18.409: Topics in TCS: Embeddings of Finite Metric Spaces. Lecture 6

Size: px
Start display at page:

Download "18.409: Topics in TCS: Embeddings of Finite Metric Spaces. Lecture 6"

Transcription

1 Massachusetts Institute of Technology Lecturer: Michel X. Goemans 8.409: Topics in TCS: Embeddings of Finite Metric Spaces September 7, 006 Scribe: Benjamin Rossman Lecture 6 Today we loo at dimension reduction in l. Suppose X is a metric space in l of size n. From previous lectures, we now that X embeds isometrically into l n. We as the question: for < n, what is the minimal distortion D needed to embed X in l d? We will see that there is a tradeoff between distortion and dimension. To achieve distortion close to, we need only logarithmic many dimensions. Theorem (Johnson-Lindenstrauss, 984). For all ε > 0, X embeds into l O( ε log n) with distortion + ε. We also prove a theorem of Alon which shows that the Johnson-Lindenstrauss Lemma (as Theorem is nown) is tight. Theorem (Alon []). If v,..., v n+ R d are such that v i v j + ε for all i j, then d = Ω( log n ). ε log ε We give two proofs of the Johnson-Lindenstrauss Lemma. The idea in both proofs is to project X onto a random -dimensional subspace of R n where = O( ε log n). The proofs differ in the way the projection is randomly chosen. Measure Concentration and Levy s Lemma Let S n = {x R n : x = } and let µ be the unique rotation-invariant (Haar) measure on S n such that µ(s n ) =. For points x, y S n, d(x, y) denotes the geodesic distance between x and y defined by d(x, y) = arccos( x, y ). For a point a S n and r 0, B a (r) denotes the cap of radius r around a defined by B a (r) = {x S n : d(a, x) r}. We will need the following lemma: Lemma 3 (Levy s Lemma). Let A S n be a closed set and let B S n be a cap such that µ(a) = µ(b). Then, for all t 0, µ({x : d(a, x) t}) µ({x : d(b, x) t}). In particular, if B = B a (r) then µ({x : d(a, x) t}) µ(b a (r + t)). We remar that Levy s Lemma also holds when d(, ) denotes Euclidean instead of geodesic distance. Lemma 4. Consider a function f : S n R which is -Lipschitz, meaning that f(x) f(y) d(x, y) for all x, y S n. We define m(f) R, called the median of f, such that µ(a + ) and µ(a ) where A+ = {x : f(x) m(f)} and A = {x : f(x) m(f)}. Then µ({x : f(x) m(f) > ε}) ( + o())e ε n.

2 This lemma says that -Lipschitz functions are highly concentrated around the mean. Before we prove the lemma, we need a bound on µ(b a ( π s)). One can show (for the derivation see, for example, Barvino [, p. 58]) that, for any 0 s π/, µ(b a ( π s)) π s (n ) 8 e, or since we are interested in large values of n that ( π )) ( ) µ (B a s + o() e s n. Proof. By Levy s Lemma and the inequality above, we have This implies µ({x : d(a ±, x) ε}) µ(b a ( π + ε)) ( + o())e ε n. µ({x : d(a +, x) ε} {x : d(a, x) ε}) ( + o())e ε n. Using the fact that f is -Lipschitz, it is easy to see that {x : f(x) m(x) > ε} lies inside the complement of {x : d(a +, x) ε} {x : d(a, x) ε}. Therefore, µ({x : f(x) m(f) > ε}) ( + o())e ε n. First Proof of Johnson-Lindenstrauss Lemma Rather than project onto a random -dimensional subspace of R n, we apply a random rotation of R n and then project onto the first coordinates. Choose v R n at random where the direction v v S n is distributed with respect to µ, and let f(v) = i= v i. We argue that the value f(v) is close to v with high probability when = Θ( log n). Specifically, we show there exists ε a constant c > 0 such that Pr[c v f(v) c( + ε) v ] n. ( ) Once we prove ( ), the Johnson-Lindenstrauss Lemma follows easily. For points x,..., x n R n, we let v ij = x i x j for all i j. Then f(v ij ) equals the distance between x i and x j after projecting onto a random -dimensional subspace. Applying a union bound to inequality ( ), we get ( n ) Pr[ i j, c v ij f(v ij ) c( + ε) v ij ] Since (n ) > 0, there exists a projection R n R for which the l n -metric space on points x,..., x n has distortion + ε. To prove the inequality ( ), we invoe Lemma 4. We first note that f is -Lipschitz. We then note that m(f) is close to n since E[f(v) ] = n ; one can argue for example that m(f) = n + O(/ n) for all. Lemma 4 now gives us Pr[ f(v) m(f) > εm(f)] = µ({x S n : f(x) m(f) > εm(f)}) = ( + o())e (εm(f)) n = c 0 ( + o())e ε n.

