STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

Size: px
Start display at page:

Download "STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)"

Transcription

1 STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

2 Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34

3 Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 3/ 34

4 Return Rate Suppose x t is the value of an investment at time t and p t is the percentage changes from t 1 to t (which may be negative). Then we can write Taking logs produces equivalently x t = (1 + p t )x t 1 log(x t ) = log(1 + p t ) + log(x t 1 ) log(x t ) = log(1 + p t ) p t where the approximation holds when p t is close to zero. Another representation of log(x t ) is ( ) xt log(x t ) = log(x t ) log(x t 1 ) = log. x t 1 Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 4/ 34

5 US Gross National Product We consider the seasonaly adjusted quarterly US GNP from 1947(1) to 2003(3) giving a total of n = 223 observations. (Economic Data FREDR Gross Domestic Product (GDP) and Components GDP/GNP GNP) > gnp96 = read.table("mydata/gnp96.dat") > gnp = ts(gnp96[,2], start=1947, frequency=4) > plot(gnp,lwd=3) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 5/ 34

6 US Gross National Product (cont) Just for kicks, lets look at the acf. > acf(gnp, 50) Simple differencing may not be the answer. > plot(diff(gnp)) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 6/ 34

7 Percentage Quarterly Growth of US GNP Instead, we consider the growth rate x t = log(y t ). > gnpgr = diff(log(gnp)) # growth rate > plot.ts(gnpgr) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 7/ 34

8 Modeling Percentage Quarterly Growth of US GNP The plots of the ACF and PACF of the GNP growth rate indicates two potential models for the log GNP series: ARIMA(0,1,2) ARIMA(1,1,0) We fit AR(1) to log(gnp). > (gnpgr.ar = arima(gnpgr, order = c(1, 0, 0))) Call: arima(x = gnpgr, order = c(1, 0, 0)) Coefficients: ar1 intercept s.e sigma^2 estimated as 9.03e-05: log likelihood = , aic = Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 8/ 34

9 Modeling in R R says intercept but means mean. Therefore the fitted model is x t.0083 =.347(x t ) + w t or equivalently x t = x t 1 + w t i.e. if α is the intercept and µ is the mean, then α = µ(1 φ) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 9/ 34

10 Modeling in R From the expression α = µ(1 φ), we see σ α = σ m u(1 φ). Therefore we can write down the fitted model which incorporates the standard errors of the estimators x t =.005 (.0006) (.063) x t 1 + w t and σ = Also R has an issue with the I part of ARIMA fits where there is an AR component, so first difference the data then fit an ARMA model. Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 10/ 34

11 Modeling Percentage Quarterly Growth of US GNP We fit MA(2) to log(gnp). > (gnpgr.ma = arima(gnpgr, order = c(0, 0, 2))) Call: arima(x = gnpgr, order = c(0, 0, 2)) Coefficients: ma1 ma2 intercept s.e sigma^2 estimated as 8.92e-05: log likelihood = , aic = The R output indicates the model with σ = x t =.0083 (.001) (.065) w t (.064) w t 2 + w t Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 11/ 34

12 The Two Models Aren t That Different The first 10 terms of the MA( ) representation of the AR(1) model is computed in R as > ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights [1] e e e e-02 [5] e e e e-04 [9] e e-05 So one (rather crude) approximation to the model x t =.35x t 1 + w t is x t =.35w t w t 2 + w t which is close to the fitted MA(2) model x t =.0083 (.001) (.065) w t (.064) w t 2 + w t. Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 12/ 34

13 Diagnostic Checking Investigate the residuals x t x t t 1 or standardized residuals e t = x t x t t 1 P t 1 t If the model fits well, the residuals should behave like an iid sequence with mean zero and variance one. Diagnostic Checks Check the plot of Standardized residuals for patterns and outliers. Check the ACF, ˆρ, for significance lags. Use the Ljung-Box-Pierce Q-statistic to measure collective autocorralative (not just significance at a single lag). The Ljung-Box-Pierce Q-statistic is given as H ρ 2 Q = n(n + 2) e(h) n h Under the null of model adequacy, Q as the asymptotic distribution Q χ 2 H p q. Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 13/ 34 h=1

