Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017

Size: px
Start display at page:

Download "Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017"

Transcription

1 Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Total Private Residential Construction Spending library(quandl) Warning: package 'Quandl' was built under R version Loading required package: xts Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.date, as.date.numeric library(zoo) library(xts) library(dygraphs) library(knitr) library(forecast) Loading required package: timedate This is forecast 7.3 library(urca) y <- Quandl("FRED/PRRESCON", type="ts") We plot the original and log-transformed Total Private Residential Construction Spending. ly <- log(y) plot(y, xlab=" Years ", ylab="", main="total Private Residential Construction Spending" ) 1

2 Total Private Residential Construction Spending Years plot(ly, xlab="years ", ylab="", main="log Total Private Residential Construction Spending" ) 2

3 Log Total Private Residential Construction Spending Years The time series shows an exponential trend (with a possible structural break) as well as a seasonal pattern is present.for further analysis we will use log-transformed data untill the end of 2013 to build an estimation model. endof2013 < (11/12) ly.est <- window(ly, end = endof2013) ly.pred <- window(ly, start = endof (1/12)) dl.y <- diff(ly.est,lag=1) dl.y12 <- diff(ly.est,12) dl.y12_1 <- diff(diff(ly.est,12), 1) par(mfrow=c(2,2)) plot(ly.est, xlab="", ylab="", main=expression(log(y))) plot(dl.y, xlab="", ylab="", main=expression(paste(delta, "log(y)"))) plot(dl.y12, xlab="", ylab="", main=expression(paste(delta[12], "log(y)"))) plot(dl.y12_1, xlab="", ylab="", main=expression(paste(delta, Delta[12], "log(y)"))) 3

4 log(y) log(y) log(y) 12 log(y) The time series in differences and seasonal differences is the only that looks weakly stationary. To verify this is true, we look at ACFs and PACFs. library(forecast) maxlag <-24 par(mfrow=c(2,4)) Acf(ly.est, type='correlation', lag=maxlag, ylab="", main=expression(paste("acf for log(y)"))) Acf(dl.y, type='correlation', lag=maxlag, ylab="", main=expression(paste("acf for ", Delta,"log(y)"))) Acf(dl.y12, type='correlation', lag=maxlag, ylab="", main=expression(paste("acf for ", Delta[12], "log(y Acf(dl.y12_1, type='correlation', lag=maxlag, ylab="", main=expression(paste("acf for ", Delta, Delta[12 Acf(ly, type='partial', lag=maxlag, ylab="", main=expression(paste("pacf for log(y)"))) Acf(dl.y, type='partial', lag=maxlag, ylab="", main=expression(paste("pacf for ", Delta, "log(y)"))) Acf(dl.y12, type='partial', lag=maxlag, ylab="", main=expression(paste("pacf for ", Delta[12], "log(y)") Acf(dl.y12_1, type='partial', lag=maxlag, ylab="", main=expression(paste("pacf for ", Delta,Delta[12], " 4

5 ACF for log(y) ACF for log(y) ACF for 12 log(y) ACF for 12 log(y) PACF for log(y) PACF for log(y) PACF for 12 log(y) PACF for 12 log(y) So the last time series is the only weekly stationary according to ACFs and PACFs. Tests for presence of a unit root ADF test library(tseries) adf.test(ly) Augmented Dickey-Fuller Test data: ly Dickey-Fuller = , order = 6, p-value = alternative hypothesis: stationary By ADF test we cannot reject the H 0 hypothesis that the time series has a unit root. KPSS test library(tseries) kpss.test(ly, null="trend") Warning in kpss.test(ly, null = "Trend"): p-value smaller than printed p- value KPSS Test for Trend Stationarity 5

