Topologie. Musterlösungen

Size: px
Start display at page:

Download "Topologie. Musterlösungen"

Transcription

1 Fakultät für Mathematik Sommersemester 2018 Marius Hiemisch Topologie Musterlösuge Aufgabe (Beispiel 1.2.h aus Vorlesug). Es sei X eie Mege ud R Abb(X, R) eie Uteralgebra, d.h. {kostate Abbilduge} R ud f, g P, S, O, OR f g, fg R. Die Zariski-Topologie auf X ist diejeige Topologie τ = τ Zar,R, dere abgeschlossee Mege vo der Form V (I) = {x X : f(x) = 0 f I}, für I R Teilmege, sid. Zeige, dass dies eie Topologie auf X defiiert. Lösug: Wir zeige: i), X sid abgeschlosse. ii) A 1,..., A abgeschlosse A i abgeschlosse iii) A j für j J abgeschlosse A j abgeschlosse i=1 Die kostate Abbilduge f 0 ud g 1 sid i R. Die Mege V ({f}) = {x X : f(x) = 0} = X ud V ({g}) = {x X : g(x) = 0} = sid abgeschlosse, also gilt i). Es seie A 1,..., A abgeschlosse, d.h. es existiere I 1,..., I R mit V (I i ) = A i für alle i. Da ist V (I i ) = {x X : f 1 (x)... f (x) = 0 für alle (f 1,..., f ) I 1... I } = V (Ĩ) i=1 für Ĩ = I 1... I = {f 1... f : f i I i } R. Es seie A j für j J abgeschlosse. Da existiere I j, j J mit A j = V (I j ) ud die Mege { V (I j ) = x X : f(x) = 0 f } ( ) I j = V I j ist damit abgeschlosse.

2 Aufgabe (Lemma 1.4 i the lecture). Let (X 1, d 1 ), (X 2, d 2 ) be metric spaces ad f : X 1 X 2 a map. The f is cotiuous via -ε-defiitio preimages of ope sets are ope. Proof. (1) First we show that f is cotiuous i x X 1 iff the preimage U = f 1 (V ) of ay eighbourhood V of f(x) is a eighbourhood of x. : Let V be a eighbourhood of f(x). The there exists ε > 0 such that B ε (f(x)) V. Because f is cotiuous there exists > 0 with f(b (x)) B ε (f(x)) V. Therefore B (x) f 1 (V ) ad we get that f 1 (V ) is a eighbourhood of x. : Let ε > 0 ad y = f(x). The B ε (y) is a eighbourhood of y. From it follows that U := f 1 (B ε (y)) is a eighbourhood of x. There is a > 0 such that B (x) U ad we get f(b (x)) B ε (y) ad therefore the implicatio holds. x : d 1 (x, x) < = d 2 (f(x), f( x) < ε (2) Usig (1) we ow show the claim. : Let f be cotiuous ad V X 2 be ope. Take ay x U = f 1 (V ), the f(x) V ad V is a eighbourhood of f(x) because it is ope. From (1) it follows that U is a eighbourhood of x ad because x is arbitrary, U is a eighbourhood of all of its poits ad therefore ope. : We ow assume that preimages of ope sets are ope. Take x X 1 ad V a eighbourhood of f(x), we show that U = f 1 (V ) is a eighbourhood of x (that suffices to show the cotiuity of f because of (1)). There is a ε > 0 with B ε (f(x)) V. Sice B ε (f(x)) is ope, Ũ = f 1 (B ε (f(x))) is ope. Therefore U Ũ is a eighbourhood of x which shows that f is cotiuous.

3 Übugsblatt 1 Aufgabe 1. We have to fid a map f V \V, i.e. a liear map V R that is ot cotiuous. Because dim V =, we ca fid coutably may liearly idepedet elemets {a 1, a 2,... } = A V. Without loss of geerality we will assume a i = 1 i N (otherwise scale them properly). We ca exted A to a basis B of V. A liear map f : V R is fully determied by its values o the basis elemets. We set { if b = a A for some N f(b) = 0 else for b B ad obtai a liear map f V. The followig calculatio shows that f is ot cotiuous: f = f(x) sup x V \{0} x = sup f(x) sup f(a ) = lim =. N Aufgabe 2. (1) τ V τ : Assume there exists U τ V \τ, so U V is ope i the weak-*-topology but ot i the orm topology. The there exists x U such that x is a boudary poit (i orm topology), so ε > 0 : U ε (x) U (where U ε (x) is the ope ε-ball aroud x i the orm topology). The poit x is a ier poit of U i the weak-*-topology, so there exist > 0 ad x 1,..., x V such that T := {y V : (y x)(x i ) < i} U (see Defiitio (2.9) ad Example (1.2.g)). We set We the see that w := max i=1... x. U ε (x) T U, where ε =, because let y U 2w ε (x), the (y x)(x i ) ε x i = x 2w i i. This 2 cotradicts x beig a boudary poit ad therefore τ V τ, hece ι 2 is cotiuous. (2) τ τ V if dim V = for N: The set A = {U (f) : > 0, f V } is a basis of the orm topology o V ad it suffices to show A τ V. Take f V ad > 0 ad choose a ormalised basis x 1,..., x V, i.e. x i = 1 i. We show that U (f) is ope i the weak-*-topology, i.e.: ( ) g U (f) ε > 0 : h V : h(x i ) g(x i ) < ε h U (f). (This is Example 1.2.g) where we require that i 1,..., i m are the basis elemets x 1,..., x.)

