Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6 N W21(ā, α) W12(ā, α) 谢琏造謝璉造

7 β β β β N = 3 β β p 3

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 p q 0 q < p 1

24 a i > 0 i = r i = c b i < 0 ρ 0 < ρ < 1 ρa i + δa i 0 < δ < 1 ρ ρb i 0 pa r (1 p)b r p(ρa r + δa r ) (1 p)ρb r qa c (1 q)b c q(ρa c + δa c ) (1 q)ρb c δ = 1 1+r (1 ρ) r s {0, ρ, 1} s = 1 pa r (1) (1 p)b r (1) s = ρ p[a r (ρ) r a r(1 ρ)] (1 p)b r (ρ) s = 0 0 a r (s) a c (s) b r (s) b c (s) 0 s = 0

25 (1 p)(1 ρ)b r p p(1 ρ δ)a r p A r B r C r A r = (1 ρ)b r (1 ρ)a r δa r + (1 ρ)b r, B r = b r a r + b r, C r = ρb r ρa r + δa r + ρb r. A r B r C r A r > B r > C r A c B c C c p > A r p > B r p > C r

26 0 q < C c p q < p 1 C c < q < A c 0 q < C c C c < q 1 A c < q 1 (p, q) p q 0 q < p 1 p q

27 0 q < C c C c < q < A c Reformer s Belief, p 1 Big Bang Big Bang/ Experiment A r B r Doing Nothing Experiment C r 0 0 C c B c A c 1 Conservative s Belief, q a r = a c = b r = b c = 2 ρ = 0.25 δ = 0.5 A r = A c = 0.75 B r = B c = 0.5 C r = C c = 0.25 p B r q B c A r < p 1 B c < q 1

28 e d d > 0 e > 0 β [0, ] B r < p 1 0 q < B c f(p, q)e f(p, q)d f(p, q) B r < p 1 0 q < B c

29 pa r (1 p)b r p[ρa r + δa r + βf(p, q)e] (1 p) [ρb r + βf(p, q)d] qa c (1 q)b c q[ρa c + δa c βf(p, q)d] (1 q) [ρb c βf(p, q)e] ( ] [ f(p, q) = 1 p br b a r +b r, 1 q 0, c a c +b c ) f(p, q) = 0 D E D = ρb c βe ρa c + δa c + ρb c β(e + d), E = ρb r + βd ρa r + δa r + ρb r + β(e + d). p q

30 B r } < p 1 0 q < B c { f(p, q) = 1 β > ρ(ac+bc)+δa c e+d 0 q < {D, B c } {B r, E} < p 1, ρb c e D < q < B c B r < p < E { } β > ρ(ac+bc)+δa c, ρb c e+d e ρb c + βe > ρa c + δa c βd ρb c + βe > 0 0 q < {D, B c } B r < p < E 0 q < {D, B c } {B r, E} < p 1 D < q < B c B r < p < E p

31 B r q B c Reformer s Belief, p 1 A r E B r Experiment Doing Nothing Doing Nothing Exp Big Bang Big Bang/ Experiment Exp C r 0 0 C c D B c A c 1 Conservative s Belief, q a r = a c = b r = b c = 2 e = 1 d = 2 ρ = 0.25 δ = 0.50 β = 10 A r = A c = 0.75 B r = B c = 0.5 C r = C c = 0.25 D = 0.34 E = 0.64 β q E < p 1 q p C c < q < D p (C r, B r )

32 N { } q 0 q < {D, C c } β β > ρ(ac +b c )+δa c, ρbc e+d e 0 p < C r 0 q < {D, C c } C r < p < 1 0 q < {D, C c } 0 p < B r 0 q < {D, C c } B r < p < E 0 q < {D, C c }

33 {B r, E} < p 1 0 q < {D, C c } B r < p 1 0 q < B c d e β { } β > ρ(ac+bc)+δa c, ρb c D e+d e e E e D E e e d d d d e β ρ D ρ E ρ ρ D > B r E < B r

34 e d D E e+d e+d (p, q) e d e d e d β } { β < ρ(ac +b c )+δa c e+d β { β < ρ(ac+bc)+δa c e+d, ρb c e }, ρb c e Reformer s Belief, p 1 A r E B r Doing Nothing Doing Nothing Exp Exp Big Bang/ Experiment Exp Big Bang C r 0 0 C c D B A c c 1 Conservative s Belief, q a r = a c = 1.1 b r = b c = 1 e = 2.4 d = 8 ρ = 0.29 δ = 0.50 β = 0.1 A r = A c = 0.76 B r = B c = 0.48 C r = C c = 0.25 D = 0.42 E = 0.50 β

35 ρ(a c +b c )+δa c e+d < β < ρb c ρb c < β < ρ(a c+b c )+δa c ρb e e e+d c + βe > ρa c + δa c βd ρb c + βe < 0 Reformer s Belief, p 1 A r E B r Doing Nothing Doing Nothing Exp Big Bang Big Bang/ Experiment Exp C r 0 0 C c B c A c 1 Conservative s Belief, q a r = a c = b r = b c = 2 e = 1 d = 5 ρ = 0.25 δ = 0.50 β = 0.4 A r = A c = 0.75 B r = B c = 0.5 C r = C c = 0.25 D = 0.25 E = 0.57 β ρb c + βe < ρa c + δa c βd ρb c + βe > 0 q E > B r B r < p < E

36 Reformer s Belief, p 1 A r Experiment Big Bang/ Experiment Exp Big Bang E B r Doing Nothing Exp Doing Nothing C r 0 0 D C c B c A c 1 Conservative s Belief, q a r = a c = 1.1 b r = b c = 1 e = 1 d = 2.6 ρ = 0.33 δ = 0.50 β = 0.34 A r = A c = 0.78 B r = B c = 0.48 C r = C c = 0.27 D = 0.53 E = 0.51 β a r = a c a b r = b c b p q π p+q 2 p q

37 π p + q 2 > A (1 ρ)b (1 ρ)a δa + (1 ρ)b. π p + q 2 > B b a + b. π p + q 2 > C ρb ρa + δa + ρb. C < B < A π > A C < π < A π < C Reformer s Belief, p 1 Big Bang A r Exp Exp B r C r Doing Nothing Exp 0 0 C B A c c c 1 Conservative s Belief, q a r = a c a = b r = b c b = 2 ρ = 0.25 δ = 0.50 A r = A c A = 0.75 B r = B c B = 0.5 C r = C c C = 0.25

38 p q 1 0 p B q B B = 2C = 2A 1 C < B < A

39 s f(p, q)h(s) f(p, q)g(s) f(p, q)g(s) f(p, q)h(s) s = 1 s = ρ (0, 1) s = 0 f(p, q) f(p, q) = 1 B r < p 1 0 q < B c f(p, q) = 0 h(s) = es θ g(s) = ds θ e > 0 d > 0 θ > 0 θ > 0

40 p[a r + βh(1)] (1 p)[b r + βg(1)] p[ρa r + δa r + βh(ρ)] (1 p) [ρb r + βg(ρ)] q[a c βg(1)] (1 q)[b c βh(1)] q[ρa c + δa c βg(ρ)] (1 q) [ρb c βh(ρ)] ( ] [ f(p, q) = 1 p br b a r +b r, 1 q 0, c a c +b c ) D = ρb c βh(ρ) ρa c + δa c + ρb c β(h(ρ) + g(ρ)), E = ρb r + βg(ρ) ρa r + δa r + ρb r + β(h(ρ) + g(ρ)). B r < p 1 0 q < B c f(p, q) = 1 q (a c βg(1)) (1 q) (b c βh(1)) < 0 q [0, B c ) β < bc h(1) ac b c { } < d β > ρ(ac+bc)+δa c, ρb c e h(ρ)+g(ρ) h(ρ) 0 q < {D, B c } {B r, E } < p 1 D < q < B c B r < p < E θ < 1 p q

41 { } β > ρ(ac+bc)+δa c, ρb c h(ρ)+g(ρ) h(ρ) q = 0 θ < 1 h(s) = es θ g(s) = ds θ h(s) g(s)

42

43 q

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65 ā α a 0 > 0 {a 0, ā} w 0 [0, {a 0, ā}] s 0 {a 0, ā} w 0 s 0 ā e 1 [e, ē] e > 0 a 0 a 1 e 1 + (1 d)s 0, d {a 1, ā} 0 w 1 {a 1, ā} w t t {0, 1} B(w t, α) Period 0 Period 1 Wet season: Dry season: Stochastic water Water storage: availability: a0 > 0 s0î[0,min{ a0, a}] Water catchment: Water release: min{ a0, a} w º min{ a, a} -s Benefit: B( w, a) Wet season: Stochastic inflow: e Î[ e, e ] 1 Water availability: a º (1- d) s + e Water catchment: min{ a, a} 1 Dry season: Water release: w º min{ a, a} 1 1 Benefit: B( w, a) 1