6 data: ly KPSS Trend = , Truncation lag parameter = 3, p-value = 0.01 library(urca) ly.urkpss <- ur.kpss(ly, type="tau", lags="short") summary(ly.urkpss) # # KPSS Unit Root Test # # Test is of type: tau with 5 lags. Value of test-statistic is: Critical value for a significance level of: 10pct 5pct 2.5pct 1pct critical values By KPSS test we reject the H 0 hypothesis that the time series is stationary. Building the model We use autoarima function to find the best specification for our model. M12.bic <- auto.arima(ly.est, ic="bic", seasonal=true, stationary=false, stepwise=false) M12.bic Series: ly.est ARIMA(1,1,2)(0,0,2)[12] Coefficients: ar1 ma1 ma2 sma1 sma s.e sigma^2 estimated as : log likelihood= AIC= AICc= BIC= M12.aic <- auto.arima(ly.est, ic="aic", seasonal=true, stationary=false, stepwise=false) M12.aic Series: ly.est ARIMA(1,1,2)(0,0,2)[12] with drift Coefficients: ar1 ma1 ma2 sma1 sma2 drift s.e sigma^2 estimated as : log likelihood= AIC= AICc= BIC= M12.aicc <- auto.arima(ly.est, ic="aicc", seasonal=true, stationary=false, stepwise=false) M12.aicc 6

7 Series: ly.est ARIMA(1,1,2)(0,0,2)[12] with drift Coefficients: ar1 ma1 ma2 sma1 sma2 drift s.e sigma^2 estimated as : log likelihood= AIC= AICc= BIC= ARIMA(1,1,0)(1,0,0)[12] is the best specification suggested by Autoarima using BIC, AIC, AICc criterias. Forecast At first, we construct the multiplestep forecast. library(forecast) M12.bic.f.h <- forecast(m12.bic, length(ly.pred)) plot(m12.bic.f.h, type="o", pch=16, xlim=c(2012,2017), ylim=c(9.5,11), main="arima Model Multistep Forecast - TPRCS") lines(m12.bic.f.h$mean, type="p", pch=16, lty="dashed", col="blue") lines(ly, type="o", pch=16, lty="dashed") ARIMA Model Multistep Forecast TPRCS Rolling scheme forecast 7

8 library(forecast) M12.bic.f.rol <- zoo() for(i in 1:length(ly.pred)) {M12.bic.rsc <- window( ly, start=1993+(i-1)/12, end=endof2013+(i-1)/12 ) M12.bic.updt <- arima(m12.bic.rsc, order=c(1,1,2), seasonal=list(order=c(0,0,2),period=na)) M12.bic.f.rol <- c(m12.bic.f.rol, forecast(m12.bic.updt, 1)$mean) } M12.bic.f.rol <- as.ts(m12.bic.f.rol) accuracy(m12.bic.f.rol, ly.pred) ME RMSE MAE MPE MAPE Test set e ACF1 Theil's U Test set plot(m12.bic.f.h, type="o", pch=16, xlim=c(2012,2017), ylim=c(9.5,11), main="multistep vs. Rolling Scheme forecasts - TPRCS") lines(m12.bic.f.h$mean, type="p", pch=16, lty="dashed", col="blue") lines(m12.bic.f.rol, type="p", pch=16, lty="dashed", col="red") lines(ly, type="o", pch=16, lty="dashed") Multistep vs. Rolling Scheme forecasts TPRCS Now we compare our model to the restricted Seasonal AR (9,1,0)(1,0,0)[12], which was offered in the class. ARIMA(1,1,0)(1,0,0)[12] class.arima <- arima(ly.est, order=c(9,1,0), seasonal=list(order=c(1,0,0),period=na)) class.arima 8

