2.2.3 Absolute value function, x

Size: px
Start display at page:

Download "2.2.3 Absolute value function, x"

Transcription

1 Sets ad fuctios Á ÉÌ Ê É ÑÌÁ ÂÕ Òº ÁÌ ÒÖ Ò ÑÖ ÊÌ Fig 60¹Ö ÑØ Öº å Ì Ì Ð Õ Â f()¹ö value Ø Àº  ÑÉÝ Ì ÒÁ Ì ÑÖ ÌÙ ÑÙÝ ÝÕ Ì Õ Ö Ýµ ÂØ Ò ÚÙÐ ÙÖ ÒÑ Ò Éº 2 x 2 Fig 57 Example 27:  if 0 x < g(x) = 3 if x = 2 if < x 2 ÀÝ Ø ØÖ Ê À ÖÑ 3 2 ½ Fig 58 ½ Fig 59 ¾ ¾ 2 ½ Fig 60 ¾ Absolute value fuctio, x Þ ÌÙÖ¹ÇÝÐ fuctio ÒÝ ÉÑ ÑÉ ÑÒ Ö ËÙÖÙ ÀÐ ØÖ Ì ÑÖ ÁØÀ Õº fuctio ÐØ ÜÐ À À Ò Ø ÂÙÐ Ð ÜÒ ÑÙÐ ÝÁ ÐÜ Ð ÂÝ ÂÑÒ x 2 + 3x six Á º D Alembert ÒÑ Ò ÔØ ÕÐÒ ØÖ ÊÀ ÕÐ Ú ØÖÖ Â Ö Ë à Ö Á ÈÝ ÈÆ Òݺ ÞÖ ÌÖÖ Ì ØÖ Ì ÂÜÒ ÔÕ ØÜÒ ÜØ À Fig 6¹ Ö ÑØ Õ٠̺ ÁÌ D Alembert sie, cosie ÁØ Ý ÐÜØ ÔÖÕÐÒº Ù ÂÜÒ ØÖÌ ÉÑ ÌÒ ÀÝÕÐ ØÜÒ Ì ÜØ ÕÐ Fig 62¹Ö ÑØ ÂÌ ÙÌ ÖÐÖÜ Ù äøöº ÁÜÒÁ D Alembert ÚÖ Þ Ô ÐÒ ÔÙÖÌ Ì fuctio Ð Ú ÍØ ÑÐ Euler 2 Ð ÖÒ ÆØ ÕÐÒ ØÒ ÐÒ Â ÙÌ ÌÙÖ ÑÐÝ Ì fuctio ÚØ Ô É ÍØ Òݺ Ë ÉÌ D Alembert¹Ö ÑÒ ÞÖ Òº Ì fuctio¹ö Þ ÌÙÖ ÉØ ÔÖ Ò Á ÒÝ ÂÜÒ Ý Ø ÐÕ ØÜÒ Cauchy ˵ ÒÑ Ö ÆØ Á fuctio¹ì ÒÐÒ { x if x 0 f(x) = x otherwise. ÌÖÖ ØÖ ÂÜÒ ÔÕº Fig 6 ÂÜÒ ÉÑ ÌÒ ÀÝÕº Fig 62 2 ÍÖÆ ÝÐÖº ÁÍÐÖ ÒÝ 37

2 Real Aalysis ÉÑÁ a AÕ ØÁ a Take ay a A. Ö Ì ǫ > 0 Ö ÖØ Àº The a A i for some A i. Sice A i is ope, ǫ Choose this ǫ > 0. ǫ > 0 N(a,ǫ) A i. Á ÀÐ ÑÖ ÝÒÝ ǫ. Ö Ü Â N(a,ǫ) A. A i A N(a,ǫ) A, as required. [Q.E.D] ÑÖ ÜÕ Â ope iterval¹ö ope set ÀÝ Ã ope set¹ö uio ope Àݺ ÙØÖà ÕÙ opeiterval¹ö uio ÒÐ Ì ope set Ôº Ñ ÀÐ Ö ÍÌÌÇ Ø ÑÒ ÂÒ (oempty) ope set¹á ÕÙ ope iterval¹ö uio À ÐÜ Ð Âݺ ÑÆÌ ðö Exercise 58: Show that every oempty ope set ca be expressed as a uio of ope itervals.[2] (203.2c) Let A φ be a ope subset of R. The a A ǫ a > 0 N(a,ǫ a ) A. ÜÒ À ÜÐ ǫ Ò ÐÜ ǫ a ÐÜÐÑ Ò ÖÆ ÜÒ ÑÖ Ú a¹ö Ò ÔÇÝ Ú ǫ ÒÝ Á Öº ØÁ Ò ǫ¹ì Ò a¹ö Ò Ì ÜÝÐ ÖÜÖ Ò ǫ a ÐÜÕº ÂÑÒ ÑÝÖÁ Ì ÙÙÖ Õ ÐÜÖ Ò g GIRL d DOG g has d ÐÜÐÁ к Ù Ö Â ÑÝÖ Á ØÖ ÙÙÖ ÒÝ Ò ÙÙÖ¹ËÒØ ÂÝ Ø ÙÙÖÖ ÐÝ ØÖ ÑÐÖ ÒÑ ÐÜ Ð ÐÝ ÇÝ Úк ÃÖ ÚÈÝ g GIRL d g DOG g has d g. Ø Þ ÑÝÖ ÙÙÖÖ ÒÝ ÖØ Ò ÀÐ d g Ò ÐÜ ÜÐ d ÐÜÐÁ к ÑÖ Ã Ö º Ð Ö Â N(a,ǫ a )¹Ö Á ope iterval. Ö uio ÒÐÁ Ø ÔÙÖ A¹Ì ÔÝ Â 58