66 B(w t, α) B(αw t ) α α [0, 1] B ( ) < 0 B ( ) 0 < B ( ) < B(, )

67 B 1 (w t, α) αb (αw t ) a 0 e 1 W (ā, α) [V (ā, a 0, α)], V (ā, a 0, α) w 0,s 0 {B(w 0, α) + ρ 0 [B(w 1, α)]} s 0 0, w 0 = {a 0, ā} s 0 0, a 1 = (1 d)s 0 + e 1, w 1 = {a 1, ā}, ρ V (ā, a 0, α) {B({a 0, ā} s 0, α) + ρ 0 [B({(1 d)s 0 + e 1, ā}, α)]} s 0 s 0 0, {a 0, ā} s 0 0. α a 0 e 1 W (ā, α) C(ā) ā ā 0 W (ā, α) C(ā). B(w, α) w x w α c = B 1 (w, α) B(x, α) cx a 0 e 0 a 0

68 C ( ) > 0 C ( ) > 0 W 1 (ā, α) = C (ā). ā = ā α W1 (ā, α) w 0 = 0 s 0 = {a 0, ā} w 0 = {a 0, ā} s 0 (0, {a 0, ā}) w 0 = {a 0, ā} > 0 s 0 = 0

69 a 0 V (ā, a 0, α) = B({a 0, ā} s 0, α) + ρ 0 [B({(1 d)s 0 + e 1, ā}, α)] B 1 ({a 0, ā} s 0, α) = ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 1 ((1 d)s 0 + e 1, α) ]. s 0 s 0(ā, a 0, α) a 0 V (ā, a 0, α) = B({a 0, ā}, α) + ρ 0 [B({e 1, ā}, α)] B 1 ({a 0, ā}, α) ρ(1 d) 0 [I e1 ā B 1 (e 1, α)], B 1 (0, α) ρ(1 d) 0 [ I(1 d) {a0,ā}+e 1 ā B 1 ((1 d) {a 0, ā} + e 1, α) ] ρ(1 d) 0 [ I(1 d) {a0,ā}+e 1 ā B 1 ((1 d) {a 0, ā} + e 1, α) ] B 1 ({e, ā}, α) < B 1 (0, α)

70 W 1 (ā, α) = [V 1 (ā, a 0, α)] = [I a0 >ā B 1 (ā s 0, α) + ρb 1 (ā, α) [(1 d)s 0 + e 1 > ā a 0 ]] = B 1 (ā s, α) [a 0 > ā] + ρb 1 (ā, α) [ [(1 d)s 0 + e 1 > ā a 0 ]], s s 0(ā, a 0, α) a 0 ā a 0 > ā (1 d)s 0 + e 1 > ā B 1 (ā s, α) B 1 (ā, α) B 1 (ā s, α) B 1 (ā s, α) [a 0 > ā] [ [(1 d)s 0 + e 1 > ā a 0 ]]

71 Marginal-water-benefit channel Full-dam-probability channel Marginal benefit of dam capacities Marginal benefit of the dryseason water release if the dam was full in the former wet season Probability that the dam will be full in wet seasons Storage-release decision (Inverse) Demand for water Water-use efficiency B 1 (ā s, α) B 1 (ā s, α) α B 1 (, α) B 1 (ā s, α) B 1 (ā s, α) α B 1 (ā s, α) s ā s αwb (αw) B (αw) [ [(1 d)s 0 + e 1 > ā a 0 ] ] α

72 s 0 αwb (αw) B (αw) α W 1 (ā, α) ( ) W12(ā, s(ā, α) α) = B 12 (ā s, α) B 11 (ā s, α) [a 0 > ā] α + ρb 12 (ā, α) [ [e 1 > ā (1 d)s 0 a 0 ]] [ ] ρ(1 d)b 1 (ā, α) f e1 (ā (1 d)s 0) s 0(ā, a 0, α), α s 0 s 0(ā, a 0, α) F e1 ( ) f e1 ( ) B 12 (w, α) w [(1 d) s + e, ā] s s 0(ā, a 0, α) a 0 ā

73 B 12 (w, α) = d2 B(αw) dαdw = B (αw) + αwb (αw). B 12 (w, α) 0 αwb (αw) B (αw) 1, dw db 1 = (w,α) B1(w,α) B (αw) w αwb (αw)

74 B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d) s + ē] s s 0(ā, a 0, α) a 0 ā a 0 B 1 ({a 0, ā} s 0, α) = ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 1 ((1 d)s 0 + e 1, α) ].

75 s 0 = s 0 $ 50 Marginal benefit of water storage, low α Marginal cost of water storage, low α Marginal benefit of water storage, high α Marginal cost of water storage, high α m s * 0, low α s* 0, high α s 0 /acre foot B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 s 0 [(1 d)s 0 + e 1 ā a 0 ] a 0 { } B(w, α) = αx (αx) x w, α α = 0.6 α = 0.8 ā = a 0 = 0.8ā d = 0.04 ρ = e 1 = e 1 = [B 1 ((1 d)s 0 + e 1, α)] B 1 ((1 d)s [e 1 ], α) B 1 ({a 0, ā} s 0, α) B 1 ((1 d)s [e 1 ], α).

76 {a 0, ā} s 0 (1 d)s 0 + [e 1 ] B 111 (w, α) 0 B 1211 (w, α) 0 ρ(1 d) B 121 (w, α) 0 B 121 (w, α) = 2αB (αw) + α 2 wb (αw). B 121 (w, α) 0 αwb (αw) B (αw) 2,

77

78 W12 (ā, α) B 12 (w, α) 0 w [(1 d) s + e, ā] B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d) s + ē]

79 B ( ) = 0 W12 (ā, α) ā ŵ ŵ αŵb (αŵ) B (αŵ) = 1 e ŵ

80

81 B(x)

82 ā α [0,1] W (ā, α) G(α), W (ā, α) G(α) α W 2 (ā, α) = G (α). α W21(ā, α) W (ā, α) W21(ā, α) W12(ā, α)

83

84 T +1 T 0 V T (ā, a 0, α) W T (ā, α) [ V T (ā, a 0, α) ], [ T 0 ρ t B(w t, α) {w t} T t=0,{st}t t=0 t=0 s t 0, w t 0, w t + s t = {a t, ā} t 0; ] a 0 = e 0 ; a t = (1 d)s t 1 + e t t 1; w T = {ā, a T }

85 e t [e, ē] e T W 1 (ā, α) = [V 1 (ā, a 0, α)] = B 1 (ā s, α) ρ t [ [a t > ā a 0 ]], t=0 s a t t

86 B(w, α) = (αw) µ = 1.21 B(w, α) = (αw) µ = 0.79 B(w, α) = αx (αx) 2 µ = x { } w, α µ T = e t d = 0.04 ρ = B(w, α) = (αw) B(w, α) = (αw) B(w, α) = αx (αx) 2 2 x { } w, α α = ā = α W 1 (ā, α) ā W 2 (ā, α)

87 α ā 0.17 B 1 (ā s, α) 0.00 t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā (0, 0.01] W2 (ā, α) α (0, 0.01] 0.26 B 1 (ā s, α) 0.00 t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā [ 0.02, 0) W2 (ā, α) α [ 0.01, 0) 3.02 B 1 (ā s, α) 4.13 t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā (0, 0.17] W2 (ā, a 0, α) α (0, 0.03] ā = α = s

88 0.17/( 20.27) dā dα α ā ϵ W 1 α (ā,α) ϵ W 1 (ā,α) ā W11(ā, α)dā + W12(ā, α)dα = C (ā)dā 0 < ( ) dā dα = W 12 (ā,α) W11 (ā,α)+c (ā) < W 12 (ā,α) W11 dā (ā,α) 0 < dα α ā < W 12 (ā,α) W11 (ā,α) α ā = αw 12 (ā,α) V1 (ā,α) ā W 1 11 (ā,α) W1 (ā,α) / ϵ W 1 α (ā,α) ϵ W 1 (ā,α) ā

89 0.79

90 α ā 0.85 B 1 (ā s, α) 0.00 t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā (0, 0.10] W2 (ā, α) α (0, 0.04] 1.29 B 1 (ā s, α) 0.00 t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā [ 0.14, 0) W2 (ā, α) α [ 0.05, 0) 7.07 B 1 (ā s, α) t=0 ρt [ [a t > ā a 0 ]] W1 (ā, α) ā (0, 0.97] W2 (ā, α) α (0, 0.18] ā = α = s

91

92

93

94

95

96

97

98

99

100

101 +a a c d

102 EU EU = EP + α k E IND (A) + β k E INT (A), EP E IND (A) A E INT (A) A α k β k k = I, C I C β C > β I α I > α C q [0, 1] σ [0, 1] 0 EU R = q(a + β k c) + (1 q)( a + β k c) = 2qa + β k c a.

