Fast speaker diarization based on binary keys. Xavier Anguera and Jean François Bonastre

Size: px
Start display at page:

Download "Fast speaker diarization based on binary keys. Xavier Anguera and Jean François Bonastre"

Transcription

1 Fast speaker diarization based on binary keys Xavier Anguera and Jean François Bonastre

2 Outline Introduction Speaker diarization Binary speaker modeling Binary speaker diarization system Experiments Conclusions and future work

3 What is speaker diarization? (in case no one has told you already) Given a multi-speaker recording, identify who speaks when, setting each speaker with a generic ID. No information a priori is given regarding the number of speakers or their identity

4 Standard speaker diarization approaches

5 Standard Speaker Diarization system

6 State of the art Speaker diarization has reached very competitive accuracy levels 7-10% for Broadcast news (LIMSI RT04) 12-14% for Meetings (I2R RT09) but is currently too slow for many real-life applications standard: >> 1xRT ICSI (mono-core): 0.97xRT ICSI (GPU): 0.07xRT

7 What do we want? To dramatically speedup the processing while maintaining the accuracy level (DER) How do we do it? By adapting a recently proposed binary speaker modeling to diarization

8 Review of binary speaker modeling

9 Typical speaker modeling using GMM Training x[n] Acoustic param. EM-ML training GMM model λ Testing y[n] Acoustic param. Model evaluatio n Lkld(y[n] λ)

10 Problems of using GMM modeling for Diarization Lack of precision in modeling a particular speaker Very dependent on the model initialization or the UBM it is adapted from Statistical features usually model most occurring characteristics instead of speaker specific information Very slow when using iterative EM-ML and Viterbi

11 A new modeling paradigm Constraints Fast to compare two speaker models Should allow to model a speaker dynamically-> more than 1 vector per speaker file Noise robustness Should be possible to EXPLAIN a decision Solution Large space, to be discriminant between speakers But reduced quantification -> binary 11

12 Binary speaker modeling (I) Acoustic data Acoustic parameters extraction Binary key computation Binary Keys Background model (KBM) Binary key

13 Binary speaker modeling (II) General KBM components Selected KBM component (defines the in-interest subspace) In-interest area for the input data For a given input data, different sub-areas of the acoustic space are selected (each corresponding to one UBM component) 13

14 Binary speaker modeling (III) Selection of n best specificities Outputed values (bronwn data) Outputed values (green data) Selection of n best specificities 14

15 Obtaining the binary fingerprint

16 Similarity between binary vectors It is very fast to compute Any binary measure can be used, for example: S(v 1,v 2 ) = N i =1 N i =1 (v 1 [i] v 2 [i]) (v 1 [i] v 2 [i]) v v v 1 v v 1 v S(v 1,v 2 ) = 2 12 = 0.166

17 Preliminary speaker modeling experiments Initial experiments on a small database show that binary speaker models are quite discriminant for KBM > 512 Gauss

18 Binary speaker diarization system

19 Speaker diarization main blocks NOTE: we are still using the agglomerative clustering approach, but performed over binary keys

20 Acoustic + binary processing Acoustic modeling is only used in the initialization step. Thereafter everything is done in the binary space. We use standard acoustic features 19 MFCC (no Energy, no deltas) extracted every 10ms with 25ms window.

21 KBM model It is a special UBM trained from the test data No external data is used Its complexity is N>=512 Gaussians Performance does not usually improve above N=2000 Gaussians Standard Divisive (EM-ML) training approaches cannot be used as the Gaussian means are not representing particular speakers, but rather averages of all.

