The Johnson-Lindenstrauss Lemma in Linear Programming

Size: px
Start display at page:

Download "The Johnson-Lindenstrauss Lemma in Linear Programming"

Transcription

1 The Johnson-Lindenstrauss Lemma in Linear Programming Leo Liberti, Vu Khac Ky, Pierre-Louis Poirion CNRS LIX Ecole Polytechnique, France Aussois COW 2016

2 The gist Goal: solving very large LPs min{c x Ax = b x 0} Trade-off: approximate / wrong with low probability: OK Means: project cols of Ax = b to random subspace T, get with high probability Ax = b x 0 TAx = Tb x 0 Bisection: solve LP using [TAx = Tb x 0] as oracle 2

3 Plan Restricted Linear Membership Johnson-Lindenstrauss Lemma Applying JLL to RLM Towards solving LPs 3

4 Restricted Linear Membership 4

5 Linear feasibility with constrained multipliers Restricted Linear Membership (RLM) Given vectors A 1,...,A n,b R m and X R n, is there x X s.t. b = i nx i A i? RLM X is a fundamental problem class, which subsumes: Linear Feasibility Problem (LFP) with X = R n + Integer Feasibility Problem (IFP) with X = Z n + Efficient solution of LFP/IFP yields sol. of LP/IP via bisection 5

6 The shape of a set of points Lose dimensions but not too much accuracy Given A 1,...,A n R m find k m and points A 1,...,A n R k s.t. A and A have almost the same shape What is the shape of a set of points? A A congruent sets have the same shape Approximate congruence: A,A have almost the same shape if i < j n (1 ε) A i A j A i A j (1+ε) A i A j for some small ε > 0 Assume norms are all Euclidean 6

7 Losing dimensions in the RLM Given X R n and b,a 1,...,A n R m, find k m, b,a 1,...,A n Rk such that: x X b = i nx i A i } {{ } high dimensional with high probability iff x X b = i nx i A i } {{ } low dimensional If this is possible, then solve RLM X (b,a ) Since k m, solving RLM X (b,a ) should be faster RLM X (b,a ) = RLM X (b,a) with high probability 7

8 Losing dimensions = projection In the plane, hopeless line 2 line 1 In 3D: no better 8

9 The Johnson-Lindenstrauss Lemma 9

10 Johnson-Lindenstrauss Lemma Thm. Given A R m with A = n and ε > 0 there is k O( 1 ε2 lnn) and a k m matrix T s.t. x,y A (1 ε) x y Tx Ty (1+ε) x y If k m matrix T is sampled componentwise from N(0, 1 k ), then A and TA have almost the same shape Discrete approximations of N(0, 1 k ) can also be used, e.g. P(T ij = 1 k ) = P(T ij = 1 k ) = 1 6, P(T ij = 0) = 2 3 (This makes T sparser) 10

11 Sampling to desired accuracy Distortion has low probability: x,y A P( Tx Ty (1 ε) x y ) 1 n 2 x,y A P( Tx Ty (1+ε) x y ) 1 n 2 Probability pair x, y A distorting Euclidean distance: union bound over ( ) n 2 pairs P( (A and TA have almost the same shape)) ( n 2 ) 2 n 2 = 1 1 n P(A and TA have almost the same shape) 1 n re-sampling T gives JLL with arbitrarily high probability 11

12 Sketch of a possible JLL proof 90% 90% 90% n=3 n=11 n=101 Thm. Let T be a k m rectangular matrix with each component sampled from N(0, 1 k ), and u R m s.t. u = 1. Then E( Tu 2 ) = 1 dt d S m Tu O S m 1 t 1 1 t 2 12

13 In practice Empirical estimation of C in k = Cε 2 lnn: C 1.8 [Venkatasubramanian & Wang 2011] Empirically, sample T very few times (e.g. once will do!) on average Tx Ty x y, and distortion decreases exponentially with n We only need a logarithmic number of dimensions in function of the number of points Surprising fact: k is independent of the original number of dimensions m 13

14 Typical applications of JLL Problems involving Euclidean distances only Euclidean clustering k-means, k-nearest neighbors Linear regression min x Ax b 2 where A is m n with m n 14

15 Applying the JLL to the RLM 15

16 Projecting infeasibility Thm. T : R m R k a JLL random projection, b,a 1,...,A n R m a RLM X instance. For any given vector x X, we have: (i) If b = n i=1 (ii) If b n i=1 (iii) If b n i=1 x i A i then Tb = n x i A i then P ( i=1 Tb n x i TA i i=1 x i TA i ) 1 2e Ck y i A i for all y X R n, where X is finite, then ( P y X Tb n i=1 y i TA i ) for some constant C > 0 (independent of n,k). 1 2 X e Ck [VPL, arxiv: v1/math.oc] 16