103 q 1 q σ 1 σ 1 a a a a α k 0 0 b b σ k c c c d EU I = σ(2a + β k (e + d)) a + α k b β k d. q k = 1 2 β kc 2a, σ k = a α kb + β k d 2a + β k (c + d), q k q σ k σ q k β k σ k α k q k β k α k σ k α k β k σ k β k σ k β k d a α kb c a α kb a+α k b a+α k 1 b d c α k > 0

104 q = σ σ < 1 α C 0 b > 0 β I 0 β k c + 2qa a σ(2a + β k (c + d)) a β k d + α k b, (1 σ)β k (c + d) + (q σ)2a α k b. q = σ 0 α C 0 σ < 1 0 β I 0 b > 0 b q > σ

105 q γq γ < 1 EU R = q(a + β k c) + (1 q)( a + β k c) = 2qa + β k c a. 2γqa + β k c a 2γqa a β k c 2γqa a > 0 γ

106 2γqa a < 0 2γqa+β k c a > 0 2qa + β k c a, 2qa + β k c a 2γqa a + β k c, 2γqa a 2γqa a, 2γqa a + β k c 0, 0 q q k = 1 β kc 2 2a γ γ 2γqa a + β k c > 0 γ γ > γ kr = q k q 1 β k c γ > γ kr = q k q 1 γ kr q γ kr β k c γ kr 2γqa a + β k c q γq β k c β k c γ 1 2 q 1 γ kr ( 1 ) β kc 2 2a q 1 β k c β k c γ kr 1 2 q 1 γ kr γ kr β k q k β k β C > β I γ kr

107 (2a + β k (c + d))σ a + α k b β k d, (2a + β k (c + d))γσ a + α k b β k d, (2a + β k (c + d))σ a + α k b β k d 2γσa a 2γσa a, 0, (2a + β k (c + d))γσ a + α k b β k d 0 σ σ k = a α kb+β k d 2a+β k (c+d) (2a + β k (c + d))σ a + α k b β k d > 0 γ > γ ki = σ k σ 1 γ ki γ ki α k γ ki β k d c γ ki d c γ γ kr γ ki γ kr γ ki γ kr γ ki q q q i i = 1, 2 q i = q + ϵ i ϵ i N(0, δ 2 ) q ϵ 1 ϵ 2

108 q 1 q 2 q 1 N(q 1, 2δ 2 ) q 1 = q + ϵ 1 (q q 1 ) = q 1 ϵ 1 N(q, δ 2 ) q 2 = q + ϵ 2 (q 2 q 1 ) = q 1 ϵ 1 + ϵ 2 N(q 1, 2δ 2 ). ( x q x P (q 2 x q 1 ) = Φ 2δ 1 ) q 2 q 2 [( ( )) ( ) ] q2 q 1 q2 q 1 1 Φ (2qa a + βc) + Φ (2γqa a + βc) q 1 2δ 2δ ( )) q2 q 1 = 2aq 1 (1 (1 γ)φ a + β k c f(q 1, q 2δ 2 ). [( ( )) ( ) ] q2 q 1 q2 q 1 1 Φ (2γqa a) + Φ 0 q 1 2δ 2δ ( ( )) q2 q 1 = 1 Φ (2γq 1 a a) g(q 1, q 2δ 2 ). f(q 1, q 2 ) g(q 1, q 2 ) > 0 f(q 1, q 2 ) g(q 1, q 2 ) ( ( )) ( )] q2 q 1 q2 q 1 = a [2(1 γ)q 1 1 Φ + (2γq 1 1)Φ + β k c 2δ 2δ q 1 γ < 1 2q 1 γ kr < 1 2 γ γ kr q 2 q 1 f(q 1, q 2 ) g(q 1, q 2 ) = 0 (q, 1 q ) 2 f(q 1, q 2 ) g(q 1, q 2 ) = 0, f(q 2, q 1 ) g(q 2, q 1 ) = 0.

109 q = 1 q = 2 q = 1 β kc 2 a q β k β k = 0 q f(σ 1, σ 2 ) g(σ 1, σ 2 ) ( ( )) ( )] σ2 σ 1 σ2 σ = a [2(1 γ)σ 1 1 Φ 1 + (2γσ 1 1)Φ 2δ 2δ ( )] σ2 σ 1 + β k (c + d)σ 1 [1 (1 γ)φ + α k b β k d. 2δ σ 1 γ < 1 2σ 1

110 σ 2 ) σ 1 f(σ 1, σ 2 ) g(σ 1, σ 2 ) = 0 (σ 1, σ 2) f(σ 1, σ 2) g(σ 1, σ 2) = 0, f(σ 2, σ 1) g(σ 2, σ 1) = 0. a 2α kb+2β k d σ 1 = σ 2 = σ = α 2a+(1+γ)β k (c+d) k β k d (1+γ)a 2α kb(1+γ) (3 γ)a+2α k d c b(1+γ) q σ γ q = 1 β kc σ = a 2α kb+2β k d 2 a 2a+(1+γ)β k (c+d) β k β k 0 q > σ α k 0 σ a 2β kc+2β k (c+d) > a 2β kc 2a+(1+γ)β k (c+d) 2a = q q β k 0 σ = a α kb+β k d 2a+β k (c+d) a α kb 2a σ = a 2α kb+2β k d a 2α kb 2a < a α kb 2a σ < σ a 2α kb 2a+(1+γ)β k (c+d) 2a b

111 α k 0 σ = a α kb + β k d 2a + β k (c + d) a + β kd 2a + β k (c + d) σ = a 2α kb + 2β k d 2a + (1 + γ)β k (c + d) a + 2β k d 2a + (1 + γ)β k (c + d). σ > σ d c d 0 σ < σ q > σ σ > q

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143 2 (pa r (1 p)b r, qa c (1 q)b c ) 1 2 (0, 0) (p[ρa r + δa r + βf(p, q)e] (1 p)[ρb r + βf(p, q)d], q[ρa c + δa c βf(p, q)d] (1 q)[ρb c βf(p, q)e]) (0, 0) (0, 0) ( ] [ f(p, q) = 1 p br b a r +b r, 1 q 0, c a c +b c ) f(p, q) = 0 A r > B r > C r A r < p 1 B r < p < A r C r < p < B r 0 p < C r f(p, q) = 1 p β > ρ(ac+bc)+δac e+d ( b r a r +b r, 1 ] q [ 0, b c a c +b c )

144 p(ρa r + δa r + βe) (1 p) (ρb r + βd) > 0 q(ρa c + δa c βd) (1 q) (ρb c βe) > 0. N N N 2 N = 2 N p i i = 1, 2,..., N N A i B i C i B i < p i 1 0 p i < B i N f(p 1, p 2,..., p N )e (1 ρ)b i A i = (1 ρ)a i δa i +(1 ρ)b i B i = a i +b i C i = p i = B i b i ρb i ρa i +δa i +ρb i

145 f(p 1, p 2,..., p N )d d > 0 e > 0 f(p 1, p 2,..., p N )d f(p 1, p 2,..., p N )e f(p 1, p 2,..., p N ) f(p 1, p 2,..., p N ) = 1 f(p 1, p 2,..., p N ) = 0 β 0 β + N D i E j ϕ {i : B i < p i 1, i = 1, 2,..., N} φ {j : 0 p j < B j, j = 1, 2,..., N} ϕ φ = {1, 2,..., N} ϕ D i = ρb i βe ρa i+δa i+ρb i β(e+d) E j = ρb j+βd ρa j+δa j+ρb j+β(e+d)

146 φ f(p 1, p 2,..., p N ) = 1 β > j φ { ρ(aj +b j )+δa j e+d }, ρb j e 0 p j < {D j, B j } j φ {B i, E i } < p i 1 i ϕ j φ D j < p j < B j i ϕ B i < p i < E i j φ, 0 p j < {D j, B j } } { ρ(aj +b j )+δa j e+d β >, ρb j j φ e i ϕ, B i < p i < E i

147 N N = 3 (0, 0, 0) (1, 1, 1) p > q β 3 (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) ϕ φ

148 Experiment Big Bang /Experiment Big Bang Experiment Big Bang /Experiment Big Bang /Experiment Experiment Experiment a i = b i = 2 i = 1, 2, 3 e = 1 d = 2 ρ = 0.25 δ = 0.50 β = 10 A i = 0.75 B i = 0.5 C i = 0.25 D i = 0.34 E i = 0.64 N = 3 β

149 1 0.8 Exp BigBang/Exp BigBang 0.6 Exp BigBang/Exp Player Exp 0.2 Exp Player 1 a 1 = a 2 = b 1 = b 2 = 2 e = 1 d = 2 ρ = 0.25 δ = 0.50 β = 10 A 1 = A 2 = 0.75 B 1 = B 2 = 0.5 C 1 = C 2 = 0.25 D = 0.34 E = 0.64 β 3 (p 3 < 0.34) (0.34 < p 3 < 0.64) 3 p 1 > 0.64 p 2 > 0.64 p 3 < 0.34