3 Limit poits Example 50: Show that 2 is a isolated poit of {,2,2.5,3}. To show 2 is a isolated poit of {,2,2.5,3}, ØÖ ÑÒ ÜØ À  2 {,2,2.5,3} ÂÌ ÐÁ ÀÙе Ù 2 Á set¹ìö limit poit Òݺ i.e., 2 {,2,2.5,3}, which is obvious, ad 2 is a ot a limit poit of {,2,2.5,3}, i.e., Target ǫ > 0 N (2,ǫ) {,2,2.5,3}= φ. ÒÌØÑ ØËÖ É Ö ÀÐ ÁÌ ÔÐÑ limit poit¹ö ÃÖ egatio Òݺ Fig 3 É ÜØ ÔÕ Â 2 ÃÜÌ Ö É ÌÙ ØØ Õ ÑÖ ǫ¹ì Ò ÑÒÚ ÂØ Ì 2¹Ö ÒÌØÑ ØËÖ ÖÖ ÑÒ ØÖ Ý Ñ Àݺ ÜÒ 2¹Ö Ö ØË ÀÐ, Ö = 2 = 2) Ö ÒÖ ØË ÀÐ 2.5 Ö 2.5 2= 2 ). ØÖ ÑÒÖ ÒÌØÑ ØË ÀÐ 2.5, ÂÖ Ö 2. ØÁ ÑÖ ǫ = 2 ÒØ ÔÖº ǫ Choose ǫ = 2. Check The N (2,ǫ) = ( 3 2,2) (2, 5 2 ). So N (2,ǫ) {,2,2.5} = φ, as required. Ö ÀÐ 2¹Ö ÙÁ Ø˺ Fig 3 Exercise 73: ÜÇ Â ÒÖ ØÌ Á a ÃÜÌ S¹ Ö Ì limit poit, Ù b ÃÜÌ Òݺ Õ ÒØ ÚÙÐ Ò ÂÒ. S = [,2] {3}, a = 3 2, b = S = (, ), a =, b = S = (0,) N, a =, b = 2. Ò ÕÁ ÜÕ ÂÖ limit poit Ö boudary poit ÙÐÝ Ðº ÂÑÒ Â Ð (0,)¹Ö ØÒÌ limit poit Ø Ø ÙÌ limit poit ÌÔÌ ÐØ ÔÖ 0 Ö. ØÖÔÖ ÜÒÆ ÑÉ ÙÐ ÑØ ÑØ Ö Ð ÑÖ 7

4 Real Aalysis {0} {, 2, 3,...,,...} the set is ot closed. 0 Fig 24 ÒÖ ÃÌ ÜØ ÒÖÑ ÀÐÇ Ð Ò Ì Áº ÜÐ ËÙÖÙÌ ÞÖÝ Õº Exercise 0: Correct or justify: { x R : cos x = 0} is ot a closed set.[3] (202.ci) ÉÑ Ú ÒÁ set¹ì ÜØ ÖѺ ÜÒ cos x = 0 ÀÝ ÂÜÒ ÜØ ÀÝ x (2 )π 2 ¹Ö ÑØ ÂÜÒ Z. ØÖ ÑÒ 2 x À π(2 ) ¹Ö ÑØ Üغ É ÑÖ set¹ì ÀÕ { } 2 π(2 ) : Z. ÌÙ ÚÐÁ Ù Â ÂØÁ ¹Ö ÂÕ ØØÁ poit¹ùð 0¹Ö Õ Ú ÑÕº Ð ÕÌ ÀÕ Fig 24¹ Ö Ñغ À ÒÁ ÒÝÁ  0 Ì limit poit, É 0 Ò Ù set¹ìö ÑÞ ÒÁº ÙØÖà set¹ì Ö closed ÀÝ Ö Ö Ì ÞÔ ÞÔ ÙÕÝ ÐÜ Ü Ö ÃÌÖ ÑØ Öº Exercise 02: Let A R ad G be a ope subset of R. If A deotes the set of all limit poits of A the show that G A = φ wheever G A = φ. [3] (998,2006) ÉÑ ÐÜ ËÙÖÙ Ö ÇÝ Õ Ö ÜØ À Give: A R ay subset, G R ope, G A = φ. To show: G A = φ. ÑÖ ÜÒ proof by cotradictio Öº Let, if possible, G A φ.  G A φ ÀÝ Ø Ö ÑÞ Ø Ì poit Õº ÁÖÑ Ì poit ÒÁ Pick ay x G A. ÂÀØÙ G ope ØÁ x¹ Ö G¹Ö ÑÞ ÕÙÌ Ý Ôº 92

5 Completeess 7.3 Existece of supremum  set¹ö Ò upper boud É Ò ØÖ Ð ubouded above. Ö Ö Ô àø ÀÝ ÂÑÒ N,Z (2, ). Á ÖÑ set¹ö supremum É Òº Ò É Ò ÙØÁ ÔÖÕ ubouded above ÀÐ Ò upper boud¹á Ô Ò Ð ÙÐÌ ÉÝ ÖÜ ËÙÖÙ Ö ÖÌ set¹öç supremum É Ò ÀÐ φ. ÖÆ φ¹ Ö ÐÝ ÙÐÌ ÂØÁ ÖÇ Ò ÒÁ Ì Òº Ð φ Ø ÑÐÙÑ Ö Ì Á ÙÁ ÞÖÆÖ set¹ Ð set¹ö Á supremum ÉØ Þº Á ÉÌ Ð completeess axiom supremum axiom least upper boud axiomº ÉÌ ËÙÒØ ÑÑÐ ÐØ ÔÖ Ù Ö ÔÖ Ñ ÙÖÙº Á ÑÖ ÌÙ ÔÖÁ Õº Exercise 4: State the least upper boud axiom for the set of real umbers.[] (997,200,2003,2005,2009,200,203) Least upper boud axiom If A R is oempty ad bouded from above, the A has a supremum i R. ÜÒ Ì Õ É Ð ÖÜ ÑÖ Ù ÜÐ A has a supremum. Ò ÐÜ ÐÜÕ A has a supremum i R. å ËÈÖ i R ¹ÌÙÙ Ò ÐÜÐ ÑÒ ÀØ ÂÒ supremum¹ Ì A¹Ö ÚØÖÁ ɺ Ù Ì ÒÝ ÂÑÒ (0,)¹Ö supremum ÀÐ, Ù (0,). Exercise 5: State the completeess axiom of R.[] (20) Ö ËÌÁº Supremum¹Ö Ò Ì axiom Õº Ifimum¹Ö Ò ÒÁ Ò ÖÆ supremum¹ö axiom¹ì ÉÁ ÑÖ ifimum¹ö Ç ÔÝ ÂØ ÔÖº ÌÁ ÒÖ Ã ÇÝ ÀÝÕº 03