14 Diagnostic Checking of gnpgr.ma > tsdiag(gnpgr.ma, gof.lag=20) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 14/ 34

15 Testing Normality and Outliers The following approaches are useful in testing normality and identifying outliers histogram of the residuals QQ-plot of the residuals Shapiro-Wilk test of normality > hist(gnpgr.ma$resid, br=12) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 15/ 34

16 Testing Normality and Outliers in gnpgr.ma > qqnorm(gnpgr.ma$resid) > qqline(gnpgr.ma$resid, col = 2) > shapiro.test(gnpgr.ma$resid) Shapiro-Wilk normality test data: gnpgr.ma$resid W = , p-value = Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 16/ 34

17 Return of the Varve Series Recall we argued considering log(varve) instead of varve directly. Let s take a closer look at log(varve). > varve = scan("mydata/varve.dat") > varve2=diff(log(varve)) > ts.plot(varve2) > acf(varve2,lwd=5) > pacf(varve2,lwd=5) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 17/ 34

18 Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 18/ 34

19 Diagnostics of ARIMA(0,1,1) on Logged Varve Data > (varve.ma = arima(log(varve), order = c(0, 1, 1))) Call: arima(x = log(varve), order = c(0, 1, 1)) Coefficients: ma s.e sigma^2 estimated as : log likelihood = , aic = > tsdiag(varve.ma) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 19/ 34

20 Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 20/ 34

21 Fitting ARIMA(1,1,1) to Logged Varve Data > pacf(varve.ma$resid, lwd=5) > (varve.arma = arima(log(varve), order = c(1, 1, 1))) Call: arima(x = log(varve), order = c(1, 1, 1)) Coefficients: ar1 ma s.e sigma^2 est as : log likelihood = , aic = Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 21/ 34

22 Watch Out for Overfitting! Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 22/ 34

23 Model Selection in US GNP Series n = length(gnpgr) kma = length(gnpgr.ma$coef) sma=gnpgr.ma$sigma2 kar = length(gnpgr.ar$coef) sar=gnpgr.ar$sigma2 # AIC Returned Value log(sma) + (n+2*kma)/n # MA log(sar) + (n+2*kar)/n # AR # AICc log(sma) + (n+kma)/(n-kma-2) # MA log(sar) + (n+kar)/(n-kar-2) # AR # BIC log(sma) + kma*log(n)/n # MA log(sar) + kar*log(n)/n # AR # sample size # number of parameters in ma model # mle of sigma^2 # number of parameters in ar model # mle of sigma^2 Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 23/ 34

24 Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 24/ 34

25 Seasonal ARMA(P, Q) Seasonal ARMA(P, Q) is used when seasonal (hence nonstationary) behavior is present in the time series. We use the model Φ P (B s )x t = Θ Q (B s )w t where s = 12 if data is in months and s = 4 if data is in quarters, etc. Seasonal differencing may be in order if the seasonal component follows a random walk, as in S t = S t 12 + v t The seasonal difference of order D is defined as D s x t = (1 B s ) D x t Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 25/ 34

26 SARIMA Model Definition (SARIMA Model) The seasonal autoregressive integrated moving average model of Box and Jenkins (1970) is given by Φ P (B s )φ(b) D s d x t = α + Θ Q (B s )θ(b)w t and is denoted as an ARIMA(p, d, q) (P, D, Q) s. Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 26/ 34

27 Federal Reserve Board Production Index > prod=ts(scan("mydata/prod.dat"), start=1948, frequency=12) > ts.plot(prod) > par(mfrow=c(2,1)) > acf(prod, 48) > pacf(prod, 48) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 27/ 34

28 Federal Reserve Board Production Index par(mfrow=c(2,1)) # (P)ACF of d1 data acf(diff(prod), 48) pacf(diff(prod), 48) par(mfrow=c(2,1)) # (P)ACF of d1-d12 data acf(diff(diff(prod),12), 48) pacf(diff(diff(prod),12), 48) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 28/ 34

