18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013

Size: px
Start display at page:

Download "18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013"

Transcription

1 18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/ Covariance Stationary AR(2) Processes Suppose the discrete-time stochastic process {X t } follows a secondorder auto-regressive process AR(2) : X t = φ 0 + φ 1 X t 1 + φ 2 X t 2 + η t, where {η t } is W N(0, σ 2 ), with σ 2 > 0, and φ 0, φ 1, φ 2, are the parameters of the autoregression. (a) If {X t } is covariance stationary with finite expectation µ = E[X t ] show that φ0 µ = 1 φ 1 φ 2 (b) For the autocovariance function γ(k) = Cov[X t, X t k ], show that γ(k) = φ 1 γ(k 1) + φ 2 γ(k 2), for k = 1, 2,... (c) For the autocorrelation function ρ k = corr[x t, X t k ], show that ρ k = φ 1 ρ k 1 + φ 2 ρ k 2, for k = 1, 2,... (d) Yule-Walker Equations Define the two linear equations for φ 1, φ 2 in terms of ρ 1, ρ 2 given by k = 1, 2 in (c): ρ 1 = φ 1 ρ 0 + φ 2 ρ 1 ρ 2 = φ 1 ρ 1 + φ 2 ρ 0 Using the facts that ρ 0 = 1, and ρ k = ρ k, this gives ρ 1 = φ 1 + φ 2 ρ 1 ρ 2 = φ 1 ρ 1 + φ 2 which is equivalent to: [ ] [ ] [ ] ρ 1 1 ρ 1 φ = 1 ρ 2 ρ 1 1 φ 2 Solve for φ1 and φ2 in terms of ρ 1, and ρ 2. 1

2 (e) Solve for ρ 1, and ρ 2 in terms of φ 1 and φ 2. (f) Derive complete formulas for ρ k, k > 2. Hint: Solve this part by referring to the answer to problem 4(b) below. 2. Difference equations associated with an AR(p) process. An AR(p) process, X t = φ 0 + φ 1 X t 1 + φ 2 X + t 2 + φ p X t p + η t where {η t } is W N(0, σ 2 ), with σ 2 > 0, and auto-regression parameters φ 0,..., φ p, can be written using the polynomial-lag operator as follows: φ(l) = (I φ 1 L φ 2 L 2 φ p L p ) φ(l)x t = η t. Consider the homogeneous difference equations: φ(l)g(t) = 0. for a discrete-time function g(t). Such equations arise in AR(p) models when analyzing auto-covariance, auto-correlation, and prediction functions. (a) If µ = E[X t ], show that φ0 µ = 1 p i=1 φ i So, µ = 0, if and only if φ 0 = 0. It is common practice to demean a time series which has the result of eliminating the autoregression parameter associated with the mean, i.e., φ 0. (b) For the auto-covariance function, γ(t) = Cov(X t, X 0 ), t = 0, 1,..., prove that φ(l)γ(t) = 0, for all t; (c) For the auto-correlation function, ρ(t) = Corr(X t, X 0 ), t = 0, 1,..., prove that φ(l)ρ(t) = 0, for all t. (d) Suppose that the process is observed up to time t, so the values (x 0, x 1,..., x t ) are known. Let g t (h), for h = 1, 2,..., be forecasts of the process: 2

3 g t (h) = E[X t +h (X t,..., X 1, X 0 ) = (x t,..., x 1, x 0 )] With the notation xˆt (h) = g t (h), for h > 0 and defining xˆt (h) = x t +h, for h 0, show that xˆt (1) = φ 0 + p i=1 φ ixˆt (1 i) p xˆt (2) = φ 0 + i=1 φ i xˆt (2 i) xˆt (h). = p φ 0 + i=1 φ i xˆt (h i), for any h > 0. (e) For the de-meaned process in (c) (i.e., φ 0 = 0), show that the forecast function g t (t) satisfies φ(l)g t (t) = 0, for t = 1, 2, Solutions to Difference Equations Associated with AR(p) Processes In the previous problem, the autocovariance, autocorrelation and forecast functions satisfy the difference equations: φ(l)g(t) = 0, for t = 0, 1, 2,... (3.1) (a) As a possible solution, consider the function: g(t) = Ce λt, for some constants C and λ. Show that such a function g() is a solution if z = e λ is a root of the characteristic equation: φ(z) = 1 p i=1 φ iz p = 0. (b) More generally, consider the function: g(t) = CG t, for some constants C and G (this is the generalization of (a) where G = e λ is constrained to be real and positive). Show that such a function g() is a solution if G 1 is a root of the characteristic equation. (c) For an AR(p) process, suppose the p roots of the characteristic equation z i = (G i 1 ) are distinct. Show that for constants C 1, C 2,..., C p, the function g(t) = C 1 G t 1 + C 2G t C pg t p satisfies φ(l)g(t) = 0. (d) For an AR(p) process, if all roots z i are outside the complex unit circle, prove that any solution g() given in (b) is bounded. 3