6 Sequeces (part ) b },{a b },{a b },¹Ç coverget Àº Ì Ò ÒÝ Â a ±b a±b, a b ab Àº ÚÖ ÐØÇ ÑÖ Á É ÐØ ÔÖ a /b a/b, ÜÐ ÙØÁ ÔÖÕ Â ØÖ Ò b,b 0 к Diverget sequece¹ö ÐØÇ ÔÌ ÁÖѺ  a Ö b ÀÝ Ø a + b à a b Àº Ø Ö ÌÙ Ñ Ú a b à a /b ¹ Ö ÈÝ Ö Ý ÕÙ Ð ÂÝ Òº Exercise 67:  a Ö b ÀÝ Ø ÒÖ sequece¹ùðö ÈÝ ÐØ ÔÖ iµ a +b, iiµ a b, iiiµ a b, Exercise 68:  a Ö b ÀÝ Ã a,b 0 ÀÝ Ø Ö Ô ÐØ ÔÖ iµ a, iiµ b, iiiµ a +b Ö Ý ÚÖ Éݺ  {a },{b } ÙÒÁ oscillatig ÀÝ Ø a + b,a b,a b,a /b Ö Í ÒÝÁ Ö Ý ÕÙÌ ÐÖ ÒÁ ÂÑÒ ÒÖ ÃÌÁ ÞÖº ÙÒ Ú ÙÆ ÖÐ Ú ØÖ ÚØÙÐ ÌÌ ÀÝ Ý ÙÆÐÌ Ú ÀÝ ÂØ ÔÖ Ü Exercise 69: Give examples of two o-coverget sequeces {x } ad {y } such that the sequece {x y } is coverget.[2] (202.3a) Let x = ( ) ad y = ( ). The {x } ad {y } are o coverget. But x y, ad so {x y } is a costat sequece, ad hece coverget. Á ÃÖ ÍÀÖÆÌ Ö ÒÐÑ Ì Ð ÖÆ ÝÌ Ò ÝØÇ Ðº ÉÑ Â ÜÙË Ì coverget sequece ÒÝÕÐÑ {z }, ÂÜÒ ÑÝÁ z 0. Á à z ÒÝÕº ÖÔÖ Â ÜÙË Ì oscillatig sequece ÒÝÕÐÑ {x }, ÜÐ ÂÒ x 0 Àݺ ØÖÔÖ y = z /x ÒÝÕº ÂÀØÙ x y = z ÀÕ ØÁ {x y } ¹ Ö coverget ÀÇÝ Í Ø ÔÖÕ Òº Ö {y } 45

7 Sequeces (part ) ÁÖ Õ N, ØÁ Take ay N. Check The b = a + +a a + +a N + a N + +a a + +a N + a N + +a N 2 < ǫ 2 + a N + +a ǫ 2 + a N + + a ǫ 2 + ( N +)ǫ 2 [ by (**) ] [ ] by triagle iequality ÖÆ a N,..., a ØÁ < ǫ 2, Ã Ö ÑÌ N + Ò Õº [ by triagle iequality [ N N 2 ] ] ǫ 2 + ǫ 2 [ N ] = ǫ, as required. Exercise 86: If lim x = l, show that x +x 2 + +x lim = l. [3] (200.4b) Ö ÃÌÁ ÜÐ 0¹Ö ÝÝ l. DAY 2 Recurrece relatio Ò ÑÝ Ì sequece¹ recurrece relatio Ý Ë Ö ÀÝ ÂÑÒ a = 2a. 57

8 Cotiuity ad Limit DAY 6 Limits Á ÍÊÔÉÖ ÖÐÐÁÒ ÚÖ ÍÔÑ ÑÒ Õ ÜÒ ÑÖ Ú ÝÌÝ ÖÐÐÁÒÖ Ö Ö ÒÖ Ö É ÐÕÐѺ Ê É Á ÙÁ Ö ÉÒ ÜÁ ÑÖ Ú ÞÖÆÖ discotiuity¹ Ð ÖØ ËÜÕº Á Ö Ì Ð left limit, Ö ÒÖ Ì Ð right limit. Fig 96 ܺ ÜÒ x = a¹ø f(x)¹ö value ÀÐ p. Ù x = a¹ø f(x)¹ö right limit ÀÐ q, Ö left limit ÀÐ r. Á ÉÌ ÑÖ ÃÔ ÐÜ f(a) = p, f(a+) = q Ö f(a ) = r. Right limit¹ f(a+) Õ lim x a+ f(x) À Ç ÐÜ Âݺ ØÁ ÑÖ ÚÇ ÐÜØ ÔÖØÑ lim f(x) = q Ö lim x a+ f(x) = r x a Ö Fig 97 ܺ ÜÒ x  ÝÁ a¹ö Õ Ù ÑÝÁ f(x) ÂÕ q¹ö Õº ÑÖ Ð Â x = a¹ø f(x)¹ö limit ÀÐ q. É left right ÉÌ Ð Ö Ö ÐÜ Òºµ 6. Domai¹Ö ÁÖ limit Õ lim x a f(x) Ö ÖÖ Ò a¹ f(x)¹ö domai¹ ÉØ À ÑÒ f(a)¹ì exist ÖØ À ÑÒ ÀØ ÔÖ Â f(a) ÀÐ udefied, É lim x a f(x), exist Ö ÍÖ ÀÐ À ÑÒÌ Ù Á ÝÌ ÌÙ ÞÒ ÙØ Àº Fig 98¹Ö ÊÌÖ ÉÁ ÞÖº ÜÒ f(a) ÀÐ udefied. ÂÀØÙ x = a¹ø ÊÖ Ò Ù ÒÁµº Ù ØÇ lim x a f(x) = q. ÙØÖà x = a fuctio¹ìö domai of defiitio¹ö ÁÖ ÔÐÇ lim x a f(x) exist ÖÕº Ù ÑÝÁ  ÑÒÌ À ÑÒ É ÒÁ ÂÑÒ Fig 99¹ Ö f(x)¹ö domai ÀÐ D, Ö a ÖÝÕ D É Ë ÕÙÌ Öº ËÁ lim x a f(x) ÒÝ É ÐÖ Ò ÑÒÁ ÀÝ Ò ÖÑ ÖÌ ÒÖ É Ð Á Ö ÁØ ÌÒº Fig 200¹ f(x)¹ö domai ÀÐ D = [0,] {2}. ÜÒ f(2) ËÁ exist Ö Ù ÜÒÇ lim x 2 f(x)¹ö Ò ÑÒ ÀÝ Ò ÖÆ 2 ÖÝÕ D¹Ö poit¹ö É ÌÙ Øغ ÙØÖÃ Ë Ö ÙØ ÔÖÕ Â f : D R ÀÐ Ð Ñ ØÜÒÁ lim x a f(x)¹ö ØÐ ÂØ ÔÖ ÂÜÒ a À D¹Ö Ì limit poit. ÑÒ ÖÜ Â a Ù D¹Ö limit poit ÀÐÇ lim x a f(x) ÒÇ exist ÖØ ÔÖ Ù limit poit Ò ÀÐ exist ÖÖ ËÌÇ Ç Òº ÂÑÒ Â ÕÐ Ð ÚØÁ ÀÝ Ò ØÖ Ô ÐÖ ÔÖÝ ÔË Ö Ò ÖÖ ËÁ ÒÁº q y = f(x) a x = a¹ø Ù f(x) defied ÒÝ Fig 98 Domai Á poit¹ìö ÞÖÕ f(x) ÉÇ defied Òݺ Fig 99 a 2 x = a¹ø f(x) exist Ö Ì Ù ÞÖÕ Ö ÉÇ Ö Òº Fig