17 Proof (ii) Cor. ε (0,1) and z R m, there is a constant C such that Proof By the JLL P((1 ε) z Tz (1+ε) z ) 1 2e Cε2 k Lemma If z 0, there is a constant C such that P(Tz 0) 1 2e Ck Proof Consider events A : Tz 0 and B : (1 ε) z Tz (1+ε) z A c B =, othw Tz = 0 (1 ε) z Tz = 0 z = 0, contradiction B A P(A) P(B) 1 e Cε2k by Corollary Holds ε (0,1) hence result Now it suffices to apply the Lemma to Ax b 17

18 Consequences of the main theorem (i) and (ii): checking certificates given x, with high probability b = ix i A i Tb = ix i TA i (iii) RLM X whenever X is polynomially bounded e.g. knapsack set {x {0,1} n α i x i d} for a fixed d with α > 0 i n (iii) hints that LFP case is more complicated as X = R n + is not polynomially bounded 18

19 Separating hyperplanes When X is large, project separating hyperplanes instead Convex C R m, x C: then hyperplane c separating x, C In particular, true if C = cone(a 1,...,A n ) for A R m We aim to show x C Tx TC with high probability As above, if x C then Tx TC by linearity of T real issue is proving the converse 19

20 Projecting the separation Thm. Given c,b,a 1,...,A n R m of unit norm s.t. b / cone{a 1,...,A n } pointed, ε > 0, c R m s.t. c b < ε, c A i ε (i n), and T a random projector: P [ Tb / cone{ta 1,...,TA n } ] 1 4(n+1)e C(ε2 ε 3 )k for some constant C. Proof Let A be the event that T approximately preserves c χ 2 and c + χ 2 for all χ {b,a 1,...,A n }. Since A consists of 2(n + 1) events, by the JLL Corollary (squared version) and the union bound, we get Now consider χ = b P(A) 1 4(n+1)e C(ε2 ε 3 )k Tc,Tb = 1 4 ( T(c+b) 2 T(c b) 2 ) by JLL 1 4 ( c+b 2 c b 2 )+ ε 4 ( c+b 2 + c b 2 ) = c b+ε < 0 and similarly Tc,TA i 0 [VPL, arxiv: v1/math.oc] 20

21 Is this useful? Previous results look like: orig. LFP infeasible P(proj. LFP infeasible) 1 p(n)e Cr(ε)k where p, r two polynomials Pick a suitable δ > 0 Choose k O( 1 Cr(ε) (lnp(n)+ln 1 δ )) so that RHS 1 δ Preserve infeasibility with probability 1 δ Useful for m n large enough that k m 21

22 Consequences of projecting separations Applicable to LFP Probability depends on ε (the larger the better) Largest ε given by LP max{ε 0 c b ε i n (c A i ε)} If cone(a 1,...,A n ) is almost non-pointed, ε can be very small 22

23 Projecting minimum distances to a cone Thm.: minimum distance to a cone is approximately preserved This result also works with non-pointed cones Trade-off: need larger k,m,n We appear to be all set for LFPs Using bisection and LFP, also for LPs 23

24 Main theorem for LFP projections Established so far: Thm. Given δ > 0, sufficiently large m n such that: for any LFP input A,b where A is m n we can sample a random k m matrix T with k m and P(orig. LFP feasible proj. LFP feasible) 1 δ 24

25 Towards solving LPs 25

26 Some results on uniform dense LFP Matrix product TA takes too long (call this an implementation detail and don t count it) Infeasible instances (sizes from to ): Uniform ǫ k CPU saving accuracy ( 1, 1) m 30% 50% ( 1, 1) m 92% 0% ( 1, 1) m 99.2% 0% (0, 1) m 10% 100% (0, 1) m 90% 100% (0, 1) m 97% 100% Feasible instances: similar CPU savings obviously 100% accuracy 26

27 Certificates Ax = b TAx = Tb by linearity, however Thm.: For x 0 s.t. TAx = Tb, Ax = b with probability 0 Can t get certificate for original LFP using projected LFP! 27

28 Can we solve LPs by bisection? Projected certificate is infeasible in original problem Only get approximate optimal objective function value No bound on error, no idea about how large m,n should be Validated on large enough NetLib instances (with k 0.95m) 28