9 Call: arima(x = ly.est, order = c(9, 1, 0), seasonal = list(order = c(1, 0, 0), period = NA)) Coefficients: ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar s.e ar9 sar s.e sigma^2 estimated as : log likelihood = , aic = Restricted ARIMA(1,1,0)(1,0,0)[12] class.restrarima <- arima(ly.est, order=c(9,1,0), seasonal=list(order=c(1,0,0),period=na), class.restrarima transform.pa Call: arima(x = ly.est, order = c(9, 1, 0), seasonal = list(order = c(1, 0, 0), period = NA), transform.pars = FALSE, fixed = c(na, NA, 0, 0, 0, 0, NA, NA, NA, NA)) Coefficients: ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 sar s.e sigma^2 estimated as : log likelihood = , aic = We compare error accuracy between our model and restricted arima. library(forecast) par(mfrow=c(2,1)) accuracy(m12.bic.f.rol, ly.pred) ME RMSE MAE MPE MAPE Test set e ACF1 Theil's U Test set accuracy(class.restrarima) ME RMSE MAE MPE MAPE Training set MASE ACF1 Training set Restricted ARIMA rolling scheme library(forecast) class.restrarima.f.rol <- zoo() for(i in 1:length(ly.pred)) { class.restrarima.rsc <- window( ly, start=1993+(i-1)/12, end=endof2013+(i-1)/12 ) class.restrarima.updt <- arima(class.restrarima.rsc, order=c(9,1,0), seasonal=list(order=c(1,0,0),period class.restrarima.f.rol <- c(class.restrarima.f.rol, forecast(class.restrarima.updt, 1)$mean) 9

10 } class.restrarima.f.rol <- as.ts(class.restrarima.f.rol) accuracy(class.restrarima.f.rol, ly.pred) ME RMSE MAE MPE MAPE Test set ACF1 Theil's U Test set We compare our model and the restricted ARIMA plot(m12.bic.f.rol, type="o", pch=16, xlim=c(2013,2017), ylim=c(9.8,10.8), main="arima(9,1,0)(1,0,0) vs. ARIMA(1,1,2)(0,0,2) Rolling Scheme forecasts - TPRCS") lines(class.restrarima.f.rol, type="p", pch=16, lty="dashed", col="blue") lines(m12.bic.f.rol, type="p", pch=16, lty="dashed", col="red") lines(ly, type="o", pch=16, lty="dashed") ARIMA(9,1,0)(1,0,0) vs. ARIMA(1,1,2)(0,0,2) Rolling Scheme forecasts TPRCS M12.bic.f.rol Time Conclusion If we visually compare two rolling scheme forecasts for both ARIMA(9,1,0)(1,0,0) and ARIMA(1,1,2)(0,0,2), we can barely tell which one is a better forecast. However, discussed in class model seems to be preferable as it has lower ME, RMSE, MAE, Mape and only MPE is lower for our suggested model. 10

Transformations for variance stabilization

Transformations for variance stabilization FORECASTING USING R Transformations for variance stabilization Rob Hyndman Author, forecast Variance stabilization If the data show increasing variation as the level of the series increases, then a transformation

More information

477/577 In-class Exercise 5 : Fitting Wine Sales

477/577 In-class Exercise 5 : Fitting Wine Sales 477/577 In-class Exercise 5 : Fitting Wine Sales (due Fri 4/06/2017) Name: Use this file as a template for your report. Submit your code and comments together with (selected) output from R console. Your

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Outline 1 Building ARIMA Models

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Unit root problem, solution of difference equations Simple deterministic model, question of unit root

Unit root problem, solution of difference equations Simple deterministic model, question of unit root Unit root problem, solution of difference equations Simple deterministic model, question of unit root (1 φ 1 L)X t = µ, Solution X t φ 1 X t 1 = µ X t = A + Bz t with unknown z and unknown A (clearly X

More information

Report for Fitting a Time Series Model

Report for Fitting a Time Series Model Report for Fitting a Time Series Model 1. Introduction In this report, I choose the stock price of Starbucks Corporation (SBUX) as my data to analyze. The time period for the data is from Jan 2009 to Dec

More information

Forecasting with ARIMA models This version: 14 January 2018

Forecasting with ARIMA models This version: 14 January 2018 Forecasting with ARIMA models This version: 14 January 2018 Notes for Intermediate Econometrics / Time Series Analysis and Forecasting Anthony Tay Elsewhere we showed that the optimal forecast for a mean

More information

İlk Dönem Ocak 2008 ve Aralık 2009 arasındak borsa kapanış fiyatlarının logaritmik farklarının 100 ile çarpılması ile elde edilmiştir.