4 Since the autocovariance function is a solution, this condition is necessary and sufficient for the autocovariance to be bounded (covariance stationary). 4. Consider an AR(2) process. (a) Solve for the 2 roots of the characteristic equation, z 1 and z 2. Detail the conditions under which z 1 and z 2 are Distinct and real. Coincident and real. Complex and conjugates of each other (i.e., z 1 = a + ib and z 2 = a ib, for two real constants a and b, and the imaginary i = 1. (b) Prove that the autocorrelation function satisfies: ρ k = C 1 G k 1 + C 2G k 2 where G 1 = z 1 1, and G 2 = z2 1 Using equations for two values of k, solve for C 1 and C 2 when z 1 and z 2 are distinct, and show that G1(1 G 2 2 ) G k 1 G k = 2(1 G 2 1 ρ )Gk 2 (G 1 G 2 )(1+G 1 G 2 ) (c) When distinct and real, show that the autocovariance function decreases geometrically/exponentially in magnitude. (d) In (c), under what conditions on φ 1 does the autocovariance/correlation function remain positive; and under what conditions does it alternate in sign. (e) Optional: When the two roots are complex conjugates, define d and f 0 so that: G 1 = de i2πf 0, and G 2 = de i2πf 0. Using part (b), it can be shown that sin(2πf 0 k+f ) ρ k =[sgn(φ 1 )] k d k sin(f ) where The damping factor d is d = φ 2 The frequency f 0 is such ( that ) φ1 2πf 0 = arccos 2 φ 2 4

5 The phase F is such that tanf =( 1+d2 1 d 2 )tan(2πf 0 ) 5. Moving Average Process MA(1) Suppose the discrete stochastic process {X t } follows a MA(1) model: X t = η t + θ 1 η t 1 = (1 + θ 1 L)η t, t = 1, 2,... (η 0 = 0) where {η t } is W N(0, σ 2 ). (a) Derive the auto-correlation function (ACF) of X t (b) For the following two model cases, solve for the first-order autocorrelation: θ 1 = 0.5 θ 1 = 2.0 (c) Using the formula for ρ 1 = corr(x t, X t 1 ), in (a), solve for the MA process parameter θ 1 in terms of ρ 1. Is the solution unique? (d) An MA(1) process is invertible if the process equation can be inverted, i.e., the process {X t } satisfies: (1 θ 1 L) 1 X t = η t For each model case in (b), determine whether the process is invertible, and if so, provide an explicit expression for the model process as an (infinite-order) autoregression. 6. Autoregressive Moving Average Process: ARM A(1, 1) Suppose the discrete stochastic process {X t } follows a covariance stationary ARMA(1,1) model: X t φ 1 X t 1 = φ 0 + η t + θ 1 η t 1 (1 φ 1 L)X t = φ 0 + (1 + θ 1 L)η t, t = 1, 2,... (η 0 = 0) where {η 2 t} is W N(0, σ ). (a) Prove that φ0 µ = E[X t ] = 1 φ 1 (b) Prove that σ 2 σ [1+θ = V ar(x ) = γ = 1+2φ 1 θ 1 ] [ = σ 2 ( θ X t 1 φ φ 1 ) φ 2 1 ] 5

6 (c) Prove that the auto-correlation function (ACF) of the covariance stationary ARM A(1, 1) process is given by the following recursions: ρ 1 = θ φ σ 2 γ 0 ρ k = φ 1 ρ k 1, k > 1 (d) Compare the ACF of the ARMA(1, 1) process to that of the AR(1) process with the same parameters φ 0, φ 1. Note that Both decline geometrically/exponentially in magnitude by the factor φ 1 from the second time-step on. If φ 1 > 0, both processes have an ACF that is always positive. If φ 1 < 0, the ACFs alternate in sign from the second timestep on. What pattern in the ACF function of an ARMA(1, 1) model is not possible with an AR(1) model? Suppose an economic index time series follows such an ARM A(1, 1) process. What behavior would it exhibit? 6