29 Federal Reserve Board Production Index > prod.fit3 = arima(prod, order=c(1,1,1), + seasonal=list(order=c(2,1,1), period=12)) > prod.fit3 # to view the results Call: arima(x = prod, order = c(1, 1, 1), seasonal = list(order = c(2, 1, Coefficients: ar1 ma1 sar1 sar2 sma s.e sigma^2 estimated as 1.351: log likelihood = , aic = > tsdiag(prod.fit3, gof.lag=48) # diagnostics Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 29/ 34

30 Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 30/ 34

31 Federal Reserve Board Production Index > prod.pr = predict(prod.fit3, n.ahead=12) > U = prod.pr$pred + 2*prod.pr$se > L = prod.pr$pred - 2*prod.pr$se > ts.plot(prod,prod.pr$pred, col=1:2, type="o", ylim=c(105,175), xl > lines(u, col="blue", lty="dashed") > lines(l, col="blue", lty="dashed") Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 31/ 34

32 Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 32/ 34

33 Textbook Reading Read the following sections from the textbook 4.1 (Introduction to Spectral Analysis) 4.2 (Cyclical Behavior and Periodicity) Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 33/ 34

34 Textbook Problems Do the following exercises from the textbook Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 34/ 34

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

The Box-Cox Transformation and ARIMA Model Fitting

The Box-Cox Transformation and ARIMA Model Fitting The Box-Cox Transformation and ARIMA Model Fitting Outline 1 4.3: Variance Stabilizing Transformations 2 6.1: ARIMA Model Identification 3 Homework 3b Arthur Berg The Box-Cox Transformation and ARIMA Model

More information

STA 6857 Forecasting ( 3.5 cont.)

STA 6857 Forecasting ( 3.5 cont.) STA 6857 Forecasting ( 3.5 cont.) Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 2/ 20 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 3/ 20 Best Linear Predictor

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Total Private Residential Construction Spending library(quandl) Warning: package 'Quandl' was built under R version 3.3.3 Loading required package:

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

477/577 In-class Exercise 5 : Fitting Wine Sales

477/577 In-class Exercise 5 : Fitting Wine Sales 477/577 In-class Exercise 5 : Fitting Wine Sales (due Fri 4/06/2017) Name: Use this file as a template for your report. Submit your code and comments together with (selected) output from R console. Your

More information

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb Stat 565 (S)Arima & Forecasting Feb 2 2016 Charlotte Wickham stat565.cwick.co.nz Today A note from HW #3 Pick up with ARIMA processes Introduction to forecasting HW #3 The sample autocorrelation coefficients

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.5 Seasonal ARIMA models Forecasting using R 1 Outline 1 Backshift notation reviewed 2 Seasonal ARIMA models 3 ARIMA vs ETS 4 Lab session 12 Forecasting using R Backshift

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

Stat 153 Time Series. Problem Set 4

Stat 153 Time Series. Problem Set 4 Stat Time Series Problem Set Problem I generated 000 observations from the MA() model with parameter 0.7 using the following R function and then fitted the ARMA(, ) model to the data. order = c(, 0, )),

More information

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7)

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) Outline 1 AR Bootstrap 2 ARIMA 3 Homework 4b Arthur Berg STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) 2/ 20 Outline 1 AR Bootstrap

More information

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis CHAPTER 8 MODEL DIAGNOSTICS We have now discussed methods for specifying models and for efficiently estimating the parameters in those models. Model diagnostics, or model criticism, is concerned with testing

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

The data was collected from the website and then converted to a time-series indexed from 1 to 86.

The data was collected from the website  and then converted to a time-series indexed from 1 to 86. Introduction For our group project, we analyzed the S&P 500s futures from 30 November, 2015 till 28 March, 2016. The S&P 500 futures give a reasonable estimate of the changes in the market in the short

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Problems from Chapter 3 of Shumway and Stoffer s Book

Problems from Chapter 3 of Shumway and Stoffer s Book UNIVERSITY OF UTAH GUIDED READING TIME SERIES Problems from Chapter 3 of Shumway and Stoffer s Book Author: Curtis MILLER Supervisor: Prof. Lajos HORVATH November 10, 2015 UNIVERSITY OF UTAH DEPARTMENT

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2)