29 Certificate retrieval from dual LFP b r e a k i n g n e w s! Primal min{c x Ax = b x 0} dual max{b y A y c} Run bisection on projected LFP, threshold v l at itn. l Proj. LFP infeasible unbounded dual ray λ l s.t. (Tb) λ l > v l (TA) λ l c b (T λ l ) > v l A (T λ l ) c T λ l is a certificate for the original dual L = set of itn. indices s.t. projected LFP infeasible lim(t λ l L l ) = λ (opt. dual sol.) l In practice: last iteration l, get λ T λ l Complementarity cond. m basic cols of A, solve for x 29

30 Current work Implementation of certificate retrieval from dual Random projections directly on dual LP allows explicit feasibility & optimality guarantees Results on projecting Integer Programs we have many of these already! Certificate retrieval using Plotkin-Shmoys-Tardos algorithm 30

31 Some references K. Vu, P.-L. Poirion, L. Liberti, Using the Johnson-Lindenstrauss lemma in linear and integer programming, arxiv report v1/math.OC, 2015 K. Vu, P.-L. Poirion, L. Liberti, Gaussian random projections for Euclidean membership problems, arxiv report v1/math.OC, 2015 W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Contemporary Mathematics, Vol. 26, , 1984 S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures and Algorithms, 22(1):60-65, 2003 S. Venkatasubramanian, Q. Wang, The Johnson-Lindenstrauss transform: an empirical study, in Proceedings of ALENEX, 2011 J. Nash, C 1 Isometric embeddings, in Annals of Mathematics, 60(3): ,

The Johnson-Lindenstrauss Lemma for Linear and Integer Feasibility

The Johnson-Lindenstrauss Lemma for Linear and Integer Feasibility The Johnson-Lindenstrauss Lemma for Linear and Integer Feasibility Leo Liberti, Vu Khac Ky, Pierre-Louis Poirion CNRS LIX Ecole Polytechnique, France Rutgers University, 151118 The gist I want to solve

More information

Using the Johnson-Lindenstrauss lemma in linear and integer programming

Using the Johnson-Lindenstrauss lemma in linear and integer programming Using the Johnson-Lindenstrauss lemma in linear and integer programming Vu Khac Ky 1, Pierre-Louis Poirion, Leo Liberti LIX, École Polytechnique, F-91128 Palaiseau, France Email:{vu,poirion,liberti}@lix.polytechnique.fr

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

1 Dimension Reduction in Euclidean Space

1 Dimension Reduction in Euclidean Space CSIS0351/8601: Randomized Algorithms Lecture 6: Johnson-Lindenstrauss Lemma: Dimension Reduction Lecturer: Hubert Chan Date: 10 Oct 011 hese lecture notes are supplementary materials for the lectures.

More information

Very Sparse Random Projections

Very Sparse Random Projections Very Sparse Random Projections Ping Li, Trevor Hastie and Kenneth Church [KDD 06] Presented by: Aditya Menon UCSD March 4, 2009 Presented by: Aditya Menon (UCSD) Very Sparse Random Projections March 4,

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

A Strongly Polynomial Simplex Method for Totally Unimodular LP

A Strongly Polynomial Simplex Method for Totally Unimodular LP A Strongly Polynomial Simplex Method for Totally Unimodular LP Shinji Mizuno July 19, 2014 Abstract Kitahara and Mizuno get new bounds for the number of distinct solutions generated by the simplex method

More information

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16:38 2001 Linear programming Optimization Problems General optimization problem max{z(x) f j (x) 0,x D} or min{z(x) f j (x) 0,x D}

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Nir Ailon May 22, 2007 This writeup includes very basic background material for the talk on the Fast Johnson Lindenstrauss Transform

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

4. The Dual Simplex Method

4. The Dual Simplex Method 4. The Dual Simplex Method Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell Problem Solving and Constraint Programming (RPAR) Session 4 p.1/34 Basic Idea (1) Algorithm as explained so far known

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

The Shortest Vector Problem (Lattice Reduction Algorithms)

The Shortest Vector Problem (Lattice Reduction Algorithms) The Shortest Vector Problem (Lattice Reduction Algorithms) Approximation Algorithms by V. Vazirani, Chapter 27 - Problem statement, general discussion - Lattices: brief introduction - The Gauss algorithm

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

A Bound for the Number of Different Basic Solutions Generated by the Simplex Method

A Bound for the Number of Different Basic Solutions Generated by the Simplex Method ICOTA8, SHANGHAI, CHINA A Bound for the Number of Different Basic Solutions Generated by the Simplex Method Tomonari Kitahara and Shinji Mizuno Tokyo Institute of Technology December 12th, 2010 Contents