7 MIT OpenCourseWare 18.S096 Mathematical Applications in Financial Industry Fall 2013 For information about citing these materials or our Terms of Use, visit:

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Homework 2 Solutions

Homework 2 Solutions Math 506 Spring 201 Homework 2 Solutions 1. Textbook Problem 2.7: Since {Y t } is stationary, E[Y t ] = µ Y for all t and {Y t } has an autocovariance function γ Y. Therefore, (a) E[W t ] = E[Y t Y t 1

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 1. Construct a martingale difference process that is not weakly stationary. Simplest e.g.: Let Y t be a sequence of independent, non-identically

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations Ch 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series For the present we proceed

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

1 Class Organization. 2 Introduction

1 Class Organization. 2 Introduction Time Series Analysis, Lecture 1, 2018 1 1 Class Organization Course Description Prerequisite Homework and Grading Readings and Lecture Notes Course Website: http://www.nanlifinance.org/teaching.html wechat

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

LINEAR STOCHASTIC MODELS

LINEAR STOCHASTIC MODELS LINEAR STOCHASTIC MODELS Let {x τ+1,x τ+2,...,x τ+n } denote n consecutive elements from a stochastic process. If their joint distribution does not depend on τ, regardless of the size of n, then the process

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1 4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Stochastic processes: basic notions

Stochastic processes: basic notions Stochastic processes: basic notions Jean-Marie Dufour McGill University First version: March 2002 Revised: September 2002, April 2004, September 2004, January 2005, July 2011, May 2016, July 2016 This

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Midterm Suggested Solutions

Midterm Suggested Solutions CUHK Dept. of Economics Spring 2011 ECON 4120 Sung Y. Park Midterm Suggested Solutions Q1 (a) In time series, autocorrelation measures the correlation between y t and its lag y t τ. It is defined as. ρ(τ)

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Forecasting with ARMA

Forecasting with ARMA Forecasting with ARMA Eduardo Rossi University of Pavia October 2013 Rossi Forecasting Financial Econometrics - 2013 1 / 32 Mean Squared Error Linear Projection Forecast of Y t+1 based on a set of variables

More information

Difference equations. Definitions: A difference equation takes the general form. x t f x t 1,,x t m.

Difference equations. Definitions: A difference equation takes the general form. x t f x t 1,,x t m. Difference equations Definitions: A difference equation takes the general form x t fx t 1,x t 2, defining the current value of a variable x as a function of previously generated values. A finite order

More information

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations.

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations. Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 41: Applied Time Series Ioa State University Copyright 1 W. Q. Meeker. Segment 1 ARMA Notation, Conventions,

More information

MATH 5075: Time Series Analysis

MATH 5075: Time Series Analysis NAME: MATH 5075: Time Series Analysis Final For the entire test {Z t } WN(0, 1)!!! 1 1) Let {Y t, t Z} be a stationary time series with EY t = 0 and autocovariance function γ Y (h). Assume that a) Show

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes.

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes. MAY, 0 LECTURE 0 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA In this lecture, we continue to discuss covariance stationary processes. Spectral density Gourieroux and Monfort 990), Ch. 5;

More information

Linear Stochastic Models. Special Types of Random Processes: AR, MA, and ARMA. Digital Signal Processing

Linear Stochastic Models. Special Types of Random Processes: AR, MA, and ARMA. Digital Signal Processing Linear Stochastic Models Special Types of Random Processes: AR, MA, and ARMA Digital Signal Processing Department of Electrical and Electronic Engineering, Imperial College d.mandic@imperial.ac.uk c Danilo

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 STAD57H3 Time Series Analysis Duration: One hour and fifty minutes Last Name: First Name: Student

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 2002 This paper is also taken for the relevant examination for the Associateship.

SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 2002 This paper is also taken for the relevant examination for the Associateship. UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 00 This paper is also taken for the relevant examination for the Associateship

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins

Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins John L. Weatherwax June 20, 2008 Introduction Here you ll find some notes that I wrote up as I

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Time Series Analysis Fall 2008

Time Series Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 14.384 Time Series Analysis Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction 1 14.384 Time

More information

Basic concepts and terminology: AR, MA and ARMA processes

Basic concepts and terminology: AR, MA and ARMA processes ECON 5101 ADVANCED ECONOMETRICS TIME SERIES Lecture note no. 1 (EB) Erik Biørn, Department of Economics Version of February 1, 2011 Basic concepts and terminology: AR, MA and ARMA processes This lecture

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

Ch. 14 Stationary ARMA Process

Ch. 14 Stationary ARMA Process Ch. 14 Stationary ARMA Process A general linear stochastic model is described that suppose a time series to be generated by a linear aggregation of random shock. For practical representation it is desirable

More information

Nonlinear time series

Nonlinear time series Based on the book by Fan/Yao: Nonlinear Time Series Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 27, 2009 Outline Characteristics of

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

ARMA models with time-varying coefficients. Periodic case.

ARMA models with time-varying coefficients. Periodic case. ARMA models with time-varying coefficients. Periodic case. Agnieszka Wy lomańska Hugo Steinhaus Center Wroc law University of Technology ARMA models with time-varying coefficients. Periodic case. 1 Some

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

The autocorrelation and autocovariance functions - helpful tools in the modelling problem

The autocorrelation and autocovariance functions - helpful tools in the modelling problem The autocorrelation and autocovariance functions - helpful tools in the modelling problem J. Nowicka-Zagrajek A. Wy lomańska Institute of Mathematics and Computer Science Wroc law University of Technology,

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

An introduction to volatility models with indices

An introduction to volatility models with indices Applied Mathematics Letters 20 (2007) 177 182 www.elsevier.com/locate/aml An introduction to volatility models with indices S. Peiris,A.Thavaneswaran 1 School of Mathematics and Statistics, The University

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Ch. 19 Models of Nonstationary Time Series

Ch. 19 Models of Nonstationary Time Series Ch. 19 Models of Nonstationary Time Series In time series analysis we do not confine ourselves to the analysis of stationary time series. In fact, most of the time series we encounter are non stationary.

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

STAD57 Time Series Analysis. Lecture 8

STAD57 Time Series Analysis. Lecture 8 STAD57 Time Series Analysis Lecture 8 1 ARMA Model Will be using ARMA models to describe times series dynamics: ( B) X ( B) W X X X W W W t 1 t1 p t p t 1 t1 q tq Model must be causal (i.e. stationary)

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Time Series 3. Robert Almgren. Sept. 28, 2009

Time Series 3. Robert Almgren. Sept. 28, 2009 Time Series 3 Robert Almgren Sept. 28, 2009 Last time we discussed two main categories of linear models, and their combination. Here w t denotes a white noise: a stationary process with E w t ) = 0, E

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

CHAPTER 8 FORECASTING PRACTICE I

CHAPTER 8 FORECASTING PRACTICE I CHAPTER 8 FORECASTING PRACTICE I Sometimes we find time series with mixed AR and MA properties (ACF and PACF) We then can use mixed models: ARMA(p,q) These slides are based on: González-Rivera: Forecasting

More information

Lecture note 2 considered the statistical analysis of regression models for time

Lecture note 2 considered the statistical analysis of regression models for time DYNAMIC MODELS FOR STATIONARY TIME SERIES Econometrics 2 LectureNote4 Heino Bohn Nielsen March 2, 2007 Lecture note 2 considered the statistical analysis of regression models for time series data, and

More information

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models Chapter 3 ARIMA Models Classical regression is often insu cient for explaining all of the interesting dynamics of a time series. For example, the ACF of the residuals of the simple linear regression fit

More information

Introduction to Time Series Analysis. Lecture 7.

Introduction to Time Series Analysis. Lecture 7. Last lecture: Introduction to Time Series Analysis. Lecture 7. Peter Bartlett 1. ARMA(p,q) models: stationarity, causality, invertibility 2. The linear process representation of ARMA processes: ψ. 3. Autocovariance

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes

Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes Exponential decay rate of partial autocorrelation coefficients of ARMA and short-memory processes arxiv:1511.07091v2 [math.st] 4 Jan 2016 Akimichi Takemura January, 2016 Abstract We present a short proof

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Automatic Autocorrelation and Spectral Analysis

Automatic Autocorrelation and Spectral Analysis Piet M.T. Broersen Automatic Autocorrelation and Spectral Analysis With 104 Figures Sprin ger 1 Introduction 1 1.1 Time Series Problems 1 2 Basic Concepts 11 2.1 Random Variables 11 2.2 Normal Distribution

More information