22 Building the KBM model

23 KBM training for Diarization We aim at training the KBM from the test data with no a priori knowledge on the speakers Select 1 st Gauss. Initialize v_kl2 argmax Lkld(x i,θ i ) Initialize v_kl2 v KL2 [i] =KL2(θ i,θ 1st ) i Gaussian Pool Iterate until N Gauss. Update KL2 distances Select Gauss with biggest KL2 dist. v KL 2 [i] =min(v KL 2 [i],kl2(θ',θ i ))

24 Efficient binarization For spkr. Diarization many binary keys will need to be computed with different sets of acoustic features. We split the process in 2 steps: 1. Compute the K-best KBM Gaussians for each acoustic feature vector <- only done once 2. For any subset of K-best binarized vectors compute the binary key as usual

25 MFCC features vectors KBM N Gauss Initially we have a set of acoustic features and the KBM model

26 MFCC features vectors 0 KBM N Gauss For each feature vector we obtain a binary vector with a 1 on the Gaussians with highest Lkld values. N-1

27 MFCC features vectors 0 KBM N Gauss N-1

28 MFCC features vectors KBM N Gauss 0 Such binarized vectors can be stored in memory in a compact way by just storing the positions of the most relevant Gaussians for each feature vector t disk N-1

29 MFCC features vectors To obtain a fingerprint for any segment we first accumulate the counts of all previously selected Gaussians KBM N Gauss t disk N-1

30 MFCC features vectors And finally, we get the binary key by turning to 1 the best cells N KBM N Gauss t disk N-1

31 Clustering initialization We need to define a set of N init initial clusters. We reuse the info in the KBM to do so: 5th 2nd 1st 6th 4th 3rd Viterbi/seg mental assignment Acoustic features KBM model

32 Agglomerative clustering Initial clusters Clusters training Segmental Assignment Obtain the fingerprint for frames associated to each cluster Clusters training Select best clustering Yes Closest pair merging Reached one cluster? No Compute the binary distance between all cluster pairs and merge the most similar

33 Segmental assignment We perform a fast assignment of segments to clusters based on signature similarities Binary Cluster models Binary comparison 1 sec. 1 sec. 1 sec. Clus. 3 Clus. 1 Clus. 3 Clus. 2

34 Best clustering selection From N init to 1 we select the optimum clustering using the student-t test T s metric inspired in [1] The intra and inter-cluster distances are used to obtain two comparing distributions. d 1 1 sec We select the clustering with biggest T s T s = µ µ σ 1 + σ 2 2 n 1 n 2 d2 d 1 d 1 d 2 D 1 : intra-cluster distances D 2 : inter-cluster distances Note that all segment-distances need to be pre-computed just once at the beginning [1] T-testdistance and clustering criterion for speaker diarization, Trung Hieu Nguyen, Eng Siong Chng and Haizhou Li, in Proc. Interspeech, 2008.

35 Some cluster selection examples #clusters = #speakers Optimum diarization result

36 Evaluation We used ALLNIST Rich Transcription Datasets We evaluate it using: Diarization error rate (DER): percentage of time where the wrong label is assigned, including overlap. Realtime factor (computed over the speech data) To compare we use a baseline acoustic-based system similar to [2] [2] A robust speaker clustering algorithm, Jitendra Ajmera and Chuck Wooters, in Proc. of IEEE ASRU, US Virgin Islands, USA, Dec

37 Results (I) Standard GMM-like training of the KBM Optimum results when stopping criterion is perfect

38 Results (II) DER as a function of # Gaussians in the KBM

39 Comparison results Meeting-by-meeting comparison between baseline (blue) and proposed system (red)

40 Conclusions and future work Progress in speaker diarization seems stagnant and doomed to long processing times We propose a very fast system by using a recently proposed binary speaker modeling technique We achieve DER scores that are close to GMM-based DER Next we are working on Improving the binary key fingerprint Finding a better stopping criterion Further speeding up the system

41 Thanks! Xavier Anguera

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre The 2 Parts HDM based diarization System The homogeneity measure 2 Outline

