STA 6857 Forecasting ( 3.5 cont.)

Size: px
Start display at page:

Download "STA 6857 Forecasting ( 3.5 cont.)"

Transcription

1 STA 6857 Forecasting ( 3.5 cont.)

2 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 2/ 20

3 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 3/ 20

4 Best Linear Predictor We will focus on linear predictors of the form n xn+m n = α 0 + α k x k k=1 ( ) Theorem (Best Linear Prediction for Stationary Processes) Given data x 1, x 2,..., x n, the best linear predictor of x n+m for m 1 is found by solving E [ (x n+m xn+m)x n ] k = 0, k = 0, 1,..., n where x 0 = 1. Equations ( ) are called the prediction equations, and they provide a useful tool in computing the best linear predictor x n n+m. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 4/ 20

5 Prediction Equation Picture E [ (x n+m x n n+m)x k ] = 0, k = 0, 1,..., n Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 5/ 20

6 Using the Prediction Equations Assume the time series is mean zero and write the best linear predictor as n xn+m n = φ (m) n1 x n + φ (m) n2 x n φ (m) nn x 1 = φ (m) nj x n+1 j From the prediction equations, we have for k = 1,..., n, n E x n+m x n+1 k j=1 φ (m) nj x n+1 j n = E (x n+m x n+1 k ) E = γ(k + m 1) = 0 n j=1 j=1 φ (m) nj φ (m) nj γ(k j) j=1 x n+1 j x n+1 k Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 6/ 20

7 Matrix Formulation of the Prediction Equations From the equations n φ (m) nj γ(k j) = γ(k + m 1), k = 1,..., n j=1 we have the following compact representation Γ n φ (m) n = γ (m) n where γ(0) γ(1) γ(n 1) Γ n = {γ(k j)} n j,k=1 = γ(1) γ(0) γ(n 2) , γ(n 1) γ(n 2) γ(0) ( ) φ (m) n = φ (m) n1, φ(m) n2,..., φ(m) nn and γ (m) n = (γ(m), γ(m + 1),..., γ(m + n 1)). Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 7/ 20

8 A Solution by Matrix Inversion If Γ n is invertible, then from we can solve φ (m) n to be Γ n φ (m) n φ (m) n = γ (m) n = Γ 1 n γ n (m) When n is large and Γ n is difficult to invert, the Durbin-Levinson recursive algorithm can be used. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 8/ 20

9 Durbin-Levinson Algorithm Algorithm (Durbin-Levinson Algorithm) The algorithm is initiated with φ 00 = 0 P 0 1 = γ(0). For n 1, φ nn = ρ(n) n 1 k=1 φ n 1,kρ(n k) 1 n 1 k=1 φ n 1,kρ(k) P n n+1 = Pn 1 n (1 φ 2 nn) ( ) where, for n 2, φ nk = φ n 1,k φ nn φ n 1,n k, k = 1, 2,..., n 1. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 9/ 20

10 Durbin-Levinson Algorithm Algorithm (Durbin-Levinson Algorithm) The algorithm is initiated with φ 00 = 0 P 0 1 = γ(0). For n 1, φ nn = ρ(n) n 1 k=1 φ n 1,kρ(n k) 1 n 1 k=1 φ n 1,kρ(k) P n n+1 = Pn 1 n (1 φ 2 nn) ( ) where, for n 2, φ nk = φ n 1,k φ nn φ n 1,n k, k = 1, 2,..., n 1. Bonus: The PACF of a stationary process x t is given by φ nn in ( ). Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 9/ 20

11 Using the Complete Past The prediction x n+m = E(x n+m x n, x n 1,..., x 1 ) can be approximated by the prediction derived from conditioning on the infinite past given as x n+m = E(x n+m x n, x n 1,...) Using this approximation and replacing the unknown values of x 0, x 1,... with 0, we construct the forecast for a general ARMA process as where x n+m = φ 1 x n+m 1 + φ p x n+m p + θ 1 w n+m θ q w n+m q { 0, t 0 x t = x, 1 t n { 0, t 0 or t > n w t = φ(b) x t θ 1 w t 1 θ q w t q, 1 t n. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 10/ 20

12 Prediction Error The mean square m-step-ahead prediction error is P n n+m = E [ (x n+m x n n+m) 2] = γ(0) γ (m) n The prediction error using the complete past is given as P n n+m = E [ (x n+m x n+m ) 2] m 1 = σ 2 j=0 Γ 1 n γ n (m) ψ 2 j Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 11/ 20