4 We kow We write x = a i x i V ad get i=1 h f = sup h(x) f(x) f g = sup f(x) g(x) <. sup h(x) g(x) + sup g(x) f(x) = sup h(x) g(x) + f g ( ) ) sup h ai x i g( ai x i + f g = sup ai (h(x i ) g(x i )) + f g sup ai h(x i ) g(x i ) + f g (ow use h(x i ) g(x i ) < ε) < ε sup ai + f g. We wat this to be less tha, so we eed ε sup ai < f g. We kow that sup ai because a i 1 i. We ow set f g ε = > 0 ad realise that our claim is prove. Therefore for all f V ad > 0 : U (f) τ V ad ι 1 is cotiuous. (3) τ V τ if dim V = : If dim V =, the U 1 (0) = {ϕ : V R: ϕ = sup ϕ(x) < 1} τ V. The zero fuctio 0 is i U 1 (0) but for ay set of poits A = {x 1,..., x } V ad ε > 0 there is a ψ V with (ψ 0)(x i ) < ε for all i but ψ > 1. Exted A to a basis B of V, choose oe elemet b B\A ad defie ψ via { 2 b, if b = ψ(b) = b 0, else o the basis elemets b B. The ϕ = 2. Ad 2 > 1 (check this!). Therefore ι 1 is ot cotiuous iff dim V =.

5 Aufgabe 3. V is the space of bouded sequeces i R, hece for every sequece x = (x ) N V a umber M R exists with x < M ( N : x < M). We have φ m = sup φ m (x) = sup x m = 1, hece φ m K V V for all m N. The previous exercise tells us that it suffices to show that o subsequece of φ m coverges i the orm topology of V. We have φ m φ = sup φ m (x) φ (x) = 2 m, N (take x = e m e ). This shows that (φ ) N is ot a Cauchy-sequece ad because the distace betwee ay two sequece elemets is costat, o subsequece ca coverge. This proves that K V is ot sequetially compact but by the Theorem of Baach-Alaoglu (Thm. (2.11) i the lecture) it is compact (both with respect to the weak-*-topology). Übugsblatt 2 Aufgabe 1. Aufgabe 2. I this exercise we use the otatio (a, b) Q := (a, b) Q for itervals with a, b R. We will show that o ope eighborhood of 0 (this works for every umber) has a compact eighborhood. This tells us that Q is ot locally compact. Take ay ope eighbourhood U of 0 Q, the there exists N such that ( 1, 1 ) Q U. Choose your favourite irratioal umber r ( 1, 1 ). The we ca fid a strictly icreasig sequece (x ) N i Q with lim x = r. We ca costruct the sequece like this: Take ay x 0 ( 1, r) Q ad the iductively x (r 2 (r x 1 ), r) Q (these sets are ot empty because Q R is dese). The factor 2 guaratees covergece i R. Sice r / Q, the sequece does ot coverge i Q ad because it is mootoe, o subsequece coverges i Q. Hece o sequetially compact eighbourhoods of ( 1, 1 ) Q or U exist ad because i metric spaces compactess ad sequetial compactess coicide, Q is ot locally compact. Aufgabe 3. Übugsblatt 3 Aufgabe 1. Aufgabe 2.