150 Exp Exp 0.8 Exp Exp Player Player Exp 0.2 Exp 0.2 Exp Player 1 p 3 = Player 1 p 3 = BigBang/Exp BigBang/Exp Player Exp Player Exp BigBang/Exp Player 1 p 3 = Player 1 p 3 = Exp BigBang/Exp BigBang/Exp 0.8 Exp BigBang/Exp BigBang Player Exp BigBang/Exp Player BigBang/Exp BigBang/Exp 0.2 Exp Exp 0.2 Exp Exp Player 1 p 3 = Player 1 p 3 = 0.9 a i = b i = 2 i = 1, 2, 3 e = 1 d = 2 ρ = 0.25 δ = 0.50 β = 10 A i = 0.75 B i = 0.5 C i = 0.25 D i = 0.34 E i = 0.64 p 3

151 3 3 p 3 < p 3 > (p 3 > 0.64) 1 2 q[a c βg(1)] (1 q)[b c βh(1)] < 0, q[a c + b c β(g(1) + h(1))] < b c βh(1). [ b q 0, c a c +b c ) b c βh(1) > 0 b a c +b c β(h(1)+g(1)) < 0 a c +b c β(h(1)+g(1)) > 0 c βh(1) a c+b c β(g(1)+h(1)) > bc a c+b c 3

152 β < bc h(1) a c +b c β(h(1)+g(1)) < 0 b c βh(1) > 0 { } β > ρ(ac+bc)+δa c, ρb c h(ρ)+g(ρ) h(ρ) { } β < b c β > ρ(ac +b c )+δa c, ρbc ρbc < β < h(1) h(ρ)+g(ρ) h(ρ) h(ρ) θ < 1 a c + b c β(h(1) + g(1)) < 0 b c βh(1) > 0 a c b c b c < d e b c βh(1) > 0 a c +b c β(h(1)+g(1)) > 0 h(1) b c h(1) a c +b c < β < h(1)+g(1) b c h(1) b c βh(1) a c +b c β(g(1)+h(1)) > a c +b c β < b c { } β > ρ(ac +b c )+δa c, ρb c h(ρ)+g(ρ) h(ρ) { } β < bc β > ρ(ac+bc)+δa c, ρbc ρbc < β < bc h(1) h(ρ)+g(ρ) h(ρ) h(ρ) h(1) θ < 1 a c + b c β(h(1) + g(1)) > 0 b c βh(1) > 0 b c βh(1) a c + b c β(g(1) + h(1)) > b c a c + b c a c b c < d e. [ ) b q 0, c a c +b c β < b c a c h(1) b c < d e b c βh(1) > 0 a c b c < d a e c + b c β(h(1) + g(1)) < 0 [ b q 0, c a c +b c ) b c βh(1) > 0 q[a c + b c β(g(1) + h(1))] < b c βh(1) q = 0 a c + b c β(h(1) + g(1)) < 0 q[a c + b c β(g(1) [ + h(1))] q q[a c + b c β(g(1) + b h(1))] < b c βh(1) q 0, c a c +b c )

153 b c βh(1) > 0 a c b c < d a e c + b c β(h(1) + g(1)) > 0 [ b q 0, c a c +b c ) a c + b c β(h(1) + g(1)) > 0 q[a c + b c β(g(1) + h(1))] q q = b c a c +b c q[a c +b c β(g(1)+h(1))] = b c a c +b c [a c + b c β(g(1) + h(1))] a c b c < d b c e a c +b c [a c + b c β(g(1) + h(1))] < b c βh(1) [ b q[a c + b c β(g(1) + h(1))] < b c βh(1) q 0, c a c+b c )

154 ( ) B 12 (ā s, α) B 11 (ā s, α) s(ā,α) [a α 0 > ā] [a 0 > ā] = 0 [a 0 > ā] > 0 B 12 (ā s, α) B 11 (ā s, α) s(ā,α) a α 0 a 0 B 12 (ā s, α) B 11 (ā s, α) s(ā,α) α B 12 (ā s, α) 0 = B 12 (ā s, α) a 0 s 0 (ā,a 0,α) α B 1 ({a 0, ā} s 0, α) = ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 1 ((1 d)s 0 + e 1, α) ] = ρ(1 d) ā (1 d)s 0 f e1 (x)b 1 ((1 d)s 0 + x, α)dx,

155 B 11 ({a 0, ā} s 0, α)ds 0 + B 12 ({a 0, ā} s 0, α)dα [ = ρ(1 d) 2 0 I(1 d)s 0 +e 1 ā B 11 ((1 d)s 0 + e 1, α) ] ds 0 ρ(1 d) 2 f e1 (ā (1 d)s 0)B 1 (ā, α)ds 0 [ + ρ(1 d) 0 I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] dα, s 0(ā, a 0, α) α = ( [ B 12 ({a 0, ā} s 0, α) ρ(1 d) 0 I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ]) [B 11 ({a 0, ā} s 0, [ α) + ρ(1 d) 2 0 I(1 d)s 0 +e1 ā B 11 ((1 d)s 0 + e 1, α) ] ρ(1 d) 2 f e1 (ā (1 d)s 0)B 1 (ā, α)] 1. B 12 (ā s 0, α) B 11 (ā s 0, α) s 0(ā, a 0, α) α = B 12 (ā s 0, α) B 11 (ā s 0, α) (B [ 12 (ā s 0, α) ρ(1 d) 0 I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ]) [B 11 (ā s 0, [ α) + ρ(1 d) 2 0 I(1 d)s 0 +e1 ā B 11 ((1 d)s 0 + e 1, α) ] ρ(1 d) 2 f e1 (ā (1 d)s 0)B 1 (ā, α) = [ρ(1 d) 2 B 12 (ā s 0, [ α) 0 I(1 d)s 0 +e1 ā B 11 ((1 d)s 0 + e 1, α) ] ρ(1 d) 2 B 12 (ā s 0, α)f e1 (ā (1 d)s 0)B 1 (ā, α) [ + ρ(1 d)b 11 (ā s 0, α) 0 I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] ] [B 11 (ā s 0, [ α) + ρ(1 d) 2 0 I(1 d)s 0 +e1 ā B 11 ((1 d)s 0 + e 1, α) ] ] 1 ρ(1 d) 2 f e1 (ā (1 d)s 0)B 1 (ā, α)] 1.

156 s 0(ā, a 0, α) s(ā, α) s a 0 ā B 12 (ā s 0, α) B 11 (ā s 0, α) s 0(ā, a 0, α) α [ = [ρ(1 d) 2 B 12 (ā s, α) 0 I(1 d) s+e1 ā B 11 ((1 d) s + e 1, α) ] ρ(1 d) 2 B 12 (ā s, α)f e1 (ā (1 d) s)b 1 (ā, α) [ + ρ(1 d)b 11 (ā s, α) 0 I(1 d) s+e1 ā B 12 ((1 d) s + e 1, α) ] ] [ [B 11 (ā s, α) + ρ(1 d) 2 0 I(1 d) s+e1 ā B 11 ((1 d) s + e 1, α) ] ρ(1 d) 2 f e1 (ā (1 d) s)b 1 (ā, α)] 1. B 1 (ā s, α) = ρ(1 d) 0 [ I(1 d) s+e1 ā B 1 ((1 d) s + e 1, α) ] B 1 ((1 d) s + e, α), ā s (1 d) s + e B 1 (w, α) > 0 B 1 (w, α) < 0 B ( ) > 0 B ( ) < 0 s(ā, α) B 12 (ā s, α) B 11 (ā s, α) α B 12 (w, α) 0 w [(1 d) s + e, ā] s(ā, α) B 12 (ā s, α) B 11 (ā s, α) α B 12 (w, α) 0 w [(1 d) s + e, ā] 0 0 a 0 B 12 (ā s, α) B 11 (ā s, α) s(ā,α) α B 12 (w, α) w [(1 d) s + e, ā] [a 0 > ā] = 0 B 12 (w, α) w [(1 d) s + e, ā] ρb 12 (ā, α) [ [e 1 > ā (1 d)s 0 a 0 ]] [ [e 1 > ā (1 d)s 0 a 0 ]] = 0 [ [e 1 > ā (1 d)s 0 a 0 ]] > 0 ρb 12 (ā, α) [ [e 1 > ā (1 d)s 0 a 0 ]] 0 B 12 (ā, α) 0 [ [e 1 > ā (1 d)s 0 a 0 ]] = 0 B 12 (ā, α)