13 Prediction Intervals (1 α) prediction intervals are of the form x n n+m ± z α/2 P n n+m So for an approximate 95% prediction interval, one can use z Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 12/ 20

14 Back to the Recruitment Series > setwd("c:/users/berg.ufad/documents/sta 6857/R") > rec = ts(scan("mydata/recruit.dat"), start=1950, frequency=12) Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 13/ 20

15 Recruitment Series (cont.) > par(mfrow=c(2,1)) > acf(rec, 48) > pacf(rec, 48) Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 14/ 20

16 Recruitment Series (cont.) > (fit = ar.ols(rec,order=2,demean=f,intercept=t)) Call: ar.ols(x = rec, order.max = 2, demean = F, intercept = T) Coefficients: Intercept: (1.111) Order selected 2 sigma^2 estimated as > fit$asy.se $x.mean [1] $ar [1] Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 15/ 20

17 Recruitment Series (cont.) > rec.pr = predict(rec.yw, n.ahead=24) > U = rec.pr$pred + rec.pr$se > L = rec.pr$pred - rec.pr$se > minx = min(rec,l) > maxx = max(rec,u) > ts.plot(rec, rec.pr$pred, xlim=c(1980,1990), ylim=c(minx,maxx)) > lines(rec.pr$pred, col="red", type="o") > lines(u, col="blue", lty="dashed") > lines(l, col="blue", lty="dashed") Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 16/ 20

18 A Look Ahead Class discussion on setting the time of the Midterm Exam. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 17/ 20

19 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 18/ 20

20 Do Your Homework! You should be up to 3.6 on the reading. Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 19/ 20

21 Textbook Problems Do the following exercise from the textbook 3.15 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 20/ 20

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Outline 1 Building ARIMA Models

More information

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 6.3. FORECASTING ARMA PROCESSES 123 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss

More information

Levinson Durbin Recursions: I

Levinson Durbin Recursions: I Levinson Durbin Recursions: I note: B&D and S&S say Durbin Levinson but Levinson Durbin is more commonly used (Levinson, 1947, and Durbin, 1960, are source articles sometimes just Levinson is used) recursions

More information

Levinson Durbin Recursions: I

Levinson Durbin Recursions: I Levinson Durbin Recursions: I note: B&D and S&S say Durbin Levinson but Levinson Durbin is more commonly used (Levinson, 1947, and Durbin, 1960, are source articles sometimes just Levinson is used) recursions

More information

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7)

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) Outline 1 AR Bootstrap 2 ARIMA 3 Homework 4b Arthur Berg STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) 2/ 20 Outline 1 AR Bootstrap

More information

Introduction to Time Series Analysis. Lecture 7.

Introduction to Time Series Analysis. Lecture 7. Last lecture: Introduction to Time Series Analysis. Lecture 7. Peter Bartlett 1. ARMA(p,q) models: stationarity, causality, invertibility 2. The linear process representation of ARMA processes: ψ. 3. Autocovariance

More information

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because Forecasting 1. Optimal Forecast Criterion - Minimum Mean Square Error Forecast We have now considered how to determine which ARIMA model we should fit to our data, we have also examined how to estimate

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Total Private Residential Construction Spending library(quandl) Warning: package 'Quandl' was built under R version 3.3.3 Loading required package:

More information

Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by

Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by φ(b)x t = θ(b)z t, {Z t } WN(0, σ 2 ) want to determine ACVF {γ(h)} for this process, which can be done using four complementary

More information

3 ARIMA Models. 3.1 Introduction

3 ARIMA Models. 3.1 Introduction 3 ARIMA Models 3. Introduction In Chapters and, we introduced autocorrelation and cross-correlation functions (ACFs and CCFs) as tools for clarifying relations that may occur within and between time series

More information

Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes

Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes arxiv:1511.07091v2 [math.st] 4 Jan 2016 Akimichi Takemura January, 2016 Abstract We present a short proof

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 1. Covariance Stationary AR(2) Processes Suppose the discrete-time stochastic process {X t } follows a secondorder auto-regressive process

More information

The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model.