6 Aufgabe Let X be a compact metric space. For every N the set U := {U 1 (x) : x X} is a ope coverig of X. Because X is compact, there exists a fiite subset Q X with x Q U 1 (x). We show that U = N x Q U 1 is a basis for the topology o X. To prove this, take ay ope set U X ad show that there exist N, x Q with U 1 (x) U. It suffices to cosider U = U ε (y) for ay ε > 0, y X. Choose N such that 2 < ε. By costructio, there has to be a 1 -Ball i U cotaiig y. The same ball is a subset of U (draw a sketch). Alteratively oe ca use 2. below ad show that a compact metric space is separable. 2. Let (X, d) be a metric space. We show X is separable X satisfies the Secod Axiom Of Coutability : Because X is separable, there is a at most coutable subset A X with A = X. For every x X ad every ope set V x, there exists N with U 1 (x) V. Because A is dese i X, there is a sequece (a k ) k N with a k A for all k covergig toward x. There is a elemet a := a i for some i i that sequece with d(x, a) < 1. That is equivalet to a U 1 (x). The x U 1 (a) U 1 (x) V. We set U = U 1 (a). N a A The U is coutable because A ad N are (at most) coutable. Therefore X satisfies the Secod Axiom Of Coutability. : Let U = {U 1, U 2,... } be a at most coutable basis. There is a fuctio α : U X with α(u i ) U i i N (this uses the axiom of choice). We defie A := {α(u i ) : i N}. We claim that A is dese i X. For every k N there is a U i U with x U i U 1 (x). Hece we defie a sequece k (a k ) k N via a k = α(u i ) for that specific U i. The (a k ) coverges towards x ad therefore A = X, showig that X is separable. 3. We show that R with the cofiite topology (see Example (1.2) f)) is separable but the First Axiom Of Coutability does ot hold. The Secod Axiom Of Coutability implies the first oe, because the coutable basis of a topological space cotais a eighbourhood basis for each poit. The topological space R with the cofiite topology is separable because Q R is coutable ad dese: Q = V = R Q V closed (x)

7 because i cofiite topology o R a set V R is closed if ad oly if V = R or V is fiite. The poit 0 R has o coutable eighbourhood basis: Assume U = {U i : i I}, where I is at most coutable, is such a basis. We ca write U i = R\{x i,1,..., x i,i } ad we set A = i I {x i,1,..., x i,i }. The A is at most coutable ad it exists x R\A. The set R\{x} is ope ad cotais o U i, i I.

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

HOMEWORK #4 - MA 504

HOMEWORK #4 - MA 504 HOMEWORK #4 - MA 504 PAULINHO TCHATCHATCHA Chapter 2, problem 19. (a) If A ad B are disjoit closed sets i some metric space X, prove that they are separated. (b) Prove the same for disjoit ope set. (c)

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that Lecture 15 We have see that a sequece of cotiuous fuctios which is uiformly coverget produces a limit fuctio which is also cotiuous. We shall stregthe this result ow. Theorem 1 Let f : X R or (C) be a

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim Real Aalysis Fall 004 Take Home Test SOLUTIONS. Use the defiitio of a limit to show that (a) lim si = 0 (b) Proof. Let ε > 0 be give. Defie N >, where N is a positive iteger. The for ε > N, si 0 < si

More information

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness Notes #3 Sequeces Limit Theorems Mootoe ad Subsequeces Bolzao-WeierstraßTheorem Limsup & Limif of Sequeces Cauchy Sequeces ad Completeess This sectio of otes focuses o some of the basics of sequeces of

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences. MATH 301 Itroductio to Aalysis Chapter Four Sequeces Topics 1. Defiitio of covergece of sequeces. 2. Fidig ad provig the limit of sequeces. 3. Bouded covergece theorem: Theorem 4.1.8. 4. Theorems 4.1.13

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1 MATH 2: HOMEWORK 6 SOLUTIONS CA PRO JIRADILOK Problem. If s = 2, ad Problem : Rudi, Chapter 3, Problem 3. s + = 2 + s ( =, 2, 3,... ), prove that {s } coverges, ad that s < 2 for =, 2, 3,.... Proof. The

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y).

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y). Modica Mortola Fuctioal 2 Γ-Covergece Let X, d) be a metric space ad cosider a sequece {F } of fuctioals F : X [, ]. We say that {F } Γ-coverges to a fuctioal F : X [, ] if the followig properties hold:

More information

Boundaries and the James theorem

Boundaries and the James theorem Boudaries ad the James theorem L. Vesely 1. Itroductio The followig theorem is importat ad well kow. All spaces cosidered here are real ormed or Baach spaces. Give a ormed space X, we deote by B X ad S

More information

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n MATH 43 FINAL EXAM Math 43 fial exam, 3 May 28. The exam starts at 9: am ad you have 5 miutes. No textbooks or calculators may be used durig the exam. This exam is prited o both sides of the paper. Good

