The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model.

Size: px
Start display at page:

Download "The Problem. Regression With Correlated Errors. Generalized Least Squares. Correlated Errors. Consider the typical regression model."

Transcription

1 The Problem Regression With Correlated Errors Consider the typical regression model y t = β z t + x t where x t is a process with covariance function γ(s, t). The matrix formulation is y = Z β + x where x = (x 1,..., x n ), y = (y 1,..., y n ), and Z = [z 1,..., z n ] When the residual process x t is uncorrelated, then standard theory applies producing the optimal estimator of β to be ˆβ = ( Z Z ) 1 Z y Arthur Berg Regression With Correlated Errors 3/ 21 Correlated Errors Generalized Least Squares However, if the process x has correlation, i.e. when Γ = {γ(s t)} n s,t=1 is not a constant multiple of the identity matrix, then the usual estimator ˆβ is no longer optimal. In this case the optimal estimator is the generalized least squares solution. Given the covariance matrix Γ, it is possible to find a transformation matrix A such that AΓA = I where I denotes the identity matrix (so in particular A A = A 1 ). Multiplying the matrix equation y = Z β + x by A yields the equation Ay = AZ β + Ax = Uβ + w where U = AZ and w is a white noise vector with covariance matrix I. Applying the usual estimator of β in the transformed equation gives ˆβ = (U U) 1 U Ay = (Z A AZ ) 1 Z A Ay = (Z Γ 1 Z ) 1 Z Γ 1 y Arthur Berg Regression With Correlated Errors 4/ 21 Arthur Berg Regression With Correlated Errors 5/ 21

2 Two Approaches Model Transformation with ARMA Errors Without knowing Γ = {γ(s t)} n s,t=1 we are at a loss. Two approaches to estimating Γ are provided and both assume stationarity of the process x t. Nonparametric Approach In this approach Γ is estimated by ˆΓ = {ˆγ(s t)} n s,t=1 = {ˆγ(h)}n s,t=1 However ˆγ(h) is poorly estimated when h is large and modifications are required. Parametric Approach This approach is due to Cochrane and Orcutt (1949) and involves fitting an ARMA model to the residuals then regressing a transformed model. Suppose then the transformation φ(b) θ(b) y t }{{} u t φ(b)x t = θ(b)w t = β φ(b) θ(b) z t }{{} v t +w t produces a least square model with uncorrelated errors, i.e. the model where w t is white noise. u t = β tv t + w t Arthur Berg Regression With Correlated Errors 6/ 21 Arthur Berg Regression With Correlated Errors 7/ 21 Cochrane and Orcutt (1949) Back to Cardiovascular Example 1 Obtain the residuals ˆx t = y t ˆβ z t via the usual least squares routine. 2 Fit an ARMA model to the residuals ˆx t, say, ˆφ(B)ˆx t = ˆθ(B)w t 3 Apply the ARMA transformation to both sides of linear model, i.e. compute u t = ˆφ(B) ˆθ(B) y t and v t = ˆφ(B) ˆθ(B) z t 4 Run ordinary least squares regression on the transformed regression model, i.e. compute where ˆβ = (V V ) 1 V u Arthur Berg Regression With Correlated Errors 8/ 21 Arthur Berg Regression With Correlated Errors 9/ 21

3 Scatterplot Matrix Four Models > pairs(cbind(mort, temp, part)) Data from 1970 to 1979 in LA. M t represents the cardiac mortality. T t represents the temperatures. P t represents the particulate pollution. Four proposed models 1 M t = β 0 + β 1 t + w t 2 M t = β 0 + β 1 t + β 2 (T t T. ) + w t 3 M t = β 0 + β 1 t + β 2 (T t T. ) + β 3 (T t T. ) 2 + w t 4 M t = β 0 + β 1 t + β 2 (T t T. ) + β 3 (T t T. ) 2 + β 4 P t + w t Arthur Berg Regression With Correlated Errors 10/ 21 Arthur Berg Regression With Correlated Errors 11/ 21 Example from Text > temp = temp-mean(temp) > temp2 = temp^2 > trend = time(mort) > fit = lm(mort~ trend + temp + temp2 + part, na.action=null) > summary(fit) > acf(fit$resid) > pacf(fit$resid) lm(formula = mort ~ trend + temp + temp2 + part, na.action = NULL) (Intercept) 2.831e e < 2e-16 *** trend e e < 2e-16 *** temp e e < 2e-16 *** temp e e e-15 *** part 2.554e e < 2e-16 *** Residual standard error: on 503 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 185 on 4 and 503 DF, p-value: < 2.2e-16 Arthur Berg Regression With Correlated Errors 12/ 21 Arthur Berg Regression With Correlated Errors 13/ 21