9 Sequeces (part 2) {x } is coverget. (a) Ö Ì Õ Ò Ã Á Ø ÚÈÖ Ì ù Ô Õ ÞÖØ ÔÖ Ò Ü Exercise 274: Ì sequece¹ö ÙÐ coverget subsequece¹á  Á limit¹ coverge Ö Ø ÑÐ sequece¹ìç coverget ÀÁ a Bolzao-Weierstrass for sequeces ÑÖ ÖÖÁ ÐÕ Â Ì sequece Ò coverge Ò ÖÐÇ ØÖ Ò Ì subsequece Ù coverge ÖÐÇ ÖØ ÔÖº Ö Á ÉÌÖÁ Ì Ö ÖÖ ÃÖÆ Ö ÑÆ Ö Ì sequece  bouded ÀÝ Ø ØÖ Ø Ì subsequece Ù coverge ÖÁ Á ÉÌ Ð Bolzao- Weierstrass theorem for sequeces. ÑÖ Â Bolzao-Weierstrass theorem for sets ÖÕÐÑ ØÖ Ö Ò Ô Õ Ì ÑÖ ÌÙ ÔÖÁ ܺ Exercise 275: Prove that every bouded sequece i R has a coverget subsequece. [4] (200,2003,20) Á ÃÌ ÕÙ ØÁ ÞÔ ÞÔ Öº Step : Shall show: Every sequece has either a odecreasig or a oicreasig subsequece: Ò sequece¹ö Ê Ö ÔÖÌ Ö ÜÙ º ÌÙ ÐÝ ÒÇÝ Âº Fig 232(a)¹Ø Ì sequece¹ö Ê ÖÝÕº Ì ÜÒ ÍÕ ÜÒ ÒÑÕ É icreasig decreasig ÒÌÁ Òݺ Fig 232(b)¹ Ö sequece¹ì Ù icreasig. Ö Fig 232(c)¹ÖÌ decreasig. Ö Ì ÒØÙÒ Ò ÑÒ Ö Call N a balcoy if k > we have a > a k. Á balcoy ÉÌ Ò stadard term ÒÝ Ð ÑÖ ÐÜÖ ÙÞÖ Ò äøö Öº ÔÖÌ Ö Ò Fig 233 ܺ ÜÒ Ð Ð ÙÙÐ ÀÐ balcoy. ÙÐ Òݺ Õ Ü Ì Ö ÂÕ ÞÖ ØÙÑ Ì Ð ÙØ Õ ÜÒ É Ò ØÇ Ë Ë ØÖ ÖÖº Ð Ö Â ØÑÖ à ÉÇ Þ Ô Ò É ÒÖ Ö Ò Ù ØÑÖ ÇÔÖ ÑÉ ØÐÒº Á a a (b) (c) Fig 232 Fig

10 Pick ay u k U. Sequeces (part 2) The u k = s k +t k, where s k S ad t k T. s k ifs ad t k ift. u k = s k +t k ifs +ift. So ifs + ift is ideed a lower boud for U, completig the proof. Exercise 302: If {u } ad {v } are bouded sequeces, prove that Fig 249 limu +limv lim(u +v ). [2] (20.4c) Á ÃÌ ÖÁ Ö ÑØ ÜÐ limif¹ö ÝÝ limsup, ØÁ Ö ÒØÙÒ Ö ÖÐÑ Òº 0 Fig 250 DAY 22 Cauchy sequeces ÖÖÒÖ Ô ÖÑ ÒÖ É Õ ÂÖ Ö ËÐ ÑÖ ÑØ ÔÙÖ Ë ÕÝ Ö ÞÖ Ö Ð É Ö ÕÌ ÀØ ÀØ Ì Ð Ã Ò Ö æìö ÑÞ Ì ÂØ ÔÖº Ò Ò sequece¹öç ÁÖÑ Úº ÑÒØ Â Ò sequece¹á ifiitely may term É Ù Á sequece¹ö term¹ùð ÔÖÔÖÖ ØÁ ÕÕ Â Ø Ù ÝÖ ÑÞÁ Ý ÙÐ term¹á Ì Âݺ Ý ÙÐ ÐÖ ÖÆ Á Â Ò ÑÝ Ö Ö fiitely may term ÁÖ É ÂÝ ifiitely may term Ù ÂÝ ÕÌ ÝÌÙÙÖ ÑÞº Á ÖÑ sequece ¹Ö Ð Cauchy sequece. Example 82: ÞÖ Á sequece¹ì, 2, 3, 4, 5,... Fig 250 ÜÐÁ Ù Â term¹ùð ÖÑ 0¹Ö Õ Ú Ö Õº ØÙÑ Ñ ÂØ ÕÌ ÜÙË Ì ǫ > 0 Ç Ñ Ý ÙÐ term¹á ǫ ÁÖ Ì æìø ÚÖ ÐØ ÔÖº ÂÑÒ Â ǫ = 3 Ç Ø ÉÑ ØÒÌ term Á (0, )¹Ö ÑÞ ÞÖ Â 3 (Fig 25).  ǫ = 0 Ç ØÀÐÇ Ý ÁÁ Ñ (0, 0 )¹Ö ÑÞ ÔÝ Â ÜÐ ÉÑ ËÌ ÁÖ É Â (Fig 252). Á Ö Â Â Ò ǫ > 0¹Ö ÒÁº ØÁ Á sequece¹ì Ì Cauchy sequece. 0 0 Ý Á Á 3 äö ÑÞ Ì Õ ÜÐ Á ÝÌ ÁÖ ÖÝÕº Fig 25 Ý Á Á 0 äö ÑÞÇ Ì Õ ÁÖ ÖÝÕ ÜÐ Á Ý̺ Fig