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems McGill Uiversity Math 354: Hoors Aalysis 3 Fall 212 Assigmet 3 Solutios to selected problems Problem 1. Lipschitz fuctios. Let Lip K be the set of all fuctios cotiuous fuctios o [, 1] satisfyig a Lipschitz

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

1 Introduction. 1.1 Notation and Terminology

1 Introduction. 1.1 Notation and Terminology 1 Itroductio You have already leared some cocepts of calculus such as limit of a sequece, limit, cotiuity, derivative, ad itegral of a fuctio etc. Real Aalysis studies them more rigorously usig a laguage

More information

ANSWERS TO MIDTERM EXAM # 2

ANSWERS TO MIDTERM EXAM # 2 MATH 03, FALL 003 ANSWERS TO MIDTERM EXAM # PENN STATE UNIVERSITY Problem 1 (18 pts). State ad prove the Itermediate Value Theorem. Solutio See class otes or Theorem 5.6.1 from our textbook. Problem (18

More information

Part A, for both Section 200 and Section 501

Part A, for both Section 200 and Section 501 Istructios Please write your solutios o your ow paper. These problems should be treated as essay questios. A problem that says give a example or determie requires a supportig explaatio. I all problems,

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

FUNDAMENTALS OF REAL ANALYSIS by

FUNDAMENTALS OF REAL ANALYSIS by FUNDAMENTALS OF REAL ANALYSIS by Doğa Çömez Backgroud: All of Math 450/1 material. Namely: basic set theory, relatios ad PMI, structure of N, Z, Q ad R, basic properties of (cotiuous ad differetiable)

More information

A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS

A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS Acta Math. Hugar., 2007 DOI: 10.1007/s10474-007-7013-6 A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS L. L. STACHÓ ad L. I. SZABÓ Bolyai Istitute, Uiversity of Szeged, Aradi vértaúk tere 1, H-6720

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

A NOTE ON LEBESGUE SPACES

A NOTE ON LEBESGUE SPACES Volume 6, 1981 Pages 363 369 http://topology.aubur.edu/tp/ A NOTE ON LEBESGUE SPACES by Sam B. Nadler, Jr. ad Thelma West Topology Proceedigs Web: http://topology.aubur.edu/tp/ Mail: Topology Proceedigs

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

Council for Innovative Research

Council for Innovative Research ABSTRACT ON ABEL CONVERGENT SERIES OF FUNCTIONS ERDAL GÜL AND MEHMET ALBAYRAK Yildiz Techical Uiversity, Departmet of Mathematics, 34210 Eseler, Istabul egul34@gmail.com mehmetalbayrak12@gmail.com I this

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

The Borel hierarchy classifies subsets of the reals by their topological complexity. Another approach is to classify them by size.

The Borel hierarchy classifies subsets of the reals by their topological complexity. Another approach is to classify them by size. Lecture 7: Measure ad Category The Borel hierarchy classifies subsets of the reals by their topological complexity. Aother approach is to classify them by size. Filters ad Ideals The most commo measure

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation omework 2 1 Let X ad Y be ilbert spaces over C The a sesquiliear form h o X Y is a mappig h : X Y C such that for all x 1, x 2, x X, y 1, y 2, y Y ad all scalars α, β C we have (a) h(x 1 + x 2, y) h(x

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

Series III. Chapter Alternating Series

Series III. Chapter Alternating Series Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Properties of Fuzzy Length on Fuzzy Set

Properties of Fuzzy Length on Fuzzy Set Ope Access Library Joural 206, Volume 3, e3068 ISSN Olie: 2333-972 ISSN Prit: 2333-9705 Properties of Fuzzy Legth o Fuzzy Set Jehad R Kider, Jaafar Imra Mousa Departmet of Mathematics ad Computer Applicatios,

More information

Chapter 3 Inner Product Spaces. Hilbert Spaces

Chapter 3 Inner Product Spaces. Hilbert Spaces Chapter 3 Ier Product Spaces. Hilbert Spaces 3. Ier Product Spaces. Hilbert Spaces 3.- Defiitio. A ier product space is a vector space X with a ier product defied o X. A Hilbert space is a complete ier

More information

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F. CHAPTER 2 The Real Numbers 2.. The Algebraic ad Order Properties of R Defiitio. A biary operatio o a set F is a fuctio B : F F! F. For the biary operatios of + ad, we replace B(a, b) by a + b ad a b, respectively.

More information

} is said to be a Cauchy sequence provided the following condition is true.