157 [ ρ(1 d)b 1 (ā, α) f e1 (ā (1 d)s 0) s 0 (ā,a 0,α) α f e1 (ā (1 d)s 0) a 0 a 0 f e1 (ā (1 d)s 0) s 0 (ā,a 0,α) α a 0 f e1 (ā (1 d)s 0) = 0 a 0 f e1 (ā (1 d)s 0) s 0 (ā,a 0,α) α f e1 (ā (1 d)s 0) > 0 a 0 s 0 (ā,a 0,α) s 0 (ā,a 0,α) B α α 12 (w, α) 0 w [e, (1 d) s + ē] B 12 ({a 0, ā} s 0, α) ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] B 12 ({a 0, ā} s 0, α) 0 [B 12 ((1 d)s 0 + e 1, α)]. ] B 12 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d) s + ē] B 12 ({a 0, ā} s 0, α) ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] B 12 ({a 0, ā} s 0, α) 0 [B 12 ((1 d)s 0 + e 1, α)] B 12 ({a 0, ā} s 0, α) B 12 ((1 d)s [e 1 ], α). B 111 (w, α) 0 w [e, (1 d) s + ē] B 1 ({a 0, ā} s 0, α) = ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 1 ((1 d)s 0 + e 1, α) ] 0 [ I(1 d)s 0 +e 1 ā B 1 ((1 d)s 0 + e 1, α) ] 0 [B 1 ((1 d)s 0 + e 1, α)] B 1 ((1 d)s [e 1 ], α), {a 0, ā} s 0 (1 d)s [e 1 ] B 12 (w, α) 0 B 1211 (w, α) 0 B 111 (w, α) 0 w [e, (1 d) s+ē] B 121 (w, α) 0 [(1 d)s 0+ 0 [e 1 ], {a 0, ā}

158 s 0] B 12 ({a 0, ā} s 0, α) ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] B 12 ({a 0, ā} s 0, α) B 12 ((1 d)s [e 1 ], α) 0. {a 0, ā} s 0 (1 d) s + ē (1 d)s [e 1 ] e B 12 (w, α) 0 B 121 (w, α) 0 B 1211 (w, α) 0 B 111 (w, α) 0 w [e, (1 d) s + ē] B 12 ({a 0, ā} s 0, α) ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 12 ((1 d)s 0 + e 1, α) ] 0, s 0 (ā,a 0,α) 0 a α 0 B 12 (w, α) 0 B 121 (w, α) 0 B 1211 (w, α) 0 B 111 (w, α) [ 0 w [e, (1 d) s ] + ē] ρ(1 d)b 1 (ā, α) f e1 (ā (1 d)s 0) s 0 (ā,a 0,α) α W 21(ā, α) W 12(ā, α) W21(ā, α) = [V31(ā, a 0, α)] W12(ā, α) = [V13(ā, a 0, α)] V13(ā, a 0, α) V31(ā, a 0, α) a 0 ( ) V13(ā, a 0, α) = I a0 >ā B 12 (ā s 0, α) B 11 (ā s 0, α) s 0(ā, a 0, α) α V + ρb 12 (ā, α) [1 F e1 (ā (1 d)s 0)] + ρ(1 d)b 1 (ā, α)f e1 (ā (1 d)s 0) s 0(ā, a 0, α) α 31(ā, a 0, α) = I a0 >ā B 21 (ā s 0, α) + ρb 21 (ā, α) [1 F e1 (ā (1 d)s 0)] s 0(ā, a 0, α) [ B 21 ({a 0, ā} s ā 0, α) ρ(1 d) 0 [ I(1 d)s 0 +e 1 ā B 21 ((1 d)s 0 + e 1, α) ] ]. V13(ā, a 0, α) V31(ā, a 0, α) V13(ā, a 0, α) = V31(ā, a 0, α) W21(ā, α) = W12(ā, α)

159 ā α ā 0, α 0 W (ā + ā, α + α) pā ā + p α α b, pā C (ā)+d (ā) p α G (α) b ā > 0 α > 0 ā = 0 α = 0 W (ā + ā, α + α) = v pā ā + p α α = b ā > 0 α > 0 ā α ā W 1 (ā+ ā,α+ α) W2 (ā+ ā,α+ α) ā d ( ) W 1 (ā+ ā,α+ α) W2 (ā+ ā,α+ α) d ā = W 11(ā + ā, α + α) W 2 (ā + ā, α + α) } {{ } (+) + W 1 (ā + ā, α + α) W 2 (ā + ā, α + α) 2 }{{} (+) W 12(ā + ā, α + α) > 0. W 12(ā + ā, α + α) > 0 W 12(ā + ā, α + α) 0

160 B 1 (w T 0, α) ρ(1 d) 0 [ V T 1 2 (ā, (1 d)s T 0 + e t+1, α) ] s T 0 = 0 B 1 (w T 0, α) = ρ(1 d) 0 [ V T 1 2 (ā, (1 d)s T 0 + e t+1, α) ] s T 0 > 0 w T 0 > 0 w0 T s T 0 a 0 w0 T + s T 0 {a 0, ā} 0 T 0 T = B 12 (w, α) 0 w [e, ā] B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d)ā + ē] V T (ā, a 0, α) s 0 { B({a0, ā} s 0, α) + ρ 0 [ V T 1 (ā, (1 d)s 0 + e 1, α) ]}

161 s 0 0, {a 0, ā} s 0 0, a 0. a 0 V1 T (ā, a 0, α) = I a0 >ā B 1 (ā s T 0, α) B 1 ({a 0, ā} s T 0, α) st 0 (ā, a 0, α) ā [ + ρ 0 V T 1 1 (ā, (1 d)s T 0 + e 1, α) ] [ + ρ(1 d) 0 V T 1 2 (ā, (1 d)s T 0 + e 1, α) ] s T 0 (ā, a 0, α) ā s T 0 = {a 0, ā} B 1 (0, α) ρ(1 d) 0 [ V T 1 2 (ā, (1 d) {a 0, ā} + e 1, α) ] = ρ(1 d) 0 [ I(1 d) {a0,ā}+e 1 ā B 1 (w T 1, α) ], B 1 (0, α) ρ(1 d) 0 [ I(1 d) {a0,ā}+e 1 ā B 1 (w T 1, α) ] < B 1 (0, α) s T 0 [0, {a 0, ā}) s T 0 = 0 V T 1 (ā, a 0, α) = I a0 >ā B 1 (ā, α) + ρ 0 [ V T 1 1 (ā, e 1, α) ]. s T 0 (0, {a 0, ā}) B 1 ({a 0, ā} s T 0, α) = ρ(1 d) 0 [ V T 1 2 (ā, (1 d)s T 0 + e 1, α) ], V T 1 (ā, a 0, α) = I a0 >ā B 1 (ā s T 0, α) + ρ 0 [ V T 1 1 (ā, (1 d)s T 0 + e 1, α) ]. s T 0 [0, {a 0, ā}) a 0 V T 1 (ā, a 0, α) = I a0 >ā B 1 (ā s T 0, α) + ρ 0 [ V T 1 1 (ā, (1 d)s T 0 + e 1, α) ] I a0 >ā B 1 (ā s T, α) + ρ 0 [ V T 1 1 (ā, (1 d)s T 0 + e 1, α) ],

162 s T (ā, α) s T V T 1 (ā, a 0, α) = I a0 >ā B 1 (ā s T, α) + ρ 0 [ V T 1 1 (ā, (1 d)s T 0 + e 1, α) ] = I a0 >ā B 1 (ā s T, α) + = B 1 (ā s T, α) I a0 >ā + = B 1 (ā s T, α) I a0 >ā + T [ ρ t 0 Ia t >ā B 1 (ā s T t, α) ] t=1 T t=1 T t=1 W T 1 (ā, α) = [ V T 1 (ā, a 0, α) ] = T t=0 a 0 = e 0 T B 1 (ā s T t, α)ρ t 0 [I a T t >ā ) B 1 (ā s T t, α)ρ (1 t F a T t ā,a 0,α(ā; ā, a 0, α). ] ( B1 (ā s T t, α) ρ t [ [ a T t > ā a 0 ]]), W 1 (ā, α) = [V 1 (ā, a 0, α)] = B 1 (ā s, α) ρ t [ [a t > ā a 0 ]]. t=0 W T 12 (ā, α) = T [ db1 (ā s T t, α) t=0 T t=0 dα ( B 1 (ā s T t, α) ρ t ρ t [ [ a T t > ā a 0 ]] ] [ Fa T t ā,a 0,α(ā; ā, a 0, α) α ]). B 12 (w, α) 0 w [e, ā] db 1(ā s T t,α) db 1 (ā s T t,α) dα dα 0 t {0, 1, 2,..., T } B 12 (w, α) 0 w [e, ā] 0 t {0, 1, 2,..., T } B 12 (w, α) 0 w [e, ā] db 1 (w T t 0 (ā,a 0,α),α) 0 a dα 0 t {0, 1, 2,..., T } B 12 (w, α) 0