11 More o cotiuity f caot be uiformly cotiuous o (0,]. x six x Ì fuctio ÇÝ ÉÐ Ö Ù Ì uiformly cotiuous Ò Á Ë ÒÁ Ü Üݺ ÒÖ ÃÌ ÖÐ ÒÌ ÞÖÆ Àº si x Exercise 386: Prove or disprove: x, x > 0 is ot uiformly cotiuous.[3] (203.6c) ÑÝÁ Ò Â fuctio¹ìö ÊÖ ÐÌ Ò ÉÐ ÙÞ Àݺ ÜÒ ÊÌ ÜÝÕ Fig 302¹º Á ÊÌ Â ÖÑ ÜØ À Ì Ù ÀØ Á ÂÝ ÁÚ ÑÖ Ò Â six¹ö Ê ÀÝ Í ÜÐÒ ÍÙÐ six É Ô ÇÒÑ Öº ÙØÖà x  ÇÒÑ Ö x É ÔÂ Ø Ö ÂÖ Õ ÙØÖà ÉÑ x x Ö x ¹Ö Ê ÙÌ À Ö ÒÇ ØÖÔÖ ØÖ ÑÞ Ì Í ÜÐÒ ÐÁÒ ÐÁ six x ¹Ö ÊÖ ÐÌ ÔÝ Âº ÜÐ Ñ ÀÐ x ÂÜÒ 0¹Ö ÜÙ Õ ØÜÒ Ö x ¹Ö Õ Ð Âݺ Ù ÑÖ ÀÝÖ Ö ÉÁ Ò Â six lim x 0+ x =. ÙØÖà ÑÖ ÍÌ ¹Ö ËÙÖÙ Àº Ö Ì Ö ÊÌÖ Ý Ü ÙÐÝ Ü ÉÇ ÚÖ ÕÙ Õ Òº Â É Ø discotiuous, ÙØÖà uiform cotiuity¹ö Ë ÜÒÁ ËȺ ÜÒ Ë Ñ ÒÁº Ö Ü ÊÌ ÉÇ ÚÈÆ ÚÈÆ Ü ÀÝ ÍÕ ÒÑÕµ Òº ÚÈÆ ÚÈÆ Ü ÀÝ Ç Ð ØÖ ÒÑÙÒ Ö ÃÁ ÜÕº ÜÒ ÖÑ Ò Ñ ÒÁº ØÙÑ Ò ÀÝ ÐØ ÔÖ Â Ì uiformly cotiuous ÀÁº Shall show that f(x) = six x uiformly cotiuous o (0, ), is x Fig 302 Ë ÀÐ ÑÆ Ö Ö ÑÖ Ò Â Ì cotiuous fuctio ÑÝÁ closed, bouded set¹ö ÍÔÖ uiformly cotiuous Àݺ Ù ÜÒ domai¹ì ÀÐ (0, ), ÂÌ closed¹ç ÒÝ bouded¹ç ÒÝ ÙØÖÃ Ö Ö Ã É ÑÆ ÖÖ Ö ie, Target ǫ > 0 δ > 0 x,y (, ) ( x y < δ = f(x) f(y) < ǫ ). ǫ Take ay ǫ > 0. Ö Ì Õ ÙØÖà ÑÉÝ ÖØ Àº ÉÑ Ð Ö Â ÑÖ domai¹ì (0, ) ÀÐÇ ÇÌ 323

12 Coutability For x I let A x = ( f(x ),f(x+) ). The A x is oempty ad ope. Also, f(x) is mootoic, x y I we have A x A y φ. Ö Ö ÃÖ ÂÙñÌÁ Ð Sice Q is dese i R, there must be a ratioal q x A x. Let B = {q x : x I}. Cosider the fuctio f : I B defied as f(x) = q x It is oto by defiitio. Also, it is oe oe. [[ Because: A x s are disjoit, q x s are distict. ]] So f : I B is a bijectio. So I ad B are equipotet. But B Q ad Q is coutable. So B is coutable. So I is coutable, as required (0, ),[0, ] oeumerable Á ÁÝÖ È ÞÝ termiatig Ö otermiatig decimal expasio¹ö É ËÜÕÐÑ ÑÒ Õ Á  Georg Cator ÒÑÖ Á ÑÖ ÚÐÖ Ì Ö Â ÃÌ ËÜ ÌÇ Á ÚÐÖ Ñ Øº à ÜÒ decimal expasio¹ö ÔÖÌ Ðº ÌÙ ÑÒ ÖÝ Áº ÑÖ Ò Â ¹ ÐÜ ÂÝ Ð 2 ¹Ö decimal expasio. ÜÒ poit¹ö ÔÖ ÜÐ ÌÁ ÃÜ Õº  decimal expasio¹ poit¹ö ÔÖ ÜÐ fiite ÃÜ ÃÜ É ØÖ Ð termiatig decimal expasio, ÂÑÒ Ò ÃÜÖ Ò termiatig decimal expasio É Ò ÂÑÒ 3. Ö decimal expasio ÀÐ ÖÌ ÍÀÖÆ ÀÐ 2 = ÖÑ decimal expasio¹ö Ð otermiatig decimal expasio. È ÞÝÁ ËÜÕÐÑ Â ÃÜÖ termiatig decimal expasio Ò ÉÐÇ ØÖÁ Ì Ö otermiatig decimal 353

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

I118 Graphs and Automata

I118 Graphs and Automata I8 Graphs and Automata Takako Nemoto http://www.jaist.ac.jp/ t-nemoto/teaching/203--.html April 23 0. Û. Û ÒÈÓ 2. Ø ÈÌ (a) ÏÛ Í (b) Ø Ó Ë (c) ÒÑ ÈÌ (d) ÒÌ (e) É Ö ÈÌ 3. ÈÌ (a) Î ÎÖ Í (b) ÒÌ . Û Ñ ÐÒ f

More information

Lecture 17Section 10.1 Least Upper Bound Axiom

Lecture 17Section 10.1 Least Upper Bound Axiom Lecture 7Sectio 0. Least Upper Boud Axiom Sectio 0.2 Sequeces of Real Numbers Jiwe He Real Numbers. Review Basic Properties of R: R beig Ordered Classificatio N = {0,, 2,...} = {atural umbers} Z = {...,