} is said to be a Cauchy sequence provided the following condition is true. Math 4200, Fial Exam Review I. Itroductio to Proofs 1. Prove the Pythagorea theorem. 2. Show that 43 is a irratioal umber. II. Itroductio to Logic 1. Costruct a truth table for the statemet ( p ad ~ r

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

1 lim. f(x) sin(nx)dx = 0. n sin(nx)dx

1 lim. f(x) sin(nx)dx = 0. n sin(nx)dx Problem A. Calculate ta(.) to 4 decimal places. Solutio: The power series for si(x)/ cos(x) is x + x 3 /3 + (2/5)x 5 +. Puttig x =. gives ta(.) =.3. Problem 2A. Let f : R R be a cotiuous fuctio. Show that

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo Opuscula Mathematica Vol. 32 No. 2 2012 http://dx.doi.org/10.7494/opmath.2012.32.2.227 ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII Hugo Arizmedi-Peimbert, Agel Carrillo-Hoyo, ad Jairo Roa-Fajardo

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can.

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can. Mathematics H104 A. Ogus Fall, 004 Fial Solutios 1. (5ts) Defie the followig terms. Be as recise as you ca. (a) (3ts) A ucoutable set. A ucoutable set is a set which ca ot be ut ito bijectio with a fiite

More information

5 Many points of continuity

5 Many points of continuity Tel Aviv Uiversity, 2013 Measure ad category 40 5 May poits of cotiuity 5a Discotiuous derivatives.............. 40 5b Baire class 1 (classical)............... 42 5c Baire class 1 (moder)...............

More information

Real and Complex Analysis, 3rd Edition, W.Rudin

Real and Complex Analysis, 3rd Edition, W.Rudin Real ad Complex Aalysis, 3rd ditio, W.Rudi Chapter 6 Complex Measures Yug-Hsiag Huag 206/08/22. Let ν be a complex measure o (X, M ). If M, defie { } µ () = sup ν( j ) : N,, 2, disjoit, = j { } ν () =

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

In this section, we show how to use the integral test to decide whether a series

In this section, we show how to use the integral test to decide whether a series Itegral Test Itegral Test Example Itegral Test Example p-series Compariso Test Example Example 2 Example 3 Example 4 Example 5 Exa Itegral Test I this sectio, we show how to use the itegral test to decide

More information

Lecture 15: Consequences of Continuity. Theorem Suppose a; b 2 R, a<b, and f :[a; b]! R. If f is continuous and s 2 R is

Lecture 15: Consequences of Continuity. Theorem Suppose a; b 2 R, a<b, and f :[a; b]! R. If f is continuous and s 2 R is Lecture 15: Cosequeces of Cotiuity 15.1 Itermediate Value Theorem The followig result is kow as the Itermediate Value Theorem. Theorem Suppose a; b 2 R, a

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference MPRA Muich Persoal RePEc Archive A costructive aalysis of covex-valued demad correspodece for weakly uiformly rotud ad mootoic preferece Yasuhito Taaka ad Atsuhiro Satoh. May 04 Olie at http://mpra.ub.ui-mueche.de/55889/

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

Cardinality Homework Solutions

Cardinality Homework Solutions Cardiality Homework Solutios April 16, 014 Problem 1. I the followig problems, fid a bijectio from A to B (you eed ot prove that the fuctio you list is a bijectio): (a) A = ( 3, 3), B = (7, 1). (b) A =

More information

Introduction to Functional Analysis

Introduction to Functional Analysis MIT OpeCourseWare http://ocw.mit.edu 18.10 Itroductio to Fuctioal Aalysis Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE OTES FOR 18.10,

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Math 299 Supplement: Real Analysis Nov 2013

Math 299 Supplement: Real Analysis Nov 2013 Math 299 Supplemet: Real Aalysis Nov 203 Algebra Axioms. I Real Aalysis, we work withi the axiomatic system of real umbers: the set R alog with the additio ad multiplicatio operatios +,, ad the iequality

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

SUBSERIES CONVERGENCE AND SEQUENCE-EVALUATION CONVERGENCE. Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo. n t j x j ) = f(x 0 ) f(x j ) < +.

SUBSERIES CONVERGENCE AND SEQUENCE-EVALUATION CONVERGENCE. Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo. n t j x j ) = f(x 0 ) f(x j ) < +. Kagweo-Kyugki Math. Jour. 6 (1998), No. 2, pp. 331 339 SUBSERIES CONVERGENCE AND SEQUENCE-EVALUATION CONVERGENCE Mi-Hyug Cho, Hog Taek Hwag ad Wo Sok Yoo Abstract. We show a series of improved subseries

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information