The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model. The Problem Regression With Correlated Errors Consider the typical regression model y t = β z t + x t where x t is a process with covariance function γ(s, t). The matrix formulation is y = Z β + x where

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

STAD57 Time Series Analysis. Lecture 8

STAD57 Time Series Analysis. Lecture 8 STAD57 Time Series Analysis Lecture 8 1 ARMA Model Will be using ARMA models to describe times series dynamics: ( B) X ( B) W X X X W W W t 1 t1 p t p t 1 t1 q tq Model must be causal (i.e. stationary)

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

STA 6857 Estimation ( 3.6)

STA 6857 Estimation ( 3.6) STA 6857 Estimation ( 3.6) Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 2/ 19 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Forecasting with ARMA

Forecasting with ARMA Forecasting with ARMA Eduardo Rossi University of Pavia October 2013 Rossi Forecasting Financial Econometrics - 2013 1 / 32 Mean Squared Error Linear Projection Forecast of Y t+1 based on a set of variables

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5)

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) Outline 1 Announcements 2 Autocorrelation and Cross-Correlation 3 Stationary Time Series 4 Homework 1c Arthur Berg STA

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

STOR 356: Summary Course Notes

STOR 356: Summary Course Notes STOR 356: Summary Course Notes Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 7599-360 rls@email.unc.edu February 19, 008 Course text: Introduction

More information

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models Chapter 3 ARIMA Models Classical regression is often insu cient for explaining all of the interesting dynamics of a time series. For example, the ACF of the residuals of the simple linear regression fit

More information

Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion

Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

STA 6857 Cross Spectra & Linear Filters ( 4.6 & 4.7)

STA 6857 Cross Spectra & Linear Filters ( 4.6 & 4.7) STA 6857 Cross Spectra & Linear Filters ( 4.6 & 4.7) Outline 1 Midterm Exam Solutions 2 Final Project 3 From Last Time 4 Multiple Series and Cross-Spectra 5 Linear Filters Arthur Berg STA 6857 Cross Spectra

More information

Lecture 9: Predictive Inference

Lecture 9: Predictive Inference Lecture 9: Predictive Inference There are (at least) three levels at which we can make predictions with a regression model: we can give a single best guess about what Y will be when X = x, a point prediction;

More information

STAT 443 (Winter ) Forecasting

STAT 443 (Winter ) Forecasting Winter 2014 TABLE OF CONTENTS STAT 443 (Winter 2014-1141) Forecasting Prof R Ramezan University of Waterloo L A TEXer: W KONG http://wwkonggithubio Last Revision: September 3, 2014 Table of Contents 1

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Ch 9. FORECASTING. Time Series Analysis

Ch 9. FORECASTING. Time Series Analysis In this chapter, we assume the model is known exactly, and consider the calculation of forecasts and their properties for both deterministic trend models and ARIMA models. 9.1 Minimum Mean Square Error

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 STAD57H3 Time Series Analysis Duration: One hour and fifty minutes Last Name: First Name: Student

More information

Contents. 1 Time Series Analysis Introduction Stationary Processes State Space Modesl Stationary Processes 8

Contents. 1 Time Series Analysis Introduction Stationary Processes State Space Modesl Stationary Processes 8 A N D R E W T U L L O C H T I M E S E R I E S A N D M O N T E C A R L O I N F E R E N C E T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Time Series Analysis 5

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book

Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book 1 Predicting Error 1. y denotes a random variable (stock price, weather, etc) 2. Sometimes we want to do prediction (guessing). Let

More information

Università di Pavia. Forecasting. Eduardo Rossi

Università di Pavia. Forecasting. Eduardo Rossi Università di Pavia Forecasting Eduardo Rossi Mean Squared Error Forecast of Y t+1 based on a set of variables observed at date t, X t : Yt+1 t. The loss function MSE(Y t+1 t ) = E[Y t+1 Y t+1 t ]2 The

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

STAT 720 sp 2019 Lec 06 Karl Gregory 2/15/2019

STAT 720 sp 2019 Lec 06 Karl Gregory 2/15/2019 STAT 720 sp 2019 Lec 06 Karl Gregory 2/15/2019 This lecture will make use of the tscourse package, which is installed with the following R code: library(devtools) devtools::install_github("gregorkb/tscourse")

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

The Box-Cox Transformation and ARIMA Model Fitting

The Box-Cox Transformation and ARIMA Model Fitting The Box-Cox Transformation and ARIMA Model Fitting Outline 1 4.3: Variance Stabilizing Transformations 2 6.1: ARIMA Model Identification 3 Homework 3b Arthur Berg The Box-Cox Transformation and ARIMA Model

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Sequences and Series, Induction. Review

Sequences and Series, Induction. Review Sequences and Series, Induction Review 1 Topics Arithmetic Sequences Arithmetic Series Geometric Sequences Geometric Series Factorial Notation Sigma Notation Binomial Theorem Mathematical Induction 2 Arithmetic

More information

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis CHAPTER 8 MODEL DIAGNOSTICS We have now discussed methods for specifying models and for efficiently estimating the parameters in those models. Model diagnostics, or model criticism, is concerned with testing

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Gaussian processes. Basic Properties VAG002-

Gaussian processes. Basic Properties VAG002- Gaussian processes The class of Gaussian processes is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space, or time and space. The popularity

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

The data was collected from the website and then converted to a time-series indexed from 1 to 86.