More information

1 Introduction. 1.1 Notation and Terminology

1 Introduction. 1.1 Notation and Terminology 1 Itroductio You have already leared some cocepts of calculus such as limit of a sequece, limit, cotiuity, derivative, ad itegral of a fuctio etc. Real Aalysis studies them more rigorously usig a laguage

More information

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò ÝÒÑ Ò Ò Ö Ð Ö Ò Ó Ò Ö ÀÍ ÖÐ Òµ Ó Ò ÛÓÖ Û Ö Ò ÖÓÛÒ Ö Ú ½ ¼¾º ¾½ Û Åº Ä Ö Ö Ú ½ ¼¾º ¼¼ Û Äº Ñ Ò Ëº Ï ÒÞ ÖÐ Å ÒÞ ½ º¼ º¾¼½ ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ

More information

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim Real Aalysis Fall 004 Take Home Test SOLUTIONS. Use the defiitio of a limit to show that (a) lim si = 0 (b) Proof. Let ε > 0 be give. Defie N >, where N is a positive iteger. The for ε > N, si 0 < si

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Sequences and Series

Sequences and Series Sequeces ad Series Sequeces of real umbers. Real umber system We are familiar with atural umbers ad to some extet the ratioal umbers. While fidig roots of algebraic equatios we see that ratioal umbers

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Sequence A sequence is a function whose domain of definition is the set of natural numbers.

Sequence A sequence is a function whose domain of definition is the set of natural numbers. Chapter Sequeces Course Title: Real Aalysis Course Code: MTH3 Course istructor: Dr Atiq ur Rehma Class: MSc-I Course URL: wwwmathcityorg/atiq/fa8-mth3 Sequeces form a importat compoet of Mathematical Aalysis

More information

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ½¾ Ù Ö ÓÖ ÖÓÑ Ö ÓÒ Ò ÄÈ ÐØ Ö ½¾ ½¾ ½» ½½ ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ¾ Á b 2 < 4ac Û ÒÒÓØ ÓÖ Þ Û Ö Ð Ó ÒØ Ó Û Ð Ú ÕÙ Ö º ËÓÑ Ñ ÐÐ ÕÙ Ö Ö ÓÒ Ò º Ù Ö ÓÖ ½¾ ÓÖ Ù Ö ÕÙ Ö ÓÖ Ò ØÖ Ò Ö ÙÒØ ÓÒ

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

ANSWERS TO MIDTERM EXAM # 2

ANSWERS TO MIDTERM EXAM # 2 MATH 03, FALL 003 ANSWERS TO MIDTERM EXAM # PENN STATE UNIVERSITY Problem 1 (18 pts). State ad prove the Itermediate Value Theorem. Solutio See class otes or Theorem 5.6.1 from our textbook. Problem (18

More information

FUNDAMENTALS OF REAL ANALYSIS by

FUNDAMENTALS OF REAL ANALYSIS by FUNDAMENTALS OF REAL ANALYSIS by Doğa Çömez Backgroud: All of Math 450/1 material. Namely: basic set theory, relatios ad PMI, structure of N, Z, Q ad R, basic properties of (cotiuous ad differetiable)

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

HOMEWORK #4 - MA 504

HOMEWORK #4 - MA 504 HOMEWORK #4 - MA 504 PAULINHO TCHATCHATCHA Chapter 2, problem 19. (a) If A ad B are disjoit closed sets i some metric space X, prove that they are separated. (b) Prove the same for disjoit ope set. (c)

More information

MA541 : Real Analysis. Tutorial and Practice Problems - 1 Hints and Solutions

MA541 : Real Analysis. Tutorial and Practice Problems - 1 Hints and Solutions MA54 : Real Aalysis Tutorial ad Practice Problems - Hits ad Solutios. Suppose that S is a oempty subset of real umbers that is bouded (i.e. bouded above as well as below). Prove that if S sup S. What ca

More information

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n MATH 43 FINAL EXAM Math 43 fial exam, 3 May 28. The exam starts at 9: am ad you have 5 miutes. No textbooks or calculators may be used durig the exam. This exam is prited o both sides of the paper. Good

More information

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017 Limit erior ad limit iferior c Prof. Philip Peace -Draft: April 7, 207. Defiitio. The limit erior of a sequece a is the exteded real umber defied by lim a = lim a k k Similarly, the limit iferior of a

More information

Math 299 Supplement: Real Analysis Nov 2013

Math 299 Supplement: Real Analysis Nov 2013 Math 299 Supplemet: Real Aalysis Nov 203 Algebra Axioms. I Real Aalysis, we work withi the axiomatic system of real umbers: the set R alog with the additio ad multiplicatio operatios +,, ad the iequality

More information

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness Notes #3 Sequeces Limit Theorems Mootoe ad Subsequeces Bolzao-WeierstraßTheorem Limsup & Limif of Sequeces Cauchy Sequeces ad Completeess This sectio of otes focuses o some of the basics of sequeces of

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that Lecture 15 We have see that a sequece of cotiuous fuctios which is uiformly coverget produces a limit fuctio which is also cotiuous. We shall stregthe this result ow. Theorem 1 Let f : X R or (C) be a

More information

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences. MATH 301 Itroductio to Aalysis Chapter Four Sequeces Topics 1. Defiitio of covergece of sequeces. 2. Fidig ad provig the limit of sequeces. 3. Bouded covergece theorem: Theorem 4.1.8. 4. Theorems 4.1.13

More information

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x), ÛÜØ Þ ÜÒ Ô ÚÜ Ô Ü Ñ Ü Ô Ð Ñ Ü ÜØ º½ ÞÜ Ò f Ø ÚÜ ÚÛÔ Ø Ü Ö ºÞ ÜÒ Ô ÚÜ Ô Ð Ü Ð Þ Õ Ô ÞØÔ ÛÜØ Ü ÚÛÔ Ø Ü Ö L(f) = f(x)dx ÚÜ Ô Ü ÜØ Þ Ü Ô, b] Ö Û Þ Ü Ô Ñ ÒÖØ k Ü f Ñ Df(x) = f (x) ÐÖ D Ü Ü ÜØ Þ Ü Ô Ñ Ü ÜØ Ñ

More information

TRUE/FALSE QUESTIONS FOR SEQUENCES

TRUE/FALSE QUESTIONS FOR SEQUENCES MAT1026 CALCULUS II 21.02.2012 Dokuz Eylül Üiversitesi Fe Fakültesi Matematik Bölümü Istructor: Egi Mermut web: http://kisi.deu.edu.tr/egi.mermut/ TRUE/FALSE QUESTIONS FOR SEQUENCES Write TRUE or FALSE

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can.