More information

Speaker Verification Using Accumulative Vectors with Support Vector Machines

Speaker Verification Using Accumulative Vectors with Support Vector Machines Speaker Verification Using Accumulative Vectors with Support Vector Machines Manuel Aguado Martínez, Gabriel Hernández-Sierra, and José Ramón Calvo de Lara Advanced Technologies Application Center, Havana,

More information

Joint Factor Analysis for Speaker Verification

Joint Factor Analysis for Speaker Verification Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University mengke.hu@gmail.com October 12, 2012 1/37 Outline 1 Speaker Verification Baseline System Session

More information

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition ABSTRACT It is well known that the expectation-maximization (EM) algorithm, commonly used to estimate hidden

More information

Model-based unsupervised segmentation of birdcalls from field recordings

Model-based unsupervised segmentation of birdcalls from field recordings Model-based unsupervised segmentation of birdcalls from field recordings Anshul Thakur School of Computing and Electrical Engineering Indian Institute of Technology Mandi Himachal Pradesh, India Email:

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 21: Speaker Adaptation Instructor: Preethi Jyothi Oct 23, 2017 Speaker variations Major cause of variability in speech is the differences between speakers Speaking

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data

Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data Juan Torres 1, Ashraf Saad 2, Elliot Moore 1 1 School of Electrical and Computer

More information

Support Vector Machines using GMM Supervectors for Speaker Verification

Support Vector Machines using GMM Supervectors for Speaker Verification 1 Support Vector Machines using GMM Supervectors for Speaker Verification W. M. Campbell, D. E. Sturim, D. A. Reynolds MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 Corresponding author e-mail:

More information

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY MengSun,HugoVanhamme Department of Electrical Engineering-ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Bus

More information

Session Variability Compensation in Automatic Speaker Recognition

Session Variability Compensation in Automatic Speaker Recognition Session Variability Compensation in Automatic Speaker Recognition Javier González Domínguez VII Jornadas MAVIR Universidad Autónoma de Madrid November 2012 Outline 1. The Inter-session Variability Problem

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

speaker recognition using gmm-ubm semester project presentation

speaker recognition using gmm-ubm semester project presentation speaker recognition using gmm-ubm semester project presentation OBJECTIVES OF THE PROJECT study the GMM-UBM speaker recognition system implement this system with matlab document the code and how it interfaces

More information

The effect of speaking rate and vowel context on the perception of consonants. in babble noise

The effect of speaking rate and vowel context on the perception of consonants. in babble noise The effect of speaking rate and vowel context on the perception of consonants in babble noise Anirudh Raju Department of Electrical Engineering, University of California, Los Angeles, California, USA anirudh90@ucla.edu

More information

A Small Footprint i-vector Extractor

A Small Footprint i-vector Extractor A Small Footprint i-vector Extractor Patrick Kenny Odyssey Speaker and Language Recognition Workshop June 25, 2012 1 / 25 Patrick Kenny A Small Footprint i-vector Extractor Outline Introduction Review

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Exemplar-based voice conversion using non-negative spectrogram deconvolution

Exemplar-based voice conversion using non-negative spectrogram deconvolution Exemplar-based voice conversion using non-negative spectrogram deconvolution Zhizheng Wu 1, Tuomas Virtanen 2, Tomi Kinnunen 3, Eng Siong Chng 1, Haizhou Li 1,4 1 Nanyang Technological University, Singapore

More information

Multiclass Discriminative Training of i-vector Language Recognition

Multiclass Discriminative Training of i-vector Language Recognition Odyssey 214: The Speaker and Language Recognition Workshop 16-19 June 214, Joensuu, Finland Multiclass Discriminative Training of i-vector Language Recognition Alan McCree Human Language Technology Center

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Robust Sound Event Detection in Continuous Audio Environments

Robust Sound Event Detection in Continuous Audio Environments Robust Sound Event Detection in Continuous Audio Environments Haomin Zhang 1, Ian McLoughlin 2,1, Yan Song 1 1 National Engineering Laboratory of Speech and Language Information Processing The University