İlk Dönem Ocak 2008 ve Aralık 2009 arasındak borsa kapanış fiyatlarının logaritmik farklarının 100 ile çarpılması ile elde edilmiştir. periodical Kağan Karademir Tuesday, May 26, 2015 library(xts) Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.date, as.date.numeric library(tseries)

More information

Stat 153 Time Series. Problem Set 4

Stat 153 Time Series. Problem Set 4 Stat Time Series Problem Set Problem I generated 000 observations from the MA() model with parameter 0.7 using the following R function and then fitted the ARMA(, ) model to the data. order = c(, 0, )),

More information

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Background This is a case study concerning time-series modelling of the temperature of an industrial dryer. Data set contains

More information

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia DOI 10.1515/ptse-2017-0005 PTSE 12 (1): 43-50 Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia Umi MAHMUDAH u_mudah@yahoo.com (State Islamic University of Pekalongan,

More information

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.5 Seasonal ARIMA models Forecasting using R 1 Outline 1 Backshift notation reviewed 2 Seasonal ARIMA models 3 ARIMA vs ETS 4 Lab session 12 Forecasting using R Backshift

More information

Data %>% Power %>% R You ready?

Data %>% Power %>% R You ready? Data %>% Power %>% R You ready? R a powerful open source programming language available in the database as Oracle R Enterprise that lets you do virtually anything Especially (but not only) Statistics Machine

More information

The data was collected from the website and then converted to a time-series indexed from 1 to 86.

The data was collected from the website  and then converted to a time-series indexed from 1 to 86. Introduction For our group project, we analyzed the S&P 500s futures from 30 November, 2015 till 28 March, 2016. The S&P 500 futures give a reasonable estimate of the changes in the market in the short

More information

Empirical Approach to Modelling and Forecasting Inflation in Ghana

Empirical Approach to Modelling and Forecasting Inflation in Ghana Current Research Journal of Economic Theory 4(3): 83-87, 2012 ISSN: 2042-485X Maxwell Scientific Organization, 2012 Submitted: April 13, 2012 Accepted: May 06, 2012 Published: June 30, 2012 Empirical Approach

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Time Series in R: Forecasting and Visualisation. Forecast evaluation 29 May 2017

Time Series in R: Forecasting and Visualisation. Forecast evaluation 29 May 2017 Time Series in R: Forecasting and Visualisation Forecast evaluation 29 May 2017 1 Outline 1 Forecasting residuals 2 Evaluating forecast accuracy 3 Forecasting benchmark methods 4 Lab session 7 5 Time series

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan

More information

Austrian Inflation Rate

Austrian Inflation Rate Austrian Inflation Rate Course of Econometric Forecasting Nadir Shahzad Virkun Tomas Sedliacik Goal and Data Selection Our goal is to find a relatively accurate procedure in order to forecast the Austrian

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

Package TimeSeries.OBeu

Package TimeSeries.OBeu Type Package Package TimeSeries.OBeu Title Time Series Analysis 'OpenBudgets' Version 1.2.2 Date 2018-01-20 January 22, 2018 Estimate and return the needed parameters for visualisations designed for 'OpenBudgets'

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

Frequency Forecasting using Time Series ARIMA model

Frequency Forecasting using Time Series ARIMA model Frequency Forecasting using Time Series ARIMA model Manish Kumar Tikariha DGM(O) NSPCL Bhilai Abstract In view of stringent regulatory stance and recent tariff guidelines, Deviation Settlement mechanism

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

STA 6857 Forecasting ( 3.5 cont.)

STA 6857 Forecasting ( 3.5 cont.) STA 6857 Forecasting ( 3.5 cont.) Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 2/ 20 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 3/ 20 Best Linear Predictor

More information

Trend Analysis Peter Claussen 9/5/2017

Trend Analysis Peter Claussen 9/5/2017 Trend Analysis Peter Claussen 9/5/2017 Libraries rsm : Response-Surface Analysis library(rsm) library(ape) Warning: package 'ape' was built under R version 3.3.2 library(ncf) Attaching package: 'ncf' The