3 for some constant c 0. Since = Θ( ε log n), we have ε = Θ(log n). Therefore, c 0 e ε n for suitably chosen constant in the expression for. This proves the inequality ( ) where c = m(f) n. Second Proof of Johnson-Lindenstrauss Lemma We now give a different proof of the Johnson-Lindenstrauss Lemma due to Indy and Motwani (998). The elementary presentation we follow is due to Dasgupta and Gupta (003). Let x,..., x n R n. The idea is to project X = {x,..., x n } onto independently generated directions. We define random vectors r,..., r R n where r ij N(0, ) are independent { Gaussian 0 if j random variables for all i and j n. Thus, E[r ij ] = 0 and E[r ij r i ] = if j =. We define a projection R n R by f : x ( x, r i ) i=,...,. Our goal is to show that the random embedding f of X into l probability. has distortion + ε with positive Theorem 5. For = O( log n ) and v R n, ε [ Pr ε f(v) ] + ε v n. Once we prove Theorem 5, the J-L Lemma follows by the same argument as in the first proof. Proof. We shall assume that v =, since the fraction f(v) v is invariant under scaling of v. For random variables X i = v, r i = n j= v jr ij, we have E[X i ] = n v j E[r ij ] = 0, j= E[X i ] = ( n j= v j E[r ij ] ) + ( j, {,...,n} j v j v E[r ij r i ] Therefore, E[ f(v) ] = n i= E[X i ] =. We now use Chernoff bounds to prove the inequalities Pr [ ] f(v) + ε v n and Pr ) = n vj = v =. j= [ ] f(v) ε v n, which together imply the theorem. We give the argument for the lefthand inequality only (the argument for the righthand inequality is similar). Since v =, this means we must show Pr[ f(v) ( + ε) ] n. 3

4 Let Y be the random variable f(v) and let α = ( + ε). For every s > 0, we have Pr[Y > α] = Pr[e sy > e sα ]. Recall Marov s inequality: E[X β] E[x] β where X is a nonnegative random variable and β > 0. We apply Marov s inequality to get Pr[Y > α] = Pr[e sy > e sα ] E[esY ] e sα = e sα E[e s P i= X i ] = e sα E[e sx i ] ( ) i= where the last equality follows from independence of the random variables X,..., X. Each X i is Guassian with mean 0 and variance, so by elementary calculus + E[e sx i ] = e st e t / dt = + e (s )t dt. π π We now apply a change of variables, letting u = ( s)t so that dt = u t Thus, + E[e sx i ] = e (s + )t dt = π s π Plugging this into ( ), we get Pr[Y > α] = e sα ( s). We now choose s = α, so that s = α. This gives e u du = s. s du = s du. e sα ( s) = e α ( α ) ( ) ( α = e α α). Recall that α = ( + ε). Thus, we have: e α ( ) α = e ε ε e ln( α ) = e ε ε e ln( (+ε) ) = e ε ε e ln(+ε) = e ( ε ε +ε ε +O(ε 3 )) = e ε +O(ε 3), using the taylor s expansion ln( + x) = x x + O(x3 ). Taing = Θ( log n ), we have ε Pr[f(v) ( + ε) ] = e ε +O(ε 3) = O( n ). Alon s Theorem (to be continued) In the next lecture, we will give a proof of Alon s theorem. For now, we give a setch of the proof. Let v,..., v n+ R d be such that v i v j + ε for all i j. The theorem states that d = Ω( log n ). ε log ε Clearly, we can assume that v n+ = (0,..., 0) by translating al vectors v i. We then scale vectors v i to obtain new vectors v i such that v i =. After scaling, we have v i v j = O(ε). We 4

5 now loo at the symmetric matrix B = ( v i, v j ), which has the form i,j n [ ε, +ε] [ ε, +ε]... i.e., ones along the diagonal and all other entries between ε and + ε. This matrix has ran d. Alon s theorem is proved by establishing a lower bound on d in terms of n and ε. References [] N. Alon, Problems and results in extremal combinatorics, I, Discrete Math. 73 (003), [] A. Barvino, Lecture Notes on Measure Concentration, available from barvino/total70.pdf. 5

16 Embeddings of the Euclidean metric

16 Embeddings of the Euclidean metric 16 Embeddings of the Euclidean metric In today s lecture, we will consider how well we can embed n points in the Euclidean metric (l 2 ) into other l p metrics. More formally, we ask the following question.