163 w [e, ā] db 1(w T t 0 (ā,a 0,α),α) 0 a dα 0 t {0, 1, 2,..., T } t = T db 1(w T t 0 (ā,a 0,α),α) = db 1({a 0,ā} s 0 0 (ā,a 0,α),α) s 0 dα dα 0 (ā, a 0, α) = 0 = B 12 ({a 0, ā}, α) t = T t = T k t = T k 1 db 1(w T t 0 (ā,a 0,α),α) db 1 (w T t 0 (ā,a 0,α),α) dα db 1 ({a 0,ā} s k+1 0 (ā,a 0,α),α) dα dα = s k+1 0 (ā, a 0, α) = 0 s k+1 0 (ā, a 0, α) > 0 s k+1 0 (ā, a 0, α) db 1(w T t 0 (ā,a 0,α),α) dα B 1 ({a 0, ā} s k+1 0 (ā, a 0, α), α) = ρ(1 d) 0 [ V k 2 (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) ] = ρ(1 d) 0 [ I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā B 1 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ]. α s k+1 0 (ā, a 0, α) B 12 (w, α) w [e, ā] t = T k α s k+1 0 (ā, a 0, α) B 12 (w, α) w [e, ā] = B 1 ({a 0, ā} db 1 (w T t 0 (ā,a 0,α),α) dα s k+1 0 (ā, a 0, α), α) α B 12 (w, α) w [e, ā] s k+1 0 (ā, a 0, α) = 0 s k+1 0 (ā, a 0, α) > 0 t = T k 1 t {0, 1, 2,..., T } a 0 ā B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d)ā + ē] F a T t ā,a 0,α (ā;ā,a 0,α) 0 α t {0, 1, 2,..., T } B 12 (w, α) 0 B 121 (w, α) 0 B 111 (w, α) 0 B 1211 (w, α) 0 w [e, (1 d)ā + ē] st t 0 (ā,a 0,α) α 0 a 0 t {0, 1, 2,..., T } T = t s T 0 t (ā, a 0, α) = s 0 0 (ā, a 0, α) = 0 t = T k t = T k 1 s k+1 0 (ā, a 0, α) = 0 s k+1 0 (ā, a 0, α) > 0 s k+1 0 (ā, a 0, α)

164 db 1 (w T t 0 (ā,a 0,α),α) dα B 1 ({a 0, ā} s k+1 0 (ā, a 0, α), α) = ρ(1 d) 0 [ V k 2 (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) ] = ρ(1 d) 0 [ I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā B 1 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ]. s k+1 0 (ā, a 0, α) α B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) [ ρ(1 d) 0 I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā (B 12 (w k (ā, (1 d)s k+1 0 (ā, a 0, α)+e 1, α), α) B 11 (w k (ā, (1 d)s k+1 0 (ā, a 0, α)+e 1, α), α) sk 0 (ā,(1 d)sk+1 0 (ā,a 0,α)+e 1,α))] α B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) ρ(1 d) 0 [ I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā (B 12 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) B 11 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) sk 0 (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) α B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) [ ρ(1 d) 0 I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā B 12(w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ] [ B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) 0 B12 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ] B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) B 12 ( 0 [ w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) ], α) [ B 1 ({a 0, ā} s k+1 0 (ā, a 0, α), α) = ρ(1 d) 0 I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā B 1 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ] 0 [ B1 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) ] )] B 1 ( 0 [ w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) ], α). {a 0, ā} s k+1 0 (ā, a 0, α) 0 [ w k (ā, (1 d)s k+1 0 (ā, a 0, α)+e 1, α) ]

165 B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) [ ρ(1 d) 0 I(1 d)s k+1 0 (ā,a 0,α)+e 1 <ā (B 12 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) B 11 (w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α), α) sk 0 (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) )] α [ B 12 ({a 0, ā} s k+1 0 (ā, a 0, α), α) B 12 ( 0 w k (ā, (1 d)s k+1 0 (ā, a 0, α) + e 1, α) ], α) 0. s k+1 0 (ā, a 0, α) α s k+1 0 (ā, a 0, α) = 0 s k+1 0 (ā, a 0, α) > 0 t = T k 1 t = 0 F a T t ā,a 0,α(ā; ā, a 0, α) = I a0 <ā α t k t = k + 1 a T t (1 d)s T 0 k (ā, a T, α) + e k+1 = (1 d)s T 0 k (ā, (1 d)s T 0 k+1 (ā, a T k = a T k+1 = k 1, α) + e k, α) + e k+1 s0 T k (ā, a 0, α) a 0 α F a T t 0 t = k + 1 α ā,a 0,α (ā;ā,a 0,α) T < T

166 = = =

167 0.79

168 ( ) 1 =

169 谢琏造謝璉造

170 谢琏造謝璉造

171 谢琏造謝璉造

172 谢琏造謝璉造

173 谢琏造謝璉造

Synchronous Machine Modeling

Synchronous Machine Modeling ECE 53 Session ; Page / Fall 07 Synchronous Machine Moeling Reference θ Quarature Axis B C Direct Axis Q G F D A F G Q A D C B Transient Moel for a Synchronous Machine Generator Convention ECE 53 Session

More information

Supporting Information. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from. Morita-Baylis-Hillman Carbonates through a One-Pot

Supporting Information. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from. Morita-Baylis-Hillman Carbonates through a One-Pot Supporting Information Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from Morita-Baylis-Hillman Carbonates through a One-Pot Three-Component Cyclization Jian Wei, Yuntong Li, Cheng Tao,

More information

Componentwise perturbation analysis for matrix inversion or the solution of linear systems leads to the Bauer-Skeel condition number ([2], [13])

Componentwise perturbation analysis for matrix inversion or the solution of linear systems leads to the Bauer-Skeel condition number ([2], [13]) SIAM Review 4():02 2, 999 ILL-CONDITIONED MATRICES ARE COMPONENTWISE NEAR TO SINGULARITY SIEGFRIED M. RUMP Abstract. For a square matrix normed to, the normwise distance to singularity is well known to

More information

Yangians In Deformed Super Yang-Mills Theories

Yangians In Deformed Super Yang-Mills Theories Yangians In Deformed Super Yang-Mills Theories arxiv:0802.3644 [hep-th] JHEP 04:051, 2008 Jay N. Ihry UNC-CH April 17, 2008 Jay N. Ihry UNC-CH Yangians In Deformed Super Yang-Mills Theories arxiv:0802.3644

More information

Scripture quotations marked cev are from the Contemporary English Version, Copyright 1991, 1992, 1995 by American Bible Society. Used by permission.

Scripture quotations marked cev are from the Contemporary English Version, Copyright 1991, 1992, 1995 by American Bible Society. Used by permission. N Ra: E K B Da a a B a a, a-a- a aa, a a. T, a a. 2009 Ba P, I. ISBN 978-1-60260-296-0. N a a a a a, a,. C a a a Ba P, a 500 a a aa a. W, : F K B Da, Ba P, I. U. S a a a a K Ja V B. S a a a a N K Ja V.

More information

Section 3.1 Homework Solutions. 1. y = 5, so dy dx = y = 3x, so dy dx = y = x 12, so dy. dx = 12x11. dx = 12x 13

Section 3.1 Homework Solutions. 1. y = 5, so dy dx = y = 3x, so dy dx = y = x 12, so dy. dx = 12x11. dx = 12x 13 Math 122 1. y = 5, so dx = 0 2. y = 3x, so dx = 3 3. y = x 12, so dx = 12x11 4. y = x 12, so dx = 12x 13 5. y = x 4/3, so dx = 4 3 x1/3 6. y = 8t 3, so = 24t2 7. y = 3t 4 2t 2, so = 12t3 4t 8. y = 5x +

More information

Introduction to Nonlinear Control Lecture # 4 Passivity

Introduction to Nonlinear Control Lecture # 4 Passivity p. 1/6 Introduction to Nonlinear Control Lecture # 4 Passivity È p. 2/6 Memoryless Functions ¹ y È Ý Ù È È È È u (b) µ power inflow = uy Resistor is passive if uy 0 p. 3/6 y y y u u u (a) (b) (c) Passive

More information

Fun and Fascinating Bible Reference for Kids Ages 8 to 12. starts on page 3! starts on page 163!

Fun and Fascinating Bible Reference for Kids Ages 8 to 12. starts on page 3! starts on page 163! F a Faa R K 8 12 a a 3! a a 163! 2013 a P, I. ISN 978-1-62416-216-9. N a a a a a, a,. C a a a a P, a 500 a a aa a. W, : F G: K Fa a Q &, a P, I. U. L aa a a a Fa a Q & a. C a 2 (M) Ta H P M (K) Wa P a

More information

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17) CHEM 10113, Quiz 3 September 28, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

E A S Y & E F F E C T I V E S K I N S O L U T I O N S

E A S Y & E F F E C T I V E S K I N S O L U T I O N S E A S Y & E F F E C T I V E S K I N S O L U T I O N S EASY & EFFECTIVE SKIN SOLUTIONS D ñ í q, á bj ó í; é, b ó. E q b, q ó q. N b b, á, q q,, ó ó á b. Aí PUREDERM, ñí bó á. P "H C", á 15 ñ x ó é. Uz á

More information

Math 232 Name: Key Dr. Beezer Quiz LT Spring Show all of your work and explain your answers fully. There is a total of 105 possible points.