More information

FORECASTING USING R. Dynamic regression. Rob Hyndman Author, forecast

FORECASTING USING R. Dynamic regression. Rob Hyndman Author, forecast FORECASTING USING R Dynamic regression Rob Hyndman Author, forecast Dynamic regression Regression model with ARIMA errors y t = β 0 + β 1 x 1,t + + β r x r,t + e t y t modeled as function of r explanatory

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Forecasting the Prices of Indian Natural Rubber using ARIMA Model

Forecasting the Prices of Indian Natural Rubber using ARIMA Model Available online at www.ijpab.com Rani and Krishnan Int. J. Pure App. Biosci. 6 (2): 217-221 (2018) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5464 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Trending Models in the Data

Trending Models in the Data April 13, 2009 Spurious regression I Before we proceed to test for unit root and trend-stationary models, we will examine the phenomena of spurious regression. The material in this lecture can be found

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Time Series Forecasting Methods:

Time Series Forecasting Methods: Corso di TRASPORTI E TERRITORIO Time Series Forecasting Methods: EXPONENTIAL SMOOTHING DOCENTI Agostino Nuzzolo (nuzzolo@ing.uniroma2.it) Antonio Comi (comi@ing.uniroma2.it) 1 Classificazione dei metodi

More information

Forecasting U.S.A Imports from China, Singapore, Indonesia, and Thailand.

Forecasting U.S.A Imports from China, Singapore, Indonesia, and Thailand. Forecasting U.S.A Imports from China, Singapore, Indonesia, and Thailand. An Empirical Project Chittawan Chanagul UK 40186 (Econometric Forecasting): Prof. Robert M. Kunst Introduction Times Series Data

More information

Lecture 3-4: Probability models for time series

Lecture 3-4: Probability models for time series Lecture 3-4, page 1 Lecture 3-4: Probability models for time series Outline of lesson 3-4 (chapter 3) The most heavy (and theoretical) part (and lesson) AR(p) processes MA(q) processes ARMA(p,q) processes

More information

Automatic Forecasting

Automatic Forecasting Automatic Forecasting Summary The Automatic Forecasting procedure is designed to forecast future values of time series data. A time series consists of a set of sequential numeric data taken at equally

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Financial Econometrics Review Session Notes 3

Financial Econometrics Review Session Notes 3 Financial Econometrics Review Session Notes 3 Nina Boyarchenko January 22, 2010 Contents 1 k-step ahead forecast and forecast errors 2 1.1 Example 1: stationary series.......................... 2 1.2 Example

More information

11/18/2008. So run regression in first differences to examine association. 18 November November November 2008

11/18/2008. So run regression in first differences to examine association. 18 November November November 2008 Time Series Econometrics 7 Vijayamohanan Pillai N Unit Root Tests Vijayamohan: CDS M Phil: Time Series 7 1 Vijayamohan: CDS M Phil: Time Series 7 2 R 2 > DW Spurious/Nonsense Regression. Integrated but

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71 Spectral Analysis Al Nosedal University of Toronto Winter 2016 Al Nosedal University of Toronto Spectral Analysis Winter 2016 1 / 71 essentially, all models are wrong, but some are useful George E. P.

More information

ECONOMETRIA II. CURSO 2009/2010 LAB # 3

ECONOMETRIA II. CURSO 2009/2010 LAB # 3 ECONOMETRIA II. CURSO 2009/2010 LAB # 3 BOX-JENKINS METHODOLOGY The Box Jenkins approach combines the moving average and the autorregresive models. Although both models were already known, the contribution

More information

Application of ARIMA Models in Forecasting Monthly Total Rainfall of Rangamati, Bangladesh

Application of ARIMA Models in Forecasting Monthly Total Rainfall of Rangamati, Bangladesh Asian Journal of Applied Science and Engineering, Volume 6, No 2/2017 ISSN 2305-915X(p); 2307-9584(e) Application of ARIMA Models in Forecasting Monthly Total Rainfall of Rangamati, Bangladesh Fuhad Ahmed

More information

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c.