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

1 Dimension Reduction in Euclidean Space

1 Dimension Reduction in Euclidean Space CSIS0351/8601: Randomized Algorithms Lecture 6: Johnson-Lindenstrauss Lemma: Dimension Reduction Lecturer: Hubert Chan Date: 10 Oct 011 hese lecture notes are supplementary materials for the lectures.

More information

An Algorithmist s Toolkit Nov. 10, Lecture 17

An Algorithmist s Toolkit Nov. 10, Lecture 17 8.409 An Algorithmist s Toolkit Nov. 0, 009 Lecturer: Jonathan Kelner Lecture 7 Johnson-Lindenstrauss Theorem. Recap We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms 南京大学 尹一通 Martingales Definition: A sequence of random variables X 0, X 1,... is a martingale if for all i > 0, E[X i X 0,...,X i1 ] = X i1 x 0, x 1,...,x i1, E[X i X 0 = x 0, X 1

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007

Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007 Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007 Lecturer: Roman Vershynin Scribe: Matthew Herman 1 Introduction Consider the set X = {n points in R N } where

More information

Sparse Johnson-Lindenstrauss Transforms

Sparse Johnson-Lindenstrauss Transforms Sparse Johnson-Lindenstrauss Transforms Jelani Nelson MIT May 24, 211 joint work with Daniel Kane (Harvard) Metric Johnson-Lindenstrauss lemma Metric JL (MJL) Lemma, 1984 Every set of n points in Euclidean

More information

Lecture 6 Proof for JL Lemma and Linear Dimensionality Reduction

Lecture 6 Proof for JL Lemma and Linear Dimensionality Reduction COMS 4995: Unsupervised Learning (Summer 18) June 7, 018 Lecture 6 Proof for JL Lemma and Linear imensionality Reduction Instructor: Nakul Verma Scribes: Ziyuan Zhong, Kirsten Blancato This lecture gives

More information

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Manor Mendel, CMI, Caltech 1 Finite Metric Spaces Definition of (semi) metric. (M, ρ): M a (finite) set of points. ρ a distance function

More information

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Nir Ailon May 22, 2007 This writeup includes very basic background material for the talk on the Fast Johnson Lindenstrauss Transform

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Jan Vybíral Austrian Academy of Sciences RICAM, Linz, Austria January 2011 MPI Leipzig, Germany joint work with Aicke

More information

Sparser Johnson-Lindenstrauss Transforms

Sparser Johnson-Lindenstrauss Transforms Sparser Johnson-Lindenstrauss Transforms Jelani Nelson Princeton February 16, 212 joint work with Daniel Kane (Stanford) Random Projections x R d, d huge store y = Sx, where S is a k d matrix (compression)

More information

JOHNSON-LINDENSTRAUSS TRANSFORMATION AND RANDOM PROJECTION

JOHNSON-LINDENSTRAUSS TRANSFORMATION AND RANDOM PROJECTION JOHNSON-LINDENSTRAUSS TRANSFORMATION AND RANDOM PROJECTION LONG CHEN ABSTRACT. We give a brief survey of Johnson-Lindenstrauss lemma. CONTENTS 1. Introduction 1 2. JL Transform 4 2.1. An Elementary Proof

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

Asymptotic Geometric Analysis, Fall 2006

Asymptotic Geometric Analysis, Fall 2006 Asymptotic Geometric Analysis, Fall 006 Gideon Schechtman January, 007 1 Introduction The course will deal with convex symmetric bodies in R n. In the first few lectures we will formulate and prove Dvoretzky

More information

Empirical Processes and random projections

Empirical Processes and random projections Empirical Processes and random projections B. Klartag, S. Mendelson School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. Institute of Advanced Studies, The Australian National