The data was collected from the website  and then converted to a time-series indexed from 1 to 86. Introduction For our group project, we analyzed the S&P 500s futures from 30 November, 2015 till 28 March, 2016. The S&P 500 futures give a reasonable estimate of the changes in the market in the short

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2)

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) Outline 1 Signal Extraction and Optimal Filtering 2 Arthur Berg STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) 2/ 17 Outline 1 Signal

More information

Stochastic processes: basic notions

Stochastic processes: basic notions Stochastic processes: basic notions Jean-Marie Dufour McGill University First version: March 2002 Revised: September 2002, April 2004, September 2004, January 2005, July 2011, May 2016, July 2016 This

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. AMS 10: Review for the Midterm Exam The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. Complex numbers

More information

Midterm Suggested Solutions

Midterm Suggested Solutions CUHK Dept. of Economics Spring 2011 ECON 4120 Sung Y. Park Midterm Suggested Solutions Q1 (a) In time series, autocorrelation measures the correlation between y t and its lag y t τ. It is defined as. ρ(τ)

More information

Lecture 9: Predictive Inference for the Simple Linear Model

Lecture 9: Predictive Inference for the Simple Linear Model See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 9: Predictive Inference for the Simple Linear Model 36-401, Fall 2015, Section B 29 September 2015 Contents 1 Confidence intervals

More information

MATH 5075: Time Series Analysis

MATH 5075: Time Series Analysis NAME: MATH 5075: Time Series Analysis Final For the entire test {Z t } WN(0, 1)!!! 1 1) Let {Y t, t Z} be a stationary time series with EY t = 0 and autocovariance function γ Y (h). Assume that a) Show

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Stochastic Modelling Solutions to Exercises on Time Series

Stochastic Modelling Solutions to Exercises on Time Series Stochastic Modelling Solutions to Exercises on Time Series Dr. Iqbal Owadally March 3, 2003 Solutions to Elementary Problems Q1. (i) (1 0.5B)X t = Z t. The characteristic equation 1 0.5z = 0 does not have

More information

Problems from Chapter 3 of Shumway and Stoffer s Book

Problems from Chapter 3 of Shumway and Stoffer s Book UNIVERSITY OF UTAH GUIDED READING TIME SERIES Problems from Chapter 3 of Shumway and Stoffer s Book Author: Curtis MILLER Supervisor: Prof. Lajos HORVATH November 10, 2015 UNIVERSITY OF UTAH DEPARTMENT

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

arxiv: v1 [stat.co] 11 Dec 2012

arxiv: v1 [stat.co] 11 Dec 2012 Simulating the Continuation of a Time Series in R December 12, 2012 arxiv:1212.2393v1 [stat.co] 11 Dec 2012 Halis Sak 1 Department of Industrial and Systems Engineering, Yeditepe University, Kayışdağı,

More information

Principles of forecasting

Principles of forecasting 2.5 Forecasting Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables X t (m 1 vector). Let y t+1

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

ITSM-R Reference Manual

ITSM-R Reference Manual ITSM-R Reference Manual George Weigt February 11, 2018 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations.

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations. Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 41: Applied Time Series Ioa State University Copyright 1 W. Q. Meeker. Segment 1 ARMA Notation, Conventions,

More information

All other items including (and especially) CELL PHONES must be left at the front of the room.

All other items including (and especially) CELL PHONES must be left at the front of the room. TEST #2 / STA 5327 (Inference) / Spring 2017 (April 24, 2017) Name: Directions This exam is closed book and closed notes. You will be supplied with scratch paper, and a copy of the Table of Common Distributions

More information

Parameter estimation: ACVF of AR processes

Parameter estimation: ACVF of AR processes Parameter estimation: ACVF of AR processes Yule-Walker s for AR processes: a method of moments, i.e. µ = x and choose parameters so that γ(h) = ˆγ(h) (for h small ). 12 novembre 2013 1 / 8 Parameter estimation:

More information

Nonlinear time series

Nonlinear time series Based on the book by Fan/Yao: Nonlinear Time Series Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 27, 2009 Outline Characteristics of

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information