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c. ISSN: 2415-0304 (Print) ISSN: 2522-2465 (Online) Indexing/Abstracting Forecasting GDP Growth: Application of Autoregressive Integrated Moving Average Model Author: Yesuf M. Awel 1c Affiliation: 1 PhD,

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Econometrics for Policy Analysis A Train The Trainer Workshop Delivered by Dr. Nathaniel E. Urama Department of Economics, University of Nigeria, Nsukka Loading Time Series data in E-views: Review For

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Package thief. R topics documented: January 24, Version 0.3 Title Temporal Hierarchical Forecasting

Package thief. R topics documented: January 24, Version 0.3 Title Temporal Hierarchical Forecasting Version 0.3 Title Temporal Hierarchical Forecasting Package thief January 24, 2018 Methods and tools for generating forecasts at different temporal frequencies using a hierarchical time series approach.

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

Time-Series Regression and Generalized Least Squares in R*

Time-Series Regression and Generalized Least Squares in R* Time-Series Regression and Generalized Least Squares in R* An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-09-26 Abstract Generalized

More information

Package TSPred. April 5, 2017

Package TSPred. April 5, 2017 Type Package Package TSPred April 5, 2017 Title Functions for Benchmarking Time Series Prediction Version 3.0.2 Date 2017-04-05 Author Rebecca Pontes Salles [aut, cre, cph] (CEFET/RJ), Eduardo Ogasawara

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each)

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) The maximum number of points on this exam is

More information

Forecasting using R. Rob J Hyndman. 2.3 Stationarity and differencing. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.3 Stationarity and differencing. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.3 Stationarity and differencing Forecasting using R 1 Outline 1 Stationarity 2 Differencing 3 Unit root tests 4 Lab session 10 5 Backshift notation Forecasting using

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

COMPUTER SESSION 3: ESTIMATION AND FORECASTING.

COMPUTER SESSION 3: ESTIMATION AND FORECASTING. UPPSALA UNIVERSITY Department of Mathematics JR Analysis of Time Series 1MS014 Spring 2010 COMPUTER SESSION 3: ESTIMATION AND FORECASTING. 1 Introduction The purpose of this exercise is two-fold: (i) By

More information

Forecasting Gold Price. A Comparative Study

Forecasting Gold Price. A Comparative Study Course of Financial Econometrics FIRM Forecasting Gold Price A Comparative Study Alessio Azzutti, University of Florence Abstract: This paper seeks to evaluate the appropriateness of a variety of existing

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Time Series and Forecasting Using R

Time Series and Forecasting Using R Time Series and Forecasting Using R Lab Sessions 25 May 2016 Before doing any exercises in R, load the fpp package using library(fpp) and the ggplot2 package using library(ggplot2). Lab Session: Time series

More information

Time series: Cointegration

Time series: Cointegration Time series: Cointegration May 29, 2018 1 Unit Roots and Integration Univariate time series unit roots, trends, and stationarity Have so far glossed over the question of stationarity, except for my stating

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT USING PROC ARIMA TO MODEL TRENDS IN US HOME PRICES Ross Bettinger, Analytical Consultant, Seattle, WA We demonstrate the use of the Box-Jenkins time series modeling methodology to analyze US home

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Vector Autoregression

Vector Autoregression Vector Autoregression Prabakar Rajasekaran December 13, 212 1 Introduction Vector autoregression (VAR) is an econometric model used to capture the evolution and the interdependencies between multiple time

More information

Time-Series analysis for wind speed forecasting

Time-Series analysis for wind speed forecasting Malaya Journal of Matematik, Vol. S, No. 1, 55-61, 2018 https://doi.org/10.26637/mjm0s01/11 Time-Series analysis for wind speed forecasting Garima Jain1 Abstract In this paper, an enormous amount of study

More information

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton Problem Set #1 1. Generate n =500random numbers from both the uniform 1 (U [0, 1], uniformbetween zero and one) and exponential λ exp ( λx) (set λ =2and let x U [0, 1]) b a distributions. Plot the histograms