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can. Mathematics H104 A. Ogus Fall, 004 Fial Solutios 1. (5ts) Defie the followig terms. Be as recise as you ca. (a) (3ts) A ucoutable set. A ucoutable set is a set which ca ot be ut ito bijectio with a fiite

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

CHAPTER 1 SEQUENCES AND INFINITE SERIES

CHAPTER 1 SEQUENCES AND INFINITE SERIES CHAPTER SEQUENCES AND INFINITE SERIES SEQUENCES AND INFINITE SERIES (0 meetigs) Sequeces ad limit of a sequece Mootoic ad bouded sequece Ifiite series of costat terms Ifiite series of positive terms Alteratig

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics ad Egieerig Lecture otes Sergei V. Shabaov Departmet of Mathematics, Uiversity of Florida, Gaiesville, FL 326 USA CHAPTER The theory of covergece. Numerical sequeces..

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

5 Many points of continuity

5 Many points of continuity Tel Aviv Uiversity, 2013 Measure ad category 40 5 May poits of cotiuity 5a Discotiuous derivatives.............. 40 5b Baire class 1 (classical)............... 42 5c Baire class 1 (moder)...............

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

} is said to be a Cauchy sequence provided the following condition is true.

} is said to be a Cauchy sequence provided the following condition is true. Math 4200, Fial Exam Review I. Itroductio to Proofs 1. Prove the Pythagorea theorem. 2. Show that 43 is a irratioal umber. II. Itroductio to Logic 1. Costruct a truth table for the statemet ( p ad ~ r

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Lecture 15: Consequences of Continuity. Theorem Suppose a; b 2 R, a<b, and f :[a; b]! R. If f is continuous and s 2 R is

Lecture 15: Consequences of Continuity. Theorem Suppose a; b 2 R, a<b, and f :[a; b]! R. If f is continuous and s 2 R is Lecture 15: Cosequeces of Cotiuity 15.1 Itermediate Value Theorem The followig result is kow as the Itermediate Value Theorem. Theorem Suppose a; b 2 R, a

More information

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3) Physics Department Royal Holloway University of London PH2510 - Nuclear Physics Laboratory Gamma spectroscopy (NP3) 1 Objectives The aim of this experiment is to demonstrate how γ-ray energy spectra may

More information

Part A, for both Section 200 and Section 501

Part A, for both Section 200 and Section 501 Istructios Please write your solutios o your ow paper. These problems should be treated as essay questios. A problem that says give a example or determie requires a supportig explaatio. I all problems,

More information

MA131 - Analysis 1. Workbook 9 Series III

MA131 - Analysis 1. Workbook 9 Series III MA3 - Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................

More information

2 Hallén s integral equation for the thin wire dipole antenna

2 Hallén s integral equation for the thin wire dipole antenna Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾ ¾¼½½µ ½ ¹½ ¾ ÆÙÑ Ö Ð Ñ Ø Ó ÓÖ Ò ÐÝ Ó Ö Ø ÓÒ ÖÓÑ Ø Ò Û Ö ÔÓÐ ÒØ ÒÒ Ëº À Ø ÑÞ ¹Î ÖÑ ÞÝ Ö Åº Æ Ö¹ÅÓ Êº Ë Þ ¹Ë Ò µ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

1 lim. f(x) sin(nx)dx = 0. n sin(nx)dx

1 lim. f(x) sin(nx)dx = 0. n sin(nx)dx Problem A. Calculate ta(.) to 4 decimal places. Solutio: The power series for si(x)/ cos(x) is x + x 3 /3 + (2/5)x 5 +. Puttig x =. gives ta(.) =.3. Problem 2A. Let f : R R be a cotiuous fuctio. Show that

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Functions of Bounded Variation and Rectifiable Curves

Functions of Bounded Variation and Rectifiable Curves Fuctios of Bouded Variatio ad Rectifiable Curves Fuctios of bouded variatio 6.1 Determie which of the follwoig fuctios are of bouded variatio o 0, 1. (a) fx x si1/x if x 0, f0 0. (b) fx x si1/x if x 0,

More information

d) If the sequence of partial sums converges to a limit L, we say that the series converges and its

d) If the sequence of partial sums converges to a limit L, we say that the series converges and its Ifiite Series. Defiitios & covergece Defiitio... Let {a } be a sequece of real umbers. a) A expressio of the form a + a +... + a +... is called a ifiite series. b) The umber a is called as the th term

More information

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3 ÈÖÑÙØØÓÒ ÔØØÖÒ Ò Ø ÅÙ ÙÒØÓÒ ÙÖ ØÒ ÎØ ÂÐÒ Ú ÂÐÒÓÚ Ò ÐÜ ËØÒÖÑ ÓÒ ÒÖ Ì ØÛÓµ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ ½ Ì ÔÓ Ø Ó ÔÖÑÙØØÓÒ ÛºÖºØº ÔØØÖÒ ÓÒØÒÑÒØ ½ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ Ì ÒØÖÚÐ [12,2314] ½ ¾ ÓÑÔÙØÒ

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Chapter 3 Selected Exercises (Rudin)

Chapter 3 Selected Exercises (Rudin) W. Rudi, Priciples of Mathematical Aalysis, rd Editio. Prove that covergece of {s } implies covergece of { s }. Is the coverse true? (i) Suppose {s } coverges to some s, the for ε > 0, there exists a iteger

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Surface Modification of Nano-Hydroxyapatite with Silane Agent ß 23 ß 1 «Ã Vol. 23, No. 1 2008 Ç 1 Journal of Inorganic Materials Jan., 2008» : 1000-324X(2008)01-0145-05 Þ¹ Ò À Đ³ Ù Å Ð (ÎÄÅ Ç ÂÍ ËÊÌÏÁÉ È ÃÆ 610064) Ì É (KH-560) ¼ ³ (n-ha) ³ ËØ ÌË n-ha KH-560 Õ Ì»Þ