More information

Covariance Matrix Enhancement Approach to Train Robust Gaussian Mixture Models of Speech Data

Covariance Matrix Enhancement Approach to Train Robust Gaussian Mixture Models of Speech Data Covariance Matrix Enhancement Approach to Train Robust Gaussian Mixture Models of Speech Data Jan Vaněk, Lukáš Machlica, Josef V. Psutka, Josef Psutka University of West Bohemia in Pilsen, Univerzitní

More information

Harmonic Structure Transform for Speaker Recognition

Harmonic Structure Transform for Speaker Recognition Harmonic Structure Transform for Speaker Recognition Kornel Laskowski & Qin Jin Carnegie Mellon University, Pittsburgh PA, USA KTH Speech Music & Hearing, Stockholm, Sweden 29 August, 2011 Laskowski &

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Mixtures of Gaussians with Sparse Structure

Mixtures of Gaussians with Sparse Structure Mixtures of Gaussians with Sparse Structure Costas Boulis 1 Abstract When fitting a mixture of Gaussians to training data there are usually two choices for the type of Gaussians used. Either diagonal or

More information

Multi-level Gaussian selection for accurate low-resource ASR systems

Multi-level Gaussian selection for accurate low-resource ASR systems Multi-level Gaussian selection for accurate low-resource ASR systems Leïla Zouari, Gérard Chollet GET-ENST/CNRS-LTCI 46 rue Barrault, 75634 Paris cedex 13, France Abstract For Automatic Speech Recognition

More information

Session 1: Pattern Recognition

Session 1: Pattern Recognition Proc. Digital del Continguts Musicals Session 1: Pattern Recognition 1 2 3 4 5 Music Content Analysis Pattern Classification The Statistical Approach Distribution Models Singing Detection Dan Ellis

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Bayesian Analysis of Speaker Diarization with Eigenvoice Priors

Bayesian Analysis of Speaker Diarization with Eigenvoice Priors Bayesian Analysis of Speaker Diarization with Eigenvoice Priors Patrick Kenny Centre de recherche informatique de Montréal Patrick.Kenny@crim.ca A year in the lab can save you a day in the library. Panu

More information

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System Fabrice Lefèvre, Claude Montacié and Marie-José Caraty Laboratoire d'informatique de Paris VI 4, place Jussieu 755 PARIS

More information

Robust Speaker Identification

Robust Speaker Identification Robust Speaker Identification by Smarajit Bose Interdisciplinary Statistical Research Unit Indian Statistical Institute, Kolkata Joint work with Amita Pal and Ayanendranath Basu Overview } } } } } } }

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems

Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems Chin-Hung Sit 1, Man-Wai Mak 1, and Sun-Yuan Kung 2 1 Center for Multimedia Signal Processing Dept. of

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System Yang You 1, James Demmel 1, Kent Czechowski 2, Le Song 2, Richard Vuduc 2 UC Berkeley 1, Georgia Tech 2 Yang You (Speaker) James

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Outline of Today s Lecture

Outline of Today s Lecture University of Washington Department of Electrical Engineering Computer Speech Processing EE516 Winter 2005 Jeff A. Bilmes Lecture 12 Slides Feb 23 rd, 2005 Outline of Today s

More information

SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS. Emad M. Grais and Hakan Erdogan

SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS. Emad M. Grais and Hakan Erdogan SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS Emad M. Grais and Hakan Erdogan Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 12: Acoustic Feature Extraction for ASR Instructor: Preethi Jyothi Feb 13, 2017 Speech Signal Analysis Generate discrete samples A frame Need to focus on short

More information

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Kumari Rambha Ranjan, Kartik Mahto, Dipti Kumari,S.S.Solanki Dept. of Electronics and Communication Birla