4 New Fit > (fit2<-ar.ols(fit$resid, aic=f,order=2 )) ar.ols(x = fit$resid, aic = F, order.max = 2) Intercept: (0.2472) Order selected 2 sigma^2 estimated as > Mort<-filter(mort, c(1,-.2205,-.3625),sides=1)[3:508] > Trend<-filter(trend, c(1,-.2205,-.3625),sides=1)[3:508] > Temp<-filter(temp, c(1,-.2205,-.3625),sides=1)[3:508] > Temp2<-filter(temp2, c(1,-.2205,-.3625),sides=1)[3:508] > Part<-filter(part, c(1,-.2205,-.3625),sides=1)[3:508] > > (fit3 = lm(mort~ Trend + Temp + Temp2 + Part)) lm(formula = Mort ~ Trend + Temp + Temp2 + Part) (Intercept) Trend Temp Temp2 Part Arthur Berg Regression With Correlated Errors 14/ 21 Arthur Berg Regression With Correlated Errors 15/ 21 Summary of Old Fit Summary of New Fit > summary(fit) lm(formula = mort ~ trend + temp + temp2 + part) > summary(fit3) lm(formula = Mort ~ Trend + Temp + Temp2 + Part) (Intercept) < 2e-16 *** trend < 2e-16 *** temp < 2e-16 *** temp e-15 *** part < 2e-16 *** Residual standard error: on 503 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: Arthur Berg 185 on 4 and Regression 503 With DF, Correlated p-value: Errors < 2.2e-16 16/ 21 (Intercept) < 2e-16 *** Trend e-12 *** Temp e-07 *** Temp e-13 *** Part < 2e-16 *** Residual standard error: on 501 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 501 DF, p-value: < 2.2e-16 Arthur Berg Regression With Correlated Errors 17/ 21

5 > acf(fit3$resid,lwd=3) > pacf(fit3$resid,lwd=3) Alternative Method gls > library(nlme) > (fit.gls = gls(mort~trend + temp + temp2 + part, correlation=corarma Generalized least squares fit by maximum likelihood Model: mort ~ trend + temp + temp2 + part Data: NULL Log-likelihood: (Intercept) trend temp temp2 part Arthur Berg Regression With Correlated Errors 18/ 21 Correlation Structure: ARMA(2,0) Formula: ~1 Parameter estimate(s): Phi1 Phi Degrees of freedom: 508 total; 503 residual Residual standard error: ACF plot of residuals showed strong correlation however, so may need some tweaking. Arthur Berg Regression With Correlated Errors 19/ 21 5c Using your assigned number, download your dataset from berg/sta4853/data/ and do the following: Plot the ACF and PACF of x1 Using the Box-Jenkins Method for SARIMA model selection, fit a SARIMA model to x1 Plot the estimated spectrum of x1 Compute the CCF of x1 and x2; which lag is most significant?; would you say x1 leads x2 or visa versa or neither one leads the other? Use the command lm to fit the model y = βx 3 + ε. Analyze the residuals for correlation and use the Cochrane and Orcutt algorithm to improve the estimate. Show plots of the ACF and PACF of the residuals in the original fit and the modified fit. Also provide the estimate of β for each fit. Arthur Berg Regression With Correlated Errors 21/ 21

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Non-independence due to Time Correlation (Chapter 14)

Non-independence due to Time Correlation (Chapter 14) Non-independence due to Time Correlation (Chapter 14) When we model the mean structure with ordinary least squares, the mean structure explains the general trends in the data with respect to our dependent

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Problems from Chapter 3 of Shumway and Stoffer s Book

Problems from Chapter 3 of Shumway and Stoffer s Book UNIVERSITY OF UTAH GUIDED READING TIME SERIES Problems from Chapter 3 of Shumway and Stoffer s Book Author: Curtis MILLER Supervisor: Prof. Lajos HORVATH November 10, 2015 UNIVERSITY OF UTAH DEPARTMENT

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Outline 1 Building ARIMA Models

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

477/577 In-class Exercise 5 : Fitting Wine Sales

477/577 In-class Exercise 5 : Fitting Wine Sales 477/577 In-class Exercise 5 : Fitting Wine Sales (due Fri 4/06/2017) Name: Use this file as a template for your report. Submit your code and comments together with (selected) output from R console. Your

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

STAT Regression Methods

STAT Regression Methods STAT 501 - Regression Methods Unit 9 Examples Example 1: Quake Data Let y t = the annual number of worldwide earthquakes with magnitude greater than 7 on the Richter scale for n = 99 years. Figure 1 gives

More information

Econometrics I: Univariate Time Series Econometrics (1)

Econometrics I: Univariate Time Series Econometrics (1) Econometrics I: Dipartimento di Economia Politica e Metodi Quantitativi University of Pavia Overview of the Lecture 1 st EViews Session VI: Some Theoretical Premises 2 Overview of the Lecture 1 st EViews