More information

3. Sequences. 3.1 Basic definitions

3. Sequences. 3.1 Basic definitions 3. Sequeces 3.1 Basic defiitios Defiitio 3.1 A (ifiite) sequece is a fuctio from the aturals to the real umbers. That is, it is a assigmet of a real umber to every atural umber. Commet 3.1 This is the

More information

Topologie. Musterlösungen

Topologie. Musterlösungen Fakultät für Mathematik Sommersemester 2018 Marius Hiemisch Topologie Musterlösuge Aufgabe (Beispiel 1.2.h aus Vorlesug). Es sei X eie Mege ud R Abb(X, R) eie Uteralgebra, d.h. {kostate Abbilduge} R ud

More information

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH /9/008 MATH 60 Fall 008 Series ad a Famous Usolved Problem = = + + + + ( - )( + ) 3 3 5 5 7 7 9 -Nov-008 MATH 60 ( 4) = + 5 48 -Nov-008 MATH 60 3 /9/008 ( )! = + -Nov-008 MATH 60 4 3 4 5 + + + + + + +

More information

2.4.2 A Theorem About Absolutely Convergent Series

2.4.2 A Theorem About Absolutely Convergent Series 0 Versio of August 27, 200 CHAPTER 2. INFINITE SERIES Add these two series: + 3 2 + 5 + 7 4 + 9 + 6 +... = 3 l 2. (2.20) 2 Sice the reciprocal of each iteger occurs exactly oce i the last series, we would

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS LECTURE 4 SERIES WITH NONNEGATIVE TERMS II). SERIES WITH ARBITRARY TERMS Series with oegative terms II) Theorem 4.1 Kummer s Test) Let x be a series with positive terms. 1 If c ) N i 0, + ), r > 0 ad 0

More information

DANIELL AND RIEMANN INTEGRABILITY

DANIELL AND RIEMANN INTEGRABILITY DANIELL AND RIEMANN INTEGRABILITY ILEANA BUCUR We itroduce the otio of Riema itegrable fuctio with respect to a Daiell itegral ad prove the approximatio theorem of such fuctios by a mootoe sequece of Jorda

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

SUMMARY OF SEQUENCES AND SERIES

SUMMARY OF SEQUENCES AND SERIES SUMMARY OF SEQUENCES AND SERIES Importat Defiitios, Results ad Theorems for Sequeces ad Series Defiitio. A sequece {a } has a limit L ad we write lim a = L if for every ɛ > 0, there is a correspodig iteger

More information

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÙÑÔ ÐØÖ ÓÖ ÙÒÖØÒ ÝÒÑ Ý ØÑ ÛØ ÖÓÔÓÙØ º ÓÐÞ ½ º º ÉÙÚÓ ¾ Áº ÈÖÖÓ ½ ʺ ËÒ ½ ½ ÔÖØÑÒØ Ó ÁÒÙ ØÖÐ ËÝ ØÑ ÒÒÖÒ Ò Ò ÍÒÚÖ ØØ ÂÙÑ Á ØÐÐ ËÔÒ ¾ ËÓÓÐ Ó ÐØÖÐ ÒÒÖÒ

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Real Variables II Homework Set #5

Real Variables II Homework Set #5 Real Variables II Homework Set #5 Name: Due Friday /0 by 4pm (at GOS-4) Istructios: () Attach this page to the frot of your homework assigmet you tur i (or write each problem before your solutio). () Please

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

Council for Innovative Research

Council for Innovative Research ABSTRACT ON ABEL CONVERGENT SERIES OF FUNCTIONS ERDAL GÜL AND MEHMET ALBAYRAK Yildiz Techical Uiversity, Departmet of Mathematics, 34210 Eseler, Istabul egul34@gmail.com mehmetalbayrak12@gmail.com I this

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

n=0 f n(z) converges, we say that f n (z) = lim N s N(z) (37)

n=0 f n(z) converges, we say that f n (z) = lim N s N(z) (37) 10 Power Series A fuctio defied by a series of fuctios Let {f } be defied o A C The formal sum f is called a series of fuctios If for ay z A, the series f (z) coverges, we say that f coverges o A I this

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

MATH 6101 Fall 2008 Series and a Famous Unsolved Problem

MATH 6101 Fall 2008 Series and a Famous Unsolved Problem MATH 60 Fall 2008 Series ad a Famous Usolved Problem Problems = + + + + = (2- )(2+ ) 3 3 5 5 7 7 9 2-Nov-2008 MATH 60 2 Problems ( 4) = + 25 48 2-Nov-2008 MATH 60 3 Problems ( )! = + 2-Nov-2008 MATH 60

More information

Cardinality Homework Solutions

Cardinality Homework Solutions Cardiality Homework Solutios April 16, 014 Problem 1. I the followig problems, fid a bijectio from A to B (you eed ot prove that the fuctio you list is a bijectio): (a) A = ( 3, 3), B = (7, 1). (b) A =

More information

Here are some examples of algebras: F α = A(G). Also, if A, B A(G) then A, B F α. F α = A(G). In other words, A(G)

Here are some examples of algebras: F α = A(G). Also, if A, B A(G) then A, B F α. F α = A(G). In other words, A(G) MATH 529 Probability Axioms Here we shall use the geeral axioms of a probability measure to derive several importat results ivolvig probabilities of uios ad itersectios. Some more advaced results will

More information

Pose Determination from a Single Image of a Single Parallelogram

Pose Determination from a Single Image of a Single Parallelogram Ê 32 Ê 5 ¾ Vol.32, No.5 2006 9 ACTA AUTOMATICA SINICA September, 2006 Û Ê 1) 1, 2 2 1 ( ÔÅ Æ 100041) 2 (Ñ Ò º 100037 ) (E-mail: fmsun@163.com) ¼ÈÙ Æ Ü Äµ ÕÑ ÅÆ ¼ÈÙ ÆÄ Ä Äº ¼ÈÙ ÆÄ Ü ÜÓ µ É» Ì É»²ÂÄÎ ¼ÐÅÄÕ

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER È Ö Ò Ò Ù Ò Ò Ò ÖÝ ÒÙÐ Ö Ý Ø Ñ Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER Radu.Gherghescu@nipne.ro IFIN-HH, Bucharest-Magurele, Romania and Frankfurt Institute for Advanced Studies, J

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:319-765x Volume 10, Issue 3 Ver II (May-Ju 014), PP 69-77 Commo Coupled Fixed Poit of Mappigs Satisfyig Ratioal Iequalities i Ordered Complex

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information