More information

Monaural speech separation using source-adapted models

Monaural speech separation using source-adapted models Monaural speech separation using source-adapted models Ron Weiss, Dan Ellis {ronw,dpwe}@ee.columbia.edu LabROSA Department of Electrical Enginering Columbia University 007 IEEE Workshop on Applications

More information

Proc. of NCC 2010, Chennai, India

Proc. of NCC 2010, Chennai, India Proc. of NCC 2010, Chennai, India Trajectory and surface modeling of LSF for low rate speech coding M. Deepak and Preeti Rao Department of Electrical Engineering Indian Institute of Technology, Bombay

More information

Comparison of Log-Linear Models and Weighted Dissimilarity Measures

Comparison of Log-Linear Models and Weighted Dissimilarity Measures Comparison of Log-Linear Models and Weighted Dissimilarity Measures Daniel Keysers 1, Roberto Paredes 2, Enrique Vidal 2, and Hermann Ney 1 1 Lehrstuhl für Informatik VI, Computer Science Department RWTH

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

TNO SRE-2008: Calibration over all trials and side-information

TNO SRE-2008: Calibration over all trials and side-information Image from Dr Seuss TNO SRE-2008: Calibration over all trials and side-information David van Leeuwen (TNO, ICSI) Howard Lei (ICSI), Nir Krause (PRS), Albert Strasheim (SUN) Niko Brümmer (SDV) Knowledge

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm + September13, 2016 Professor Meteer CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm Thanks to Dan Jurafsky for these slides + ASR components n Feature

More information

Front-End Factor Analysis For Speaker Verification

Front-End Factor Analysis For Speaker Verification IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING Front-End Factor Analysis For Speaker Verification Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet, Abstract This

More information

CSCE 471/871 Lecture 3: Markov Chains and

CSCE 471/871 Lecture 3: Markov Chains and and and 1 / 26 sscott@cse.unl.edu 2 / 26 Outline and chains models (s) Formal definition Finding most probable state path (Viterbi algorithm) Forward and backward algorithms State sequence known State

More information

Pattern Classification

Pattern Classification Pattern Classification Introduction Parametric classifiers Semi-parametric classifiers Dimensionality reduction Significance testing 6345 Automatic Speech Recognition Semi-Parametric Classifiers 1 Semi-Parametric

More information

Pivot Selection Techniques

Pivot Selection Techniques Pivot Selection Techniques Proximity Searching in Metric Spaces by Benjamin Bustos, Gonzalo Navarro and Edgar Chávez Catarina Moreira Outline Introduction Pivots and Metric Spaces Pivots in Nearest Neighbor

More information

Subspace based/universal Background Model (UBM) based speech modeling This paper is available at

Subspace based/universal Background Model (UBM) based speech modeling This paper is available at Subspace based/universal Background Model (UBM) based speech modeling This paper is available at http://dpovey.googlepages.com/jhu_lecture2.pdf Daniel Povey June, 2009 1 Overview Introduce the concept

More information

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks INTERSPEECH 2014 Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks Ryu Takeda, Naoyuki Kanda, and Nobuo Nukaga Central Research Laboratory, Hitachi Ltd., 1-280, Kokubunji-shi,

More information

Estimation of Relative Operating Characteristics of Text Independent Speaker Verification

Estimation of Relative Operating Characteristics of Text Independent Speaker Verification International Journal of Engineering Science Invention Volume 1 Issue 1 December. 2012 PP.18-23 Estimation of Relative Operating Characteristics of Text Independent Speaker Verification Palivela Hema 1,

More information

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring A New Unsupervised Event Detector for Non-Intrusive Load Monitoring GlobalSIP 2015, 14th Dec. Benjamin Wild, Karim Said Barsim, and Bin Yang Institute of Signal Processing and System Theory of,, Germany

More information

Noise Compensation for Subspace Gaussian Mixture Models

Noise Compensation for Subspace Gaussian Mixture Models Noise ompensation for ubspace Gaussian Mixture Models Liang Lu University of Edinburgh Joint work with KK hin, A. Ghoshal and. enals Liang Lu, Interspeech, eptember, 2012 Outline Motivation ubspace GMM