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

18.409: Topics in TCS: Embeddings of Finite Metric Spaces. Lecture 6

18.409: Topics in TCS: Embeddings of Finite Metric Spaces. Lecture 6 Massachusetts Institute of Technology Lecturer: Michel X. Goemans 8.409: Topics in TCS: Embeddings of Finite Metric Spaces September 7, 006 Scribe: Benjamin Rossman Lecture 6 Today we loo at dimension

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

Optimal compression of approximate Euclidean distances

Optimal compression of approximate Euclidean distances Optimal compression of approximate Euclidean distances Noga Alon 1 Bo az Klartag 2 Abstract Let X be a set of n points of norm at most 1 in the Euclidean space R k, and suppose ε > 0. An ε-distance sketch

More information

Improved Bounds on the Dot Product under Random Projection and Random Sign Projection

Improved Bounds on the Dot Product under Random Projection and Random Sign Projection Improved Bounds on the Dot Product under Random Projection and Random Sign Projection Ata Kabán School of Computer Science The University of Birmingham Birmingham B15 2TT, UK http://www.cs.bham.ac.uk/

More information

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2)

CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) CS261: A Second Course in Algorithms Lecture #9: Linear Programming Duality (Part 2) Tim Roughgarden February 2, 2016 1 Recap This is our third lecture on linear programming, and the second on linear programming

More information

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Manor Mendel, CMI, Caltech 1 Finite Metric Spaces Definition of (semi) metric. (M, ρ): M a (finite) set of points. ρ a distance function

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

Lecture 14: Primal-Dual Interior-Point Method

Lecture 14: Primal-Dual Interior-Point Method CSE 599: Interplay between Convex Optimization and Geometry Winter 218 Lecturer: Yin Tat Lee Lecture 14: Primal-Dual Interior-Point Method Disclaimer: Please tell me any mistake you noticed. In this and

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

16 Embeddings of the Euclidean metric

16 Embeddings of the Euclidean metric 16 Embeddings of the Euclidean metric In today s lecture, we will consider how well we can embed n points in the Euclidean metric (l 2 ) into other l p metrics. More formally, we ask the following question.

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

Lecture Note 18: Duality

Lecture Note 18: Duality MATH 5330: Computational Methods of Linear Algebra 1 The Dual Problems Lecture Note 18: Duality Xianyi Zeng Department of Mathematical Sciences, UTEP The concept duality, just like accuracy and stability,

More information

Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches

Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches Patrick L. Combettes joint work with J.-C. Pesquet) Laboratoire Jacques-Louis Lions Faculté de Mathématiques

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Weak and strong moments of l r -norms of log-concave vectors

Weak and strong moments of l r -norms of log-concave vectors Weak and strong moments of l r -norms of log-concave vectors Rafał Latała based on the joint work with Marta Strzelecka) University of Warsaw Minneapolis, April 14 2015 Log-concave measures/vectors A measure

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

On a result of Pazy concerning the asymptotic behaviour of nonexpansive mappings

On a result of Pazy concerning the asymptotic behaviour of nonexpansive mappings On a result of Pazy concerning the asymptotic behaviour of nonexpansive mappings arxiv:1505.04129v1 [math.oc] 15 May 2015 Heinz H. Bauschke, Graeme R. Douglas, and Walaa M. Moursi May 15, 2015 Abstract

More information

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Jan Vybíral Austrian Academy of Sciences RICAM, Linz, Austria January 2011 MPI Leipzig, Germany joint work with Aicke

More information

Linear Programming. Leo Liberti. LIX, École Polytechnique. Operations research courses / LP theory p.

Linear Programming. Leo Liberti. LIX, École Polytechnique. Operations research courses / LP theory p. Operations research courses / LP theory p. 1/47 Linear Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Operations research courses / LP theory p. 2/47 Contents LP formulations

More information

Duality and Projections

Duality and Projections Duality and Projections What s the use? thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Projections revisited... Farka s lemma Proposition 2.22 and 2.23 Duality theory (2.6) Complementary

More information

LINEAR PROGRAMMING II

LINEAR PROGRAMMING II LINEAR PROGRAMMING II LP duality strong duality theorem bonus proof of LP duality applications Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM LINEAR PROGRAMMING II LP duality Strong duality

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

A priori bounds on the condition numbers in interior-point methods

A priori bounds on the condition numbers in interior-point methods A priori bounds on the condition numbers in interior-point methods Florian Jarre, Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Germany. Abstract Interior-point methods are known to be