More information

Lecture 1 Measure concentration

Lecture 1 Measure concentration CSE 29: Learning Theory Fall 2006 Lecture Measure concentration Lecturer: Sanjoy Dasgupta Scribe: Nakul Verma, Aaron Arvey, and Paul Ruvolo. Concentration of measure: examples We start with some examples

More information

Very Sparse Random Projections

Very Sparse Random Projections Very Sparse Random Projections Ping Li, Trevor Hastie and Kenneth Church [KDD 06] Presented by: Aditya Menon UCSD March 4, 2009 Presented by: Aditya Menon (UCSD) Very Sparse Random Projections March 4,

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Lectures 2 3 : Wigner s semicircle law

Lectures 2 3 : Wigner s semicircle law Fall 009 MATH 833 Random Matrices B. Való Lectures 3 : Wigner s semicircle law Notes prepared by: M. Koyama As we set up last wee, let M n = [X ij ] n i,j=1 be a symmetric n n matrix with Random entries

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Isomorphic Steiner symmetrization of p-convex sets

Isomorphic Steiner symmetrization of p-convex sets Isomorphic Steiner symmetrization of p-convex sets Alexander Segal Tel-Aviv University St. Petersburg, June 2013 Alexander Segal Isomorphic Steiner symmetrization 1 / 20 Notation K will denote the volume

More information

Metric structures in L 1 : Dimension, snowflakes, and average distortion

Metric structures in L 1 : Dimension, snowflakes, and average distortion Metric structures in L : Dimension, snowflakes, and average distortion James R. Lee U.C. Berkeley and Microsoft Research jrl@cs.berkeley.edu Assaf Naor Microsoft Research anaor@microsoft.com Manor Mendel

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Optimal compression of approximate Euclidean distances

Optimal compression of approximate Euclidean distances Optimal compression of approximate Euclidean distances Noga Alon 1 Bo az Klartag 2 Abstract Let X be a set of n points of norm at most 1 in the Euclidean space R k, and suppose ε > 0. An ε-distance sketch

More information

A Unified Theorem on SDP Rank Reduction. yyye

A Unified Theorem on SDP Rank Reduction.   yyye SDP Rank Reduction Yinyu Ye, EURO XXII 1 A Unified Theorem on SDP Rank Reduction Yinyu Ye Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering Stanford

More information

Notes taken by Costis Georgiou revised by Hamed Hatami

Notes taken by Costis Georgiou revised by Hamed Hatami CSC414 - Metric Embeddings Lecture 6: Reductions that preserve volumes and distance to affine spaces & Lower bound techniques for distortion when embedding into l Notes taken by Costis Georgiou revised

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

Algorithms, Geometry and Learning. Reading group Paris Syminelakis

Algorithms, Geometry and Learning. Reading group Paris Syminelakis Algorithms, Geometry and Learning Reading group Paris Syminelakis October 11, 2016 2 Contents 1 Local Dimensionality Reduction 5 1 Introduction.................................... 5 2 Definitions and Results..............................

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Lectures in Geometric Functional Analysis. Roman Vershynin

Lectures in Geometric Functional Analysis. Roman Vershynin Lectures in Geometric Functional Analysis Roman Vershynin Contents Chapter 1. Functional analysis and convex geometry 4 1. Preliminaries on Banach spaces and linear operators 4 2. A correspondence between

More information

Fréchet embeddings of negative type metrics

Fréchet embeddings of negative type metrics Fréchet embeddings of negative type metrics Sanjeev Arora James R Lee Assaf Naor Abstract We show that every n-point metric of negative type (in particular, every n-point subset of L 1 ) admits a Fréchet

More information

A note on the convex infimum convolution inequality

A note on the convex infimum convolution inequality A note on the convex infimum convolution inequality Naomi Feldheim, Arnaud Marsiglietti, Piotr Nayar, Jing Wang Abstract We characterize the symmetric measures which satisfy the one dimensional convex

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Bourgain s Theorem. Computational and Metric Geometry. Instructor: Yury Makarychev. d(s 1, s 2 ).

Bourgain s Theorem. Computational and Metric Geometry. Instructor: Yury Makarychev. d(s 1, s 2 ). Bourgain s Theorem Computationa and Metric Geometry Instructor: Yury Makarychev 1 Notation Given a metric space (X, d) and S X, the distance from x X to S equas d(x, S) = inf d(x, s). s S The distance

More information

B553 Lecture 3: Multivariate Calculus and Linear Algebra Review

B553 Lecture 3: Multivariate Calculus and Linear Algebra Review B553 Lecture 3: Multivariate Calculus and Linear Algebra Review Kris Hauser December 30, 2011 We now move from the univariate setting to the multivariate setting, where we will spend the rest of the class.

