sawtooth Crash Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEA-IRFM, Saint-Paul-lez-Durance (France) 2 Université de Lorraine, Institut Jean Lamour UMR-CNRS 7198, Nancy

More information

Confinement and Transport Research in Alcator C-Mod

Confinement and Transport Research in Alcator C-Mod PSFC/JA-05-32. Confinement and Transport Research in Alcator C-Mod M. Greenwald, N. Basse, P. Bonoli, R. Bravenec 1, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J.

More information

Ion temperature gradient modes and the fraction of trapped electrons

Ion temperature gradient modes and the fraction of trapped electrons J. Plasma Physics (2005), vol. 71, part 3, pp. 301 313. c 2005 Cambridge University Press doi:10.1017/s0022377804003095 Printed in the United Kingdom 301 Ion temperature gradient modes and the fraction

More information

The evolution of solar wind turbulence at kinetic scales

The evolution of solar wind turbulence at kinetic scales International Association of Geomagnetism and Aeronomy (IAGA) 2 nd Symposium: Solar Wind Space Environment Interaction c 2010 Cairo University Press December 4 th 8 th, 2009, Cairo, Egypt L.Damé & A.Hady

More information

Magnetic Deflection of Ionized Target Ions

Magnetic Deflection of Ionized Target Ions Magnetic Deflection of Ionized Target Ions D. V. Rose, A. E. Robson, J. D. Sethian, D. R. Welch, and R. E. Clark March 3, 005 HAPL Meeting, NRL Solid wall, magnetic deflection 1. Cusp magnetic field imposed

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Lecture No. # 03 DC Conductivity and Negative Differential Conductivity Well friends, in this lecture, I

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994-present) 16, 052502 (2009); doi: 10.1063/1.3126964

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal

Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal 1. The solar magnetic field and its cycle 2. Magnetic cycles with EULAG-MHD 3. Why

More information

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. Uzun-Kaymak, G. Wang6,

More information

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany BRIEF COMMUNICATION Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b Max-Planck-Institut

More information

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) International Sherwood Fusion Theory Conference, Austin, May 2-4, 2011 Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,

More information

Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos

Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos Progress in Plasma Physics by Numerical Simulation: Collisionless Shocks Manfred Scholer Max-Planck-Institut

More information

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015 Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

More information

Physics fundamentals for ITER

Physics fundamentals for ITER Plasma Phys. Control. Fusion 41 (1999) A99 A113. Printed in the UK PII: S0741-3335(99)97512-7 Physics fundamentals for ITER ITER-JCT, ITER San Diego Joint Work Site, 11025 North Torrey Pines Rd, La Jolla,

More information

Verification & Validation: application to the TORPEX basic plasma physics experiment

Verification & Validation: application to the TORPEX basic plasma physics experiment Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,

More information

Interpretation of Mode Frequency Sweeping in JET and NSTX

Interpretation of Mode Frequency Sweeping in JET and NSTX 1 Interpretation of Mode Frequency Sweeping in JET and NSTX H. L. Berk 1, C. J. Boswell, D. Borba 3,4, B. N. Breizman 1, A. C. A. Figueiredo 3, E. D. Fredrickson 5, N. N. Gorelenkov 5, R. W. Harvey 6,

More information

On fully developed mixed convection with viscous dissipation in a vertical channel and its stability

On fully developed mixed convection with viscous dissipation in a vertical channel and its stability ZAMM Z. Angew. Math. Mech. 96, No. 12, 1457 1466 (2016) / DOI 10.1002/zamm.201500266 On fully developed mixed convection with viscous dissipation in a vertical channel and its stability A. Barletta 1,

More information

Damping of MHD waves in the solar partially ionized plasmas

Damping of MHD waves in the solar partially ionized plasmas Damping of MHD waves in the solar partially ionized plasmas M. L. Khodachenko Space Research Institute, Austrian Academy of Sciences, Graz, Austria MHD waves on the Sun Magnetic field plays the key role

More information