Math 232 Name: Key Dr. Beezer Quiz LT Spring Show all of your work and explain your answers fully. There is a total of 105 possible points. Math 232 Name: Key Dr. Beezer Quiz LT Spring 2005 Show all of your work and explain your answers fully. There is a total of 105 possible points. 1. Verify that the function below is a linear transformation.

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates UMBC, CMSC313, Richard Chang Last Time Overview of second half of this course Logic gates &

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

7.2. Matrix Multiplication. Introduction. Prerequisites. Learning Outcomes

7.2. Matrix Multiplication. Introduction. Prerequisites. Learning Outcomes Matrix Multiplication 7.2 Introduction When we wish to multiply matrices together we have to ensure that the operation is possible - and this is not always so. Also, unlike number arithmetic and algebra,

More information

DEHYDROGENASES. Dog$ish (Squalus acanthius) Lactate Dehydrogenase (LDH)

DEHYDROGENASES. Dog$ish (Squalus acanthius) Lactate Dehydrogenase (LDH) Prof. Alejandro Hochkoeppler Department of Pharmaceutical Sciences and Biotechnology University of Bologna E-mail: a.hochkoeppler@unibo.it Dog$ish (Squalus acanthius) Lactate Dehydrogenase (LDH) Homotetramer,

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Equivariant division

Equivariant division Equivariant division Prajeet Bajpai Peter G. Doyle Version dated 13 April 2016 No Copyright Abstract Let C be a non-empty finite set, and Γ a subgroup of the symmetric group S(C). Given a bijection f :

More information

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Appendices A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Eq.(3.11), can be found in the literature [9,172,173] and are therefore

More information

Generalized*Gauge*Theories* in*arbitrary*dimensions

Generalized*Gauge*Theories* in*arbitrary*dimensions Generalized*Gauge*Theories* in*arbitrary*dimensions N.K. Watabiki gauge*field gauge*parameter derivative curvature gauge*trans. Chern;Simons Topological* Yang;Mills Yang;Mills = Quantization of Abelian

More information

Solutions for Chapter 3

Solutions for Chapter 3 Solutions for Chapter Solutions for exercises in section 0 a X b x, y 6, and z 0 a Neither b Sew symmetric c Symmetric d Neither The zero matrix trivially satisfies all conditions, and it is the only possible

More information

Trigonometric Pseudo Fibonacci Sequence

Trigonometric Pseudo Fibonacci Sequence Notes on Number Theory and Discrete Mathematics ISSN 30 532 Vol. 2, 205, No. 3, 70 76 Trigonometric Pseudo Fibonacci Sequence C. N. Phadte and S. P. Pethe 2 Department of Mathematics, Goa University Taleigao

More information

APPM 3310 Problem Set 4 Solutions

APPM 3310 Problem Set 4 Solutions APPM 33 Problem Set 4 Solutions. Problem.. Note: Since these are nonstandard definitions of addition and scalar multiplication, be sure to show that they satisfy all of the vector space axioms. Solution:

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Thermal Casimir Effect for Colloids at a Fluid Interface

Thermal Casimir Effect for Colloids at a Fluid Interface Thermal Casimir Effect for Colloids at a Fluid Interface Jef Wagner Ehsan Noruzifar Roya Zandi Department of Physics and Astronomy University of California, Riverside Outline 1 2 3 4 5 : Capillary Wave

More information

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D 6.012 - Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter asics - Outline Announcements Handout - Lecture Outline and Summary The MOSFET alpha factor - use definition in lecture,

More information

Objective Type Questions

Objective Type Questions DISTANCE EDUCATION, UNIVERSITY OF CALICUT NUMBER THEORY AND LINEARALGEBRA Objective Type Questions Shyama M.P. Assistant Professor Department of Mathematics Malabar Christian College, Calicut 7/3/2014

More information

Unit 3. Digital encoding

Unit 3. Digital encoding Unit 3. Digital encoding Digital Electronic Circuits (Circuitos Electrónicos Digitales) E.T.S.I. Informática Universidad de Sevilla 9/2012 Jorge Juan 2010, 2011, 2012 You are free to

More information

Generalized exterior forms, geometry and space-time

Generalized exterior forms, geometry and space-time Generalized exterior forms, geometry and sace-time P Nurowski Instytut Fizyki Teoretycznej Uniwersytet Warszawski ul. Hoza 69, Warszawa nurowski@fuw.edu.l D C Robinson Mathematics Deartment King s College

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

DECOMPOSITION OF LOCALLY ASSOCIATIVE Γ-AG-GROUPOIDS 1

DECOMPOSITION OF LOCALLY ASSOCIATIVE Γ-AG-GROUPOIDS 1 Novi Sad J. Math. Vol. 43, No. 1, 2013, 1-8 DECOMPOSITION OF LOCALLY ASSOCIATIVE Γ-AG-GROUPOIDS 1 Tariq Shah 2 and Inayatur-Rehman 3 Abstract. It is well known that power associativity and congruences

More information

DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT. Christoph Schmoeger

DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT. Christoph Schmoeger PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 83(97) (2008), 37 47 DOI: 10.2298/PIM0897037S DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT Christoph Schmoeger Communicated by Stevan

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

REPRESENTATION THEORY WEEK 5. B : V V k

REPRESENTATION THEORY WEEK 5. B : V V k REPRESENTATION THEORY WEEK 5 1. Invariant forms Recall that a bilinear form on a vector space V is a map satisfying B : V V k B (cv, dw) = cdb (v, w), B (v 1 + v, w) = B (v 1, w)+b (v, w), B (v, w 1 +

More information

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Mathematics Revision Guides Vectors Page of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Version:.4 Date: 05-0-05 Mathematics Revision Guides Vectors Page of 9 VECTORS

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

Aumann-Shapley Values on a Class of Cooperative Fuzzy Games

Aumann-Shapley Values on a Class of Cooperative Fuzzy Games Journal of Uncertain Systems Vol.6, No.4, pp.27-277, 212 Online at: www.jus.org.uk Aumann-Shapley Values on a Class of Cooperative Fuzzy Games Fengye Wang, Youlin Shang, Zhiyong Huang School of Mathematics

More information

Created by T. Madas 2D VECTORS. Created by T. Madas

Created by T. Madas 2D VECTORS. Created by T. Madas 2D VECTORS Question 1 (**) Relative to a fixed origin O, the point A has coordinates ( 2, 3). The point B is such so that AB = 3i 7j, where i and j are mutually perpendicular unit vectors lying on the

More information

Solutions to Problem Set 2

Solutions to Problem Set 2 Solutions to Problem Set Part I/Part II Part I(0 points) (a) ( points) p. 97, Section 3.3, Problem 44 (b) ( points) p. 107, Section 3.5, Problem 15 (c) ( points) p. 110, Section 3.6, Problem 3(c) (d) (

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

Chapter 7. Linear Algebra: Matrices, Vectors,

Chapter 7. Linear Algebra: Matrices, Vectors, Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 13, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for L σ = 1 L L Γ 0 (q) q Γ 0 (q) GL(2) L a n α S(α) = a n e(nα), e(θ) = e 2πiθ S(α) α R/Z α 1,..., α R δ R/Z α r α s δ r s R S(α r ) 2 r=1 ( N + 1 ) a n 2. δ 1 ψ(x; q, a) = n x n a q Λ(n), Λ(n) Λ(n) =

More information

A Bayesian Analysis of Some Nonparametric Problems

A Bayesian Analysis of Some Nonparametric Problems A Bayesian Analysis of Some Nonparametric Problems Thomas S Ferguson April 8, 2003 Introduction Bayesian approach remained rather unsuccessful in treating nonparametric problems. This is primarily due

More information

Interest Growing In Big Parade. Distribution of Covert Rd. Costs 4-H Club Boys Will Go to Camp

Interest Growing In Big Parade. Distribution of Covert Rd. Costs 4-H Club Boys Will Go to Camp C- C D C- C A 6 7 8 9 3 A 6 7 8 9 3 A j CGA DAY Y 9 93 XXXX CA A AD A K AGA jc C D AK BG A CG 7 K ACY BG A AY DAY - - - - - - A DA A ACCD D B ( q - {] /» K 2 B C - B C C - - - ; 4 G - 7 GAD AXAY CCA -

More information

On Jordan Higher Bi Derivations On Prime Gamma Rings

On Jordan Higher Bi Derivations On Prime Gamma Rings IOSR Journal of Mathematics (IOSR JM) e ISSN: 2278 5728, p ISSN: 2319 765X. Volume 12, Issue 4 Ver. I (Jul. Aug.2016), PP 66 68 www.iosrjournals.org Salah M. Salih (1) Ahmed M. Marir (2) Department of

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Lecture Notes on Electromagnetism

Lecture Notes on Electromagnetism Lecture Notes on Electromagnetism Abstract. The contents of this text is based on the class notes on Electromagnetism for the PH412 course by Prof. Ananda Dasgupta, IISER Kolkata. Contents Chapter 1. Introduction

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

Electromagnetism Answers to Problem Set 9 Spring 2006

Electromagnetism Answers to Problem Set 9 Spring 2006 Electromagnetism 70006 Answers to Problem et 9 pring 006. Jackson Prob. 5.: Reformulate the Biot-avart law in terms of the solid angle subtended at the point of observation by the current-carrying circuit.