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) Outline 1 Signal Extraction and Optimal Filtering 2 Arthur Berg STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) 2/ 17 Outline 1 Signal

More information

Unit root problem, solution of difference equations Simple deterministic model, question of unit root

Unit root problem, solution of difference equations Simple deterministic model, question of unit root Unit root problem, solution of difference equations Simple deterministic model, question of unit root (1 φ 1 L)X t = µ, Solution X t φ 1 X t 1 = µ X t = A + Bz t with unknown z and unknown A (clearly X

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given)

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given) Remark: Problem 1 is the most important problem on this assignment (it will prepare you for your project). Problem 2 was taken largely from last year s final exam. Problem 3 consists of a bunch of rambling

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Empirical Approach to Modelling and Forecasting Inflation in Ghana

Empirical Approach to Modelling and Forecasting Inflation in Ghana Current Research Journal of Economic Theory 4(3): 83-87, 2012 ISSN: 2042-485X Maxwell Scientific Organization, 2012 Submitted: April 13, 2012 Accepted: May 06, 2012 Published: June 30, 2012 Empirical Approach

More information

COMPUTER SESSION 3: ESTIMATION AND FORECASTING.

COMPUTER SESSION 3: ESTIMATION AND FORECASTING. UPPSALA UNIVERSITY Department of Mathematics JR Analysis of Time Series 1MS014 Spring 2010 COMPUTER SESSION 3: ESTIMATION AND FORECASTING. 1 Introduction The purpose of this exercise is two-fold: (i) By

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series Journal of Mathematics and Statistics 8 (4): 500-505, 2012 ISSN 1549-3644 2012 doi:10.3844/jmssp.2012.500.505 Published Online 8 (4) 2012 (http://www.thescipub.com/jmss.toc) Seasonal Autoregressive Integrated

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

Transformations for variance stabilization

Transformations for variance stabilization FORECASTING USING R Transformations for variance stabilization Rob Hyndman Author, forecast Variance stabilization If the data show increasing variation as the level of the series increases, then a transformation

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

Seasonality. Matthieu Stigler January 8, Version 1.1

Seasonality. Matthieu Stigler January 8, Version 1.1 Seasonality Matthieu Stigler Matthieu.Stigler@gmail.com January 8, 2009 Version 1.1 This document is released under the Creative Commons Attribution-Noncommercial 2.5 India license. Matthieu Stigler Matthieu.Stigler@gmail.com

More information

Chapter 5: Models for Nonstationary Time Series

Chapter 5: Models for Nonstationary Time Series Chapter 5: Models for Nonstationary Time Series Recall that any time series that is a stationary process has a constant mean function. So a process that has a mean function that varies over time must be

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

arxiv: v1 [stat.co] 11 Dec 2012

arxiv: v1 [stat.co] 11 Dec 2012 Simulating the Continuation of a Time Series in R December 12, 2012 arxiv:1212.2393v1 [stat.co] 11 Dec 2012 Halis Sak 1 Department of Industrial and Systems Engineering, Yeditepe University, Kayışdağı,

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Delivered by Dr. Nathaniel E. Urama Department of Economics, University of Nigeria,

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr R Tsay An effective procedure for building empirical time series models is the Box-Jenkins approach, which consists of three stages: model

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

of seasonal data demonstrating the usefulness of the devised tests. We conclude in "Conclusion" section with a discussion.

of seasonal data demonstrating the usefulness of the devised tests. We conclude in Conclusion section with a discussion. DOI 10.1186/s40064-016-3167-4 RESEARCH Open Access Portmanteau test statistics for seasonal serial correlation in time series models Esam Mahdi * *Correspondence: emahdi@iugaza.edu.ps Department of Mathematics,

More information

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production Journal of Applied Mathematics & Bioinformatics, vol.3, no.3, 2013, 103-112 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2013 Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil

More information

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each)

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) The maximum number of points on this exam is

More information

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton Problem Set #1 1. Generate n =500random numbers from both the uniform 1 (U [0, 1], uniformbetween zero and one) and exponential λ exp ( λx) (set λ =2and let x U [0, 1]) b a distributions. Plot the histograms

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Report for Fitting a Time Series Model

Report for Fitting a Time Series Model Report for Fitting a Time Series Model 1. Introduction In this report, I choose the stock price of Starbucks Corporation (SBUX) as my data to analyze. The time period for the data is from Jan 2009 to Dec

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Forecast Examples: Part 1 ECON/FIN

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Lecture 19 Box-Jenkins Seasonal Models

Lecture 19 Box-Jenkins Seasonal Models Lecture 19 Box-Jenkins Seasonal Models If the time series is nonstationary with respect to its variance, then we can stabilize the variance of the time series by using a pre-differencing transformation.