More information

Solution to Series 6

Solution to Series 6 Dr. M. Dettling Applied Series Analysis SS 2014 Solution to Series 6 1. a) > r.bel.lm summary(r.bel.lm) Call: lm(formula = NURSING ~., data = d.beluga) Residuals: Min 1Q

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Lecture 9 STK3100/4100

Lecture 9 STK3100/4100 Lecture 9 STK3100/4100 27. October 2014 Plan for lecture: 1. Linear mixed models cont. Models accounting for time dependencies (Ch. 6.1) 2. Generalized linear mixed models (GLMM, Ch. 13.1-13.3) Examples

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7)

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) Outline 1 AR Bootstrap 2 ARIMA 3 Homework 4b Arthur Berg STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) 2/ 20 Outline 1 AR Bootstrap

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 2, 2013 Outline Univariate

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model 1 Linear Regression 2 Linear Regression In this lecture we will study a particular type of regression model: the linear regression model We will first consider the case of the model with one predictor

More information

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson )

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson ) Tutorial 7: Correlation and Regression Correlation Used to test whether two variables are linearly associated. A correlation coefficient (r) indicates the strength and direction of the association. A correlation

More information

STOR 356: Summary Course Notes Part III

STOR 356: Summary Course Notes Part III STOR 356: Summary Course Notes Part III Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu April 23, 2008 1 ESTIMATION

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Time-Series Regression and Generalized Least Squares in R*

Time-Series Regression and Generalized Least Squares in R* Time-Series Regression and Generalized Least Squares in R* An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-09-26 Abstract Generalized

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

arxiv: v1 [stat.co] 11 Dec 2012

arxiv: v1 [stat.co] 11 Dec 2012 Simulating the Continuation of a Time Series in R December 12, 2012 arxiv:1212.2393v1 [stat.co] 11 Dec 2012 Halis Sak 1 Department of Industrial and Systems Engineering, Yeditepe University, Kayışdağı,

More information

SLR output RLS. Refer to slr (code) on the Lecture Page of the class website.

SLR output RLS. Refer to slr (code) on the Lecture Page of the class website. SLR output RLS Refer to slr (code) on the Lecture Page of the class website. Old Faithful at Yellowstone National Park, WY: Simple Linear Regression (SLR) Analysis SLR analysis explores the linear association

More information

STAT 443 (Winter ) Forecasting

STAT 443 (Winter ) Forecasting Winter 2014 TABLE OF CONTENTS STAT 443 (Winter 2014-1141) Forecasting Prof R Ramezan University of Waterloo L A TEXer: W KONG http://wwkonggithubio Last Revision: September 3, 2014 Table of Contents 1

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots.

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots. Homework 2 1 Data analysis problems For the homework, be sure to give full explanations where required and to turn in any relevant plots. 1. The file berkeley.dat contains average yearly temperatures for

More information

Class: Dean Foster. September 30, Read sections: Examples chapter (chapter 3) Question today: Do prices go up faster than they go down?

Class: Dean Foster. September 30, Read sections: Examples chapter (chapter 3) Question today: Do prices go up faster than they go down? Class: Dean Foster September 30, 2013 Administrivia Read sections: Examples chapter (chapter 3) Gas prices Question today: Do prices go up faster than they go down? Idea is that sellers watch spot price

More information

STOR 356: Summary Course Notes

STOR 356: Summary Course Notes STOR 356: Summary Course Notes Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 7599-360 rls@email.unc.edu February 19, 008 Course text: Introduction

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Classical Decomposition Model Revisited: I

Classical Decomposition Model Revisited: I Classical Decomposition Model Revisited: I recall classical decomposition model for time series Y t, namely, Y t = m t + s t + W t, where m t is trend; s t is periodic with known period s (i.e., s t s

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis Forcus on two series (Bivariate) Time series: Data: x 1, x 2,, x T. Weak stationarity: X t = x 1t x 2t. E(X t ) = µ Cov(X t, X

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

Cross Spectra, Linear Filters, and Parametric Spectral Estimation

Cross Spectra, Linear Filters, and Parametric Spectral Estimation Cross Spectra,, and Parametric Spectral Estimation Outline 1 Multiple Series and Cross-Spectra 2 Arthur Berg Cross Spectra,, and Parametric Spectral Estimation 2/ 20 Outline 1 Multiple Series and Cross-Spectra

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

STA 6857 Forecasting ( 3.5 cont.)