More information

Information Theoretic Imaging

Information Theoretic Imaging Information Theoretic Imaging WU Faculty: J. A. O Sullivan WU Doctoral Student: Naveen Singla Boeing Engineer: James Meany First Year Focus: Imaging for Data Storage Image Reconstruction Data Retrieval

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Necessary Corrections in Intransitive Likelihood-Ratio Classifiers

Necessary Corrections in Intransitive Likelihood-Ratio Classifiers Necessary Corrections in Intransitive Likelihood-Ratio Classifiers Gang Ji and Jeff Bilmes SSLI-Lab, Department of Electrical Engineering University of Washington Seattle, WA 9895-500 {gang,bilmes}@ee.washington.edu

More information

Symmetric Distortion Measure for Speaker Recognition

Symmetric Distortion Measure for Speaker Recognition ISCA Archive http://www.isca-speech.org/archive SPECOM 2004: 9 th Conference Speech and Computer St. Petersburg, Russia September 20-22, 2004 Symmetric Distortion Measure for Speaker Recognition Evgeny

More information

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Zaragoza Del 8 al 1 de Noviembre de 26 ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Ana I. García Moral, Carmen Peláez Moreno EPS-Universidad Carlos III

More information

HIGH PERFORMANCE CTC TRAINING FOR END-TO-END SPEECH RECOGNITION ON GPU

HIGH PERFORMANCE CTC TRAINING FOR END-TO-END SPEECH RECOGNITION ON GPU April 4-7, 2016 Silicon Valley HIGH PERFORMANCE CTC TRAINING FOR END-TO-END SPEECH RECOGNITION ON GPU Minmin Sun, NVIDIA minmins@nvidia.com April 5th Brief Introduction of CTC AGENDA Alpha/Beta Matrix

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Hidden Markov Models. Dr. Naomi Harte

Hidden Markov Models. Dr. Naomi Harte Hidden Markov Models Dr. Naomi Harte The Talk Hidden Markov Models What are they? Why are they useful? The maths part Probability calculations Training optimising parameters Viterbi unseen sequences Real

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

IBM Research Report. A Convex-Hull Approach to Sparse Representations for Exemplar-Based Speech Recognition

IBM Research Report. A Convex-Hull Approach to Sparse Representations for Exemplar-Based Speech Recognition RC25152 (W1104-113) April 25, 2011 Computer Science IBM Research Report A Convex-Hull Approach to Sparse Representations for Exemplar-Based Speech Recognition Tara N Sainath, David Nahamoo, Dimitri Kanevsky,

More information

TinySR. Peter Schmidt-Nielsen. August 27, 2014

TinySR. Peter Schmidt-Nielsen. August 27, 2014 TinySR Peter Schmidt-Nielsen August 27, 2014 Abstract TinySR is a light weight real-time small vocabulary speech recognizer written entirely in portable C. The library fits in a single file (plus header),

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

A Generative Score Space for Statistical Dialog Characterization in Social Signalling

A Generative Score Space for Statistical Dialog Characterization in Social Signalling A Generative Score Space for Statistical Dialog Characterization in Social Signalling 1 S t-1 1 S t 1 S t+4 2 S t-1 2 S t 2 S t+4 Anna Pesarin, Paolo Calanca, Vittorio Murino, Marco Cristani Istituto Italiano

More information

Bayesian Nonparametric Learning of Complex Dynamical Phenomena

Bayesian Nonparametric Learning of Complex Dynamical Phenomena Duke University Department of Statistical Science Bayesian Nonparametric Learning of Complex Dynamical Phenomena Emily Fox Joint work with Erik Sudderth (Brown University), Michael Jordan (UC Berkeley),

More information

Lecture 3. Gaussian Mixture Models and Introduction to HMM s. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