More information

8. Relax and do well.

8. Relax and do well. CHEM 1515 Exam II John II. Gelder October 14, 1993 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last two pages include a periodic table, a

More information

The energy speed accuracy trade-off in sensory adaptation

The energy speed accuracy trade-off in sensory adaptation SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS2276 The energy speed accuracy trade-off in sensory adaptation 1 The effective potential H(m) In the main text, we introduced a set of F a and F m functions to

More information

Determinants. Chia-Ping Chen. Linear Algebra. Professor Department of Computer Science and Engineering National Sun Yat-sen University 1/40

Determinants. Chia-Ping Chen. Linear Algebra. Professor Department of Computer Science and Engineering National Sun Yat-sen University 1/40 1/40 Determinants Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra About Determinant A scalar function on the set of square matrices

More information

Supplementary Information for Experimental signature of programmable quantum annealing

Supplementary Information for Experimental signature of programmable quantum annealing Supplementary Information for Experimental signature of programmable quantum annealing Supplementary Figures 8 7 6 Ti/exp(step T =.5 Ti/step Temperature 5 4 3 2 1 0 0 100 200 300 400 500 Annealing step

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

Matrices and Determinants

Matrices and Determinants Chapter1 Matrices and Determinants 11 INTRODUCTION Matrix means an arrangement or array Matrices (plural of matrix) were introduced by Cayley in 1860 A matrix A is rectangular array of m n numbers (or

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle?

1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle? Q12.1.a You put an ice cube into a styrofoam cup containing hot coffee. You would probably be surprised if the ice cube got colder and the coffee got hotter. 1) Yes 2) No 3) The energy principle does not

More information

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1 Outline Synchronous achine odeling Per Unit Representation Simplified

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

Mixture inventory model in fuzzy demand with controllable lead time

Mixture inventory model in fuzzy demand with controllable lead time Mixture inventory model in fuzzy demand with controllable lead time Jason Chao-Hsien Pan Department of Industrial Management National Taiwan University of Science and Technology Taipei 106 Taiwan R.O.C.

More information

From our Guest Editor

From our Guest Editor F Pa Ca a Nw O-D 2008 3 F Caa CORD Da Ra G Ea a a a w. a a a C CD KS a a G E. W w a aa a wa a a aa. W wa w a aa Ra 22 Fa! P DG K F G E Da Ra a G E 3 qa w CORD. CD P aa Pa P- a a a a a a. w a a w a a NGO

More information

Linear Logic Pages. Yves Lafont (last correction in 2017)

Linear Logic Pages. Yves Lafont (last correction in 2017) Linear Logic Pages Yves Lafont 1999 (last correction in 2017) http://iml.univ-mrs.fr/~lafont/linear/ Sequent calculus Proofs Formulas - Sequents and rules - Basic equivalences and second order definability

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM TRIANGLES KEY POINTS

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM  TRIANGLES KEY POINTS TRIANGLES KEY POINTS 1. Similar Triangles: Two triangles are said to be similar, if (a) their corresponding angles are equal and (b) their corresponding sides are in proportion (or are in the same ration).

More information

Synthesizing and Modeling Human Locomotion Using System Identification

Synthesizing and Modeling Human Locomotion Using System Identification yz d Md H U y Id W UIMAN, Adé MONIN d J-P AUMOND AA - CNR 7 v d C R, 3077 T Cdx 4, F {,, j}@. Ab yz d b -d d. Hwv, yzd, w d. U y, w w d d d dy d. T d jy v d d w bdy. T dy y, w dd bk-bx, w w dd d d. W w

More information

ANSWERS, HINTS & SOLUTIONS

ANSWERS, HINTS & SOLUTIONS AIITS-PT-IV-PCM(SOL)-JEE(Main)/6 FIITJEE Students From All Programs have bagged in Top 00, 77 in Top 00 and 05 in Top 500 All India Ranks. FIITJEE Performance in JEE (Advanced), 05: 455 FIITJEE Students

More information

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n Inner products and Norms Inner product of 2 vectors Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y 2 + + x n y n in R n Notation: (x, y) or y T x For complex vectors (x, y) = x 1 ȳ 1 + x 2

More information

Hankel Optimal Model Reduction 1

Hankel Optimal Model Reduction 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Hankel Optimal Model Reduction 1 This lecture covers both the theory and

More information

Decomposition and Intersection of Two Fuzzy Numbers for Fuzzy Preference Relations

Decomposition and Intersection of Two Fuzzy Numbers for Fuzzy Preference Relations S S symmetry Article Decomposition and Intersection of Two Fuzzy Numbers for Fuzzy Preference Relations Hui-Chin Tang ID Department of Industrial Engineering and Management, National Kaohsiung University

More information

Class IX Chapter 8 Quadrilaterals Maths

Class IX Chapter 8 Quadrilaterals Maths Class IX Chapter 8 Quadrilaterals Maths Exercise 8.1 Question 1: The angles of quadrilateral are in the ratio 3: 5: 9: 13. Find all the angles of the quadrilateral. Answer: Let the common ratio between

More information

Class IX Chapter 8 Quadrilaterals Maths

Class IX Chapter 8 Quadrilaterals Maths 1 Class IX Chapter 8 Quadrilaterals Maths Exercise 8.1 Question 1: The angles of quadrilateral are in the ratio 3: 5: 9: 13. Find all the angles of the quadrilateral. Let the common ratio between the angles

More information

EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.)

EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.) EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM DIRAC EQ. ABSTRACT The charge of the electron and the proton is assumed to be distributed in space. The potential energy of a specific charge distribution is

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)

DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule) Series 2 Part 6 Universal enveloping associative triple systems Colloquium Fullerton College Bernard Russo

More information

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE I. Length of a Line Segment: The distance between two points A ( x1, 1 ) B ( x, ) is given b A B = ( x x1) ( 1) To find the length of a line segment joining

More information

8. Relax and do well.

8. Relax and do well. CHEM 1215 Exam III John III. Gelder November 11, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

ON FIELD Γ-SEMIRING AND COMPLEMENTED Γ-SEMIRING WITH IDENTITY

ON FIELD Γ-SEMIRING AND COMPLEMENTED Γ-SEMIRING WITH IDENTITY BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 189-202 DOI: 10.7251/BIMVI1801189RA Former BULLETIN

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

Errata for Stochastic Calculus for Finance II Continuous-Time Models September 2006

Errata for Stochastic Calculus for Finance II Continuous-Time Models September 2006 1 Errata for Stochastic Calculus for Finance II Continuous-Time Models September 6 Page 6, lines 1, 3 and 7 from bottom. eplace A n,m by S n,m. Page 1, line 1. After Borel measurable. insert the sentence

More information

Week 6: Differential geometry I

Week 6: Differential geometry I Week 6: Differential geometry I Tensor algebra Covariant and contravariant tensors Consider two n dimensional coordinate systems x and x and assume that we can express the x i as functions of the x i,

More information

VECTORS ADDITIONS OF VECTORS

VECTORS ADDITIONS OF VECTORS VECTORS 1. ADDITION OF VECTORS. SCALAR PRODUCT OF VECTORS 3. VECTOR PRODUCT OF VECTORS 4. SCALAR TRIPLE PRODUCT 5. VECTOR TRIPLE PRODUCT 6. PRODUCT OF FOUR VECTORS ADDITIONS OF VECTORS Definitions and

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Strong converse theorems using Rényi entropies

Strong converse theorems using Rényi entropies Strong converse theorems using Rényi entropies Felix Leditzky joint work with Mark M. Wilde and Nilanjana Datta arxiv:1506.02635 5 January 2016 Table of Contents 1 Weak vs. strong converse 2 Rényi entropies

More information

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Kevin Broughan University of Waikato, Hamilton, New Zealand May 20, 2010 Solving quadratic equations: traditional The procedure Work in

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

LINEAR SYSTEMS AND MATRICES

LINEAR SYSTEMS AND MATRICES CHAPTER 3 LINEAR SYSTEMS AND MATRICES SECTION 3. INTRODUCTION TO LINEAR SYSTEMS This initial section takes account of the fact that some students remember only hazily the method of elimination for and

More information

x k 34