More information

Forecasting: principles and practice 1

Forecasting: principles and practice 1 Forecasting: principles and practice Rob J Hyndman 2.3 Stationarity and differencing Forecasting: principles and practice 1 Outline 1 Stationarity 2 Differencing 3 Unit root tests 4 Lab session 10 5 Backshift

More information

ITSx: Policy Analysis Using Interrupted Time Series

ITSx: Policy Analysis Using Interrupted Time Series ITSx: Policy Analysis Using Interrupted Time Series Week 3 Slides Michael Law, Ph.D. The University of British Columbia Layout of the weeks 1. Introduction, setup, data sources 2. Single series interrupted

More information

Ch 7 : Regression in Time Series

Ch 7 : Regression in Time Series Spring 2017 UAkron Dept. of Stats [3470 : 477/577] Time Series Analysis Ch 7 : Regression in Time Series Contents 1 Regressing Stationary TS 2 1.1 OLS and GLS..................................................................

More information

Short and Long Memory Time Series Models of Relative Humidity of Jos Metropolis

Short and Long Memory Time Series Models of Relative Humidity of Jos Metropolis Research Journal of Mathematics and Statistics 2(1): 23-31, 2010 ISSN: 2040-7505 Maxwell Scientific Organization, 2010 Submitted Date: October 15, 2009 Accepted Date: November 12, 2009 Published Date:

More information

Prediction of Grain Products in Turkey

Prediction of Grain Products in Turkey Journal of Mathematics and Statistics Original Research Paper Prediction of Grain Products in Turkey Özlem Akay, Gökmen Bozkurt and Güzin Yüksel Department of Statistics, The Faculty of Science and Letters,

More information

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Delivered by Dr. Nathaniel E. Urama Department of Economics, University of Nigeria,

More information

03 Time series with trend and seasonality components. Andrius Buteikis,

03 Time series with trend and seasonality components. Andrius Buteikis, 03 Time series with trend and seasonality components Andrius Buteikis, andrius.buteikis@mif.vu.lt http://web.vu.lt/mif/a.buteikis/ Time series with deterministic components Up until now we assumed our

More information

Seasonality. Matthieu Stigler January 8, Version 1.1

Seasonality. Matthieu Stigler January 8, Version 1.1 Seasonality Matthieu Stigler Matthieu.Stigler@gmail.com January 8, 2009 Version 1.1 This document is released under the Creative Commons Attribution-Noncommercial 2.5 India license. Matthieu Stigler Matthieu.Stigler@gmail.com

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM Bratislav Lazić a, Nebojša Bojović b, Gordana Radivojević b*, Gorana Šormaz a a University of Belgrade, Mihajlo Pupin Institute, Serbia

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (6): 1042-1051 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5838 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

ARIMA modeling to forecast area and production of rice in West Bengal

ARIMA modeling to forecast area and production of rice in West Bengal Journal of Crop and Weed, 9(2):26-31(2013) ARIMA modeling to forecast area and production of rice in West Bengal R. BISWAS AND B. BHATTACHARYYA Department of Agricultural Statistics Bidhan Chandra Krishi

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Financial Time Series Analysis: Part II

Financial Time Series Analysis: Part II Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 1 Unit root Deterministic trend Stochastic trend Testing for unit root ADF-test (Augmented Dickey-Fuller test) Testing

More information

Forecasting of the Austrian Inflation Rate

Forecasting of the Austrian Inflation Rate Forecasting of the Austrian Inflation Rate Case Study for the Course of Econometric Forecasting Winter Semester 2007 by Nadir Shahzad Virkun Tomas Sedliacik Goal setting and Data selection The goal of

More information

Automatic seasonal auto regressive moving average models and unit root test detection

Automatic seasonal auto regressive moving average models and unit root test detection ISSN 1750-9653, England, UK International Journal of Management Science and Engineering Management Vol. 3 (2008) No. 4, pp. 266-274 Automatic seasonal auto regressive moving average models and unit root

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

22/04/2014. Economic Research

22/04/2014. Economic Research 22/04/2014 Economic Research Forecasting Models for Exchange Rate Tuesday, April 22, 2014 The science of prognostics has been going through a rapid and fruitful development in the past decades, with various

More information