Lecture 3. Gaussian Mixture Models and Introduction to HMM s. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom Lecture 3 Gaussian Mixture Models and Introduction to HMM s Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom Watson Group IBM T.J. Watson Research Center Yorktown Heights, New

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Clustering. Léon Bottou COS 424 3/4/2010. NEC Labs America

Clustering. Léon Bottou COS 424 3/4/2010. NEC Labs America Clustering Léon Bottou NEC Labs America COS 424 3/4/2010 Agenda Goals Representation Capacity Control Operational Considerations Computational Considerations Classification, clustering, regression, other.

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

ORTHOGONALITY-REGULARIZED MASKED NMF FOR LEARNING ON WEAKLY LABELED AUDIO DATA. Iwona Sobieraj, Lucas Rencker, Mark D. Plumbley

ORTHOGONALITY-REGULARIZED MASKED NMF FOR LEARNING ON WEAKLY LABELED AUDIO DATA. Iwona Sobieraj, Lucas Rencker, Mark D. Plumbley ORTHOGONALITY-REGULARIZED MASKED NMF FOR LEARNING ON WEAKLY LABELED AUDIO DATA Iwona Sobieraj, Lucas Rencker, Mark D. Plumbley University of Surrey Centre for Vision Speech and Signal Processing Guildford,

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 8: Tied state HMMs + DNNs in ASR Instructor: Preethi Jyothi Aug 17, 2017 Final Project Landscape Voice conversion using GANs Musical Note Extraction Keystroke

More information

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU 2013-11-18 Framework 1. GMM-UBM Feature is extracted by frame. Number of features are unfixed. Gaussian Mixtures are used to fit all the features. The mixtures

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

How to Deal with Multiple-Targets in Speaker Identification Systems?

How to Deal with Multiple-Targets in Speaker Identification Systems? How to Deal with Multiple-Targets in Speaker Identification Systems? Yaniv Zigel and Moshe Wasserblat ICE Systems Ltd., Audio Analysis Group, P.O.B. 690 Ra anana 4307, Israel yanivz@nice.com Abstract In

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Allpass Modeling of LP Residual for Speaker Recognition

Allpass Modeling of LP Residual for Speaker Recognition Allpass Modeling of LP Residual for Speaker Recognition K. Sri Rama Murty, Vivek Boominathan and Karthika Vijayan Department of Electrical Engineering, Indian Institute of Technology Hyderabad, India email:

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1. User Guide Alexey Ozerov 1, Mathieu Lagrange and Emmanuel Vincent 1 1 INRIA, Centre de Rennes - Bretagne Atlantique Campus de Beaulieu, 3

More information

Engineering Part IIB: Module 4F11 Speech and Language Processing Lectures 4/5 : Speech Recognition Basics

Engineering Part IIB: Module 4F11 Speech and Language Processing Lectures 4/5 : Speech Recognition Basics Engineering Part IIB: Module 4F11 Speech and Language Processing Lectures 4/5 : Speech Recognition Basics Phil Woodland: pcw@eng.cam.ac.uk Lent 2013 Engineering Part IIB: Module 4F11 What is Speech Recognition?

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Machine Learning for Signal Processing Expectation Maximization Mixture Models. Bhiksha Raj 27 Oct /

Machine Learning for Signal Processing Expectation Maximization Mixture Models. Bhiksha Raj 27 Oct / Machine Learning for Signal rocessing Expectation Maximization Mixture Models Bhiksha Raj 27 Oct 2016 11755/18797 1 Learning Distributions for Data roblem: Given a collection of examples from some data,

More information

Pattern Recognition Applied to Music Signals

Pattern Recognition Applied to Music Signals JHU CLSP Summer School Pattern Recognition Applied to Music Signals 2 3 4 5 Music Content Analysis Classification and Features Statistical Pattern Recognition Gaussian Mixtures and Neural Nets Singing

More information