STA 6857 Forecasting ( 3.5 cont.) STA 6857 Forecasting ( 3.5 cont.) Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 2/ 20 Outline 1 Forecasting 2 Arthur Berg STA 6857 Forecasting ( 3.5 cont.) 3/ 20 Best Linear Predictor

More information

Transformations for variance stabilization

Transformations for variance stabilization FORECASTING USING R Transformations for variance stabilization Rob Hyndman Author, forecast Variance stabilization If the data show increasing variation as the level of the series increases, then a transformation

More information

Parameter estimation: ACVF of AR processes

Parameter estimation: ACVF of AR processes Parameter estimation: ACVF of AR processes Yule-Walker s for AR processes: a method of moments, i.e. µ = x and choose parameters so that γ(h) = ˆγ(h) (for h small ). 12 novembre 2013 1 / 8 Parameter estimation:

More information

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model Lab 3 A Quick Introduction to Multiple Linear Regression Psychology 310 Instructions.Work through the lab, saving the output as you go. You will be submitting your assignment as an R Markdown document.

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 9 - Heteroskedasticity Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 43 Agenda 1 Introduction 2 AutoRegressive Conditional Heteroskedastic Model (ARCH)

More information

Computer Exercise 1 Estimation and Model Validation

Computer Exercise 1 Estimation and Model Validation Lund University Time Series Analysis Mathematical Statistics Fall 2018 Centre for Mathematical Sciences Computer Exercise 1 Estimation and Model Validation This computer exercise treats identification,

More information

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each)

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) The maximum number of points on this exam is

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

De-mystifying random effects models

De-mystifying random effects models De-mystifying random effects models Peter J Diggle Lecture 4, Leahurst, October 2012 Linear regression input variable x factor, covariate, explanatory variable,... output variable y response, end-point,

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Correlated Data: Linear Mixed Models with Random Intercepts

Correlated Data: Linear Mixed Models with Random Intercepts 1 Correlated Data: Linear Mixed Models with Random Intercepts Mixed Effects Models This lecture introduces linear mixed effects models. Linear mixed models are a type of regression model, which generalise

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

CHAPTER 2 SIMPLE LINEAR REGRESSION

CHAPTER 2 SIMPLE LINEAR REGRESSION CHAPTER 2 SIMPLE LINEAR REGRESSION 1 Examples: 1. Amherst, MA, annual mean temperatures, 1836 1997 2. Summer mean temperatures in Mount Airy (NC) and Charleston (SC), 1948 1996 Scatterplots outliers? influential

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data.

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. We focus on the experiment designed to compare the effectiveness of three strength training

More information

COMPUTER SESSION 3: ESTIMATION AND FORECASTING.

COMPUTER SESSION 3: ESTIMATION AND FORECASTING. UPPSALA UNIVERSITY Department of Mathematics JR Analysis of Time Series 1MS014 Spring 2010 COMPUTER SESSION 3: ESTIMATION AND FORECASTING. 1 Introduction The purpose of this exercise is two-fold: (i) By

More information

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2)

STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) Outline 1 Signal Extraction and Optimal Filtering 2 Arthur Berg STA 6857 Signal Extraction & Long Memory ARMA ( 4.11 & 5.2) 2/ 17 Outline 1 Signal

More information

Outline. STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Summary Statistics of Midterm Scores

Outline. STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Summary Statistics of Midterm Scores STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Outline 1 Midterm Results 2 Multiple Series and Cross-Spectra 3 Linear Filters Arthur Berg STA 6857 Cross Spectra,

More information

2.2 Classical Regression in the Time Series Context

2.2 Classical Regression in the Time Series Context 48 2 Time Series Regression and Exploratory Data Analysis context, and therefore we include some material on transformations and other techniques useful in exploratory data analysis. 2.2 Classical Regression

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

Time Series Analysis - Part 1

Time Series Analysis - Part 1 Time Series Analysis - Part 1 Dr. Esam Mahdi Islamic University of Gaza - Department of Mathematics April 19, 2017 1 of 189 What is a Time Series? Fundamental concepts Time Series Decomposition Estimating

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Chaper 5: Matrix Approach to Simple Linear Regression. Matrix: A m by n matrix B is a grid of numbers with m rows and n columns. B = b 11 b m1 ...

Chaper 5: Matrix Approach to Simple Linear Regression. Matrix: A m by n matrix B is a grid of numbers with m rows and n columns. B = b 11 b m1 ... Chaper 5: Matrix Approach to Simple Linear Regression Matrix: A m by n matrix B is a grid of numbers with m rows and n columns B = b 11 b 1n b m1 b mn Element b ik is from the ith row and kth column A

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Heteroscedasticity and Autocorrelation

Heteroscedasticity and Autocorrelation Heteroscedasticity and Autocorrelation Carlo Favero Favero () Heteroscedasticity and Autocorrelation 1 / 17 Heteroscedasticity, Autocorrelation, and the GLS estimator Let us reconsider the single equation

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information