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover duality 1 Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover Guy Kortsarz duality 2 The set cover problem with uniform costs Input: A universe U and a collection of subsets

More information

Weak Topologies, Reflexivity, Adjoint operators

Weak Topologies, Reflexivity, Adjoint operators Chapter 2 Weak Topologies, Reflexivity, Adjoint operators 2.1 Topological vector spaces and locally convex spaces Definition 2.1.1. [Topological Vector Spaces and Locally convex Spaces] Let E be a vector

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49 Duality Maximize c T x for x F = {x (R + ) n Ax b} If we guess x F, we can say that c T x is a lower bound for the optimal value without executing the simplex algorithm. Can we make similar easy guesses

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Lecture 5. x 1,x 2,x 3 0 (1)

Lecture 5. x 1,x 2,x 3 0 (1) Computational Intractability Revised 2011/6/6 Lecture 5 Professor: David Avis Scribe:Ma Jiangbo, Atsuki Nagao 1 Duality The purpose of this lecture is to introduce duality, which is an important concept

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Barrier Method. Javier Peña Convex Optimization /36-725

Barrier Method. Javier Peña Convex Optimization /36-725 Barrier Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: Newton s method For root-finding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly

More information

Scheduling and Optimization Course (MPRI)

Scheduling and Optimization Course (MPRI) MPRI Scheduling and optimization: lecture p. /6 Scheduling and Optimization Course (MPRI) Leo Liberti LIX, École Polytechnique, France MPRI Scheduling and optimization: lecture p. /6 Teachers Christoph

More information

A full-newton step infeasible interior-point algorithm for linear programming based on a kernel function

A full-newton step infeasible interior-point algorithm for linear programming based on a kernel function A full-newton step infeasible interior-point algorithm for linear programming based on a kernel function Zhongyi Liu, Wenyu Sun Abstract This paper proposes an infeasible interior-point algorithm with

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma The Johnson-Lindenstrauss Lemma Kevin (Min Seong) Park MAT477 Introduction The Johnson-Lindenstrauss Lemma was first introduced in the paper Extensions of Lipschitz mappings into a Hilbert Space by William

More information

The Graph Realization Problem

The Graph Realization Problem The Graph Realization Problem via Semi-Definite Programming A. Y. Alfakih alfakih@uwindsor.ca Mathematics and Statistics University of Windsor The Graph Realization Problem p.1/21 The Graph Realization

More information

Linear Programming. Chapter Introduction

Linear Programming. Chapter Introduction Chapter 3 Linear Programming Linear programs (LP) play an important role in the theory and practice of optimization problems. Many COPs can directly be formulated as LPs. Furthermore, LPs are invaluable

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 Linear Function f: R n R is linear if it can be written as f x = a T x for some a R n Example: f x 1, x 2 =

More information

Complexity of linear programming: outline

Complexity of linear programming: outline Complexity of linear programming: outline I Assessing computational e ciency of algorithms I Computational e ciency of the Simplex method I Ellipsoid algorithm for LP and its computational e ciency IOE

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE March 25, 2010 CHAPTER 2: LIMIT AND CONTINUITY OF FUNCTION IN EUCLIDEAN PACE 1. calar product in R n Definition 1.1. Given x = (x 1,..., x n ), y = (y 1,..., y n ) R n,we define their scalar product as

More information

Faster Johnson-Lindenstrauss style reductions

Faster Johnson-Lindenstrauss style reductions Faster Johnson-Lindenstrauss style reductions Aditya Menon August 23, 2007 Outline 1 Introduction Dimensionality reduction The Johnson-Lindenstrauss Lemma Speeding up computation 2 The Fast Johnson-Lindenstrauss

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

New ways of dimension reduction? Cutting data sets into small pieces

New ways of dimension reduction? Cutting data sets into small pieces New ways of dimension reduction? Cutting data sets into small pieces Roman Vershynin University of Michigan, Department of Mathematics Statistical Machine Learning Ann Arbor, June 5, 2012 Joint work with

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

New stopping criteria for detecting infeasibility in conic optimization

New stopping criteria for detecting infeasibility in conic optimization Optimization Letters manuscript No. (will be inserted by the editor) New stopping criteria for detecting infeasibility in conic optimization Imre Pólik Tamás Terlaky Received: March 21, 2008/ Accepted:

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization Spring 2017 CO 250 Course Notes TABLE OF CONTENTS richardwu.ca CO 250 Course Notes Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4, 2018 Table

More information