More information

Doubling metric spaces and embeddings. Assaf Naor

Doubling metric spaces and embeddings. Assaf Naor Doubling metric spaces and embeddings Assaf Naor Our approach to general metric spaces bears the undeniable imprint of early exposure to Euclidean geometry. We just love spaces sharing a common feature

More information

Lecture 6 September 13, 2016

Lecture 6 September 13, 2016 CS 395T: Sublinear Algorithms Fall 206 Prof. Eric Price Lecture 6 September 3, 206 Scribe: Shanshan Wu, Yitao Chen Overview Recap of last lecture. We talked about Johnson-Lindenstrauss (JL) lemma [JL84]

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

CSE 525 Randomized Algorithms & Probabilistic Analysis Spring Lecture 3: April 9

CSE 525 Randomized Algorithms & Probabilistic Analysis Spring Lecture 3: April 9 CSE 55 Randomized Algorithms & Probabilistic Analysis Spring 01 Lecture : April 9 Lecturer: Anna Karlin Scribe: Tyler Rigsby & John MacKinnon.1 Kinds of randomization in algorithms So far in our discussion

More information

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Topology, Math 581, Fall 2017 last updated: November 24, 2017 1 Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Class of August 17: Course and syllabus overview. Topology

More information

On (ε, k)-min-wise independent permutations

On (ε, k)-min-wise independent permutations On ε, -min-wise independent permutations Noga Alon nogaa@post.tau.ac.il Toshiya Itoh titoh@dac.gsic.titech.ac.jp Tatsuya Nagatani Nagatani.Tatsuya@aj.MitsubishiElectric.co.jp Abstract A family of permutations

More information

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma The Johnson-Lindenstrauss Lemma Kevin (Min Seong) Park MAT477 Introduction The Johnson-Lindenstrauss Lemma was first introduced in the paper Extensions of Lipschitz mappings into a Hilbert Space by William

More information

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech Math 6455 Nov 1, 26 1 Differential Geometry I Fall 26, Georgia Tech Lecture Notes 14 Connections Suppose that we have a vector field X on a Riemannian manifold M. How can we measure how much X is changing

More information

Lectures 6: Degree Distributions and Concentration Inequalities

Lectures 6: Degree Distributions and Concentration Inequalities University of Washington Lecturer: Abraham Flaxman/Vahab S Mirrokni CSE599m: Algorithms and Economics of Networks April 13 th, 007 Scribe: Ben Birnbaum Lectures 6: Degree Distributions and Concentration

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

ON DIFFERENTIAL BASES FORMED OF INTERVALS

ON DIFFERENTIAL BASES FORMED OF INTERVALS GEORGAN MATHEMATCAL JOURNAL: Vol. 4, No., 997, 8-00 ON DFFERENTAL ASES FORMED OF NTERVALS G. ONAN AND T. ZEREKDZE n memory of young mathematician A. ereashvili Abstract. Translation invariant subbases

More information

Assignment 4: Solutions

Assignment 4: Solutions Math 340: Discrete Structures II Assignment 4: Solutions. Random Walks. Consider a random walk on an connected, non-bipartite, undirected graph G. Show that, in the long run, the walk will traverse each

More information

On metric characterizations of some classes of Banach spaces

On metric characterizations of some classes of Banach spaces On metric characterizations of some classes of Banach spaces Mikhail I. Ostrovskii January 12, 2011 Abstract. The first part of the paper is devoted to metric characterizations of Banach spaces with no

More information

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises.

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises. Math 133 Winter 2013 MORE EXERCISES FOR SECTIONS II.1 AND II.2 There are drawings on the next two pages to accompany the starred ( ) exercises. B1. Let L be a line in R 3, and let x be a point which does

More information

Asymptotically optimal induced universal graphs

Asymptotically optimal induced universal graphs Asymptotically optimal induced universal graphs Noga Alon Abstract We prove that the minimum number of vertices of a graph that contains every graph on vertices as an induced subgraph is (1+o(1))2 ( 1)/2.