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Automatic seasonal auto regressive moving average models and unit root test detection

Automatic seasonal auto regressive moving average models and unit root test detection ISSN 1750-9653, England, UK International Journal of Management Science and Engineering Management Vol. 3 (2008) No. 4, pp. 266-274 Automatic seasonal auto regressive moving average models and unit root

More information

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc /. ) ( ) / (Box & Jenkins).(.(2010-2006) ARIMA(2,1,0). Abstract: The aim of this research is to

More information

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods International Journal of Sciences Research Article (ISSN 2305-3925) Volume 2, Issue July 2013 http://www.ijsciences.com Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

Estimating Markov-switching regression models in Stata

Estimating Markov-switching regression models in Stata Estimating Markov-switching regression models in Stata Ashish Rajbhandari Senior Econometrician StataCorp LP Stata Conference 2015 Ashish Rajbhandari (StataCorp LP) Markov-switching regression Stata Conference

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

Analysis of Violent Crime in Los Angeles County

Analysis of Violent Crime in Los Angeles County Analysis of Violent Crime in Los Angeles County Xiaohong Huang UID: 004693375 March 20, 2017 Abstract Violent crime can have a negative impact to the victims and the neighborhoods. It can affect people

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model.

The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model. The Problem Regression With Correlated Errors Consider the typical regression model y t = β z t + x t where x t is a process with covariance function γ(s, t). The matrix formulation is y = Z β + x where

More information

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Econometrics for Policy Analysis A Train The Trainer Workshop Delivered by Dr. Nathaniel E. Urama Department of Economics, University of Nigeria, Nsukka Loading Time Series data in E-views: Review For

More information

Statistics Homework #4

Statistics Homework #4 Statistics 910 1 Homework #4 Chapter 6, Shumway and Stoffer These are outlines of the solutions. If you would like to fill in other details, please come see me during office hours. 6.1 State-space representation

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71 Spectral Analysis Al Nosedal University of Toronto Winter 2016 Al Nosedal University of Toronto Spectral Analysis Winter 2016 1 / 71 essentially, all models are wrong, but some are useful George E. P.

More information

Forecasting Egyptian GDP Using ARIMA Models

Forecasting Egyptian GDP Using ARIMA Models Reports on Economics and Finance, Vol. 5, 2019, no. 1, 35-47 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ref.2019.81023 Forecasting Egyptian GDP Using ARIMA Models Mohamed Reda Abonazel * and

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Econometrics I: Univariate Time Series Econometrics (1)

Econometrics I: Univariate Time Series Econometrics (1) Econometrics I: Dipartimento di Economia Politica e Metodi Quantitativi University of Pavia Overview of the Lecture 1 st EViews Session VI: Some Theoretical Premises 2 Overview of the Lecture 1 st EViews

More information

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan

More information

Forecasting the Prices of Indian Natural Rubber using ARIMA Model

Forecasting the Prices of Indian Natural Rubber using ARIMA Model Available online at www.ijpab.com Rani and Krishnan Int. J. Pure App. Biosci. 6 (2): 217-221 (2018) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5464 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression International Journal of Statistics and Applications 2015, 5(2): 91-97 DOI: 10.5923/j.statistics.20150502.07 Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

ARIMA model to forecast international tourist visit in Bumthang, Bhutan

ARIMA model to forecast international tourist visit in Bumthang, Bhutan Journal of Physics: Conference Series PAPER OPEN ACCESS ARIMA model to forecast international tourist visit in Bumthang, Bhutan To cite this article: Choden and Suntaree Unhapipat 2018 J. Phys.: Conf.

More information