More information

NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS

NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS CLARK BUTLER. Introduction The purpose of these notes is to give a self-contained proof of the following theorem, Theorem.. Let f : S n S n be a

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Random Feature Maps for Dot Product Kernels Supplementary Material

Random Feature Maps for Dot Product Kernels Supplementary Material Random Feature Maps for Dot Product Kernels Supplementary Material Purushottam Kar and Harish Karnick Indian Institute of Technology Kanpur, INDIA {purushot,hk}@cse.iitk.ac.in Abstract This document contains

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Problem set 2 The central limit theorem.

Problem set 2 The central limit theorem. Problem set 2 The central limit theorem. Math 22a September 6, 204 Due Sept. 23 The purpose of this problem set is to walk through the proof of the central limit theorem of probability theory. Roughly

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS. S. G. Bobkov and F. L. Nazarov. September 25, 2011

LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS. S. G. Bobkov and F. L. Nazarov. September 25, 2011 LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS S. G. Bobkov and F. L. Nazarov September 25, 20 Abstract We study large deviations of linear functionals on an isotropic

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Median Spaces and Applications

Median Spaces and Applications Median Spaces and Applications Indira Chatterji Based on joint work with C. Druku and F. Haglund Notes taken by W. Malone Abstract Median spaces are metric spaces in which given any 3 points, there exists

More information

An Inverse Problem for Gibbs Fields with Hard Core Potential

An Inverse Problem for Gibbs Fields with Hard Core Potential An Inverse Problem for Gibbs Fields with Hard Core Potential Leonid Koralov Department of Mathematics University of Maryland College Park, MD 20742-4015 koralov@math.umd.edu Abstract It is well known that

More information

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 4, 01 Lecturer: Elena Grigorescu Lecture 14 Scribe: Selvakumaran Vadivelmurugan 1 Introduction We introduced error-correcting codes and linear codes in

More information

Lecture 2: Minimax theorem, Impagliazzo Hard Core Lemma

Lecture 2: Minimax theorem, Impagliazzo Hard Core Lemma Lecture 2: Minimax theorem, Impagliazzo Hard Core Lemma Topics in Pseudorandomness and Complexity Theory (Spring 207) Rutgers University Swastik Kopparty Scribe: Cole Franks Zero-sum games are two player

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS K. Jarosz Southern Illinois University at Edwardsville, IL 606, and Bowling Green State University, OH 43403 kjarosz@siue.edu September, 995 Abstract. Suppose

More information

arxiv: v3 [math.mg] 3 Nov 2017

arxiv: v3 [math.mg] 3 Nov 2017 arxiv:702.0069v3 [math.mg] 3 ov 207 Random polytopes: central limit theorems for intrinsic volumes Christoph Thäle, icola Turchi and Florian Wespi Abstract Short and transparent proofs of central limit

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini April 27, 2018 1 / 80 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM A metric space (M, d) is a set M with a metric d(x, y), x, y M that has the properties d(x, y) = d(y, x), x, y M d(x, y) d(x, z) + d(z, y), x,

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment Two Caramanis/Sanghavi Due: Tuesday, Feb. 19, 2013. Computational

More information

Midterm. CS265/CME309, Fall Instructor: Gregory Valiant. Name: SUID Number:

Midterm. CS265/CME309, Fall Instructor: Gregory Valiant. Name: SUID Number: CS265/CME309, Fall 2016. Instructor: Gregory Valiant Name: Midterm SUID Number: [This is a closed-notes/closed-computer exam, though you may refer to 1 page (or 2 sides) of 8.5 x 11 notes that you have

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and Dynamical Systems and Ergodic Theory PhD Exam Spring 2012 Introduction: This is the first year for the Dynamical Systems and Ergodic Theory PhD exam. As such the material on the exam will conform fairly

More information

MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM

MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM XIANG LI Abstract. This paper centers on the analysis of a specific randomized algorithm, a basic random process that involves marking

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Lecture 8: Shannon s Noise Models

Lecture 8: Shannon s Noise Models Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 8: Shannon s Noise Models September 14, 2007 Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra Till now we have

More information

Weak and strong moments of l r -norms of log-concave vectors

Weak and strong moments of l r -norms of log-concave vectors Weak and strong moments of l r -norms of log-concave vectors Rafał Latała based on the joint work with Marta Strzelecka) University of Warsaw Minneapolis, April 14 2015 Log-concave measures/vectors A measure

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Wednesday, April 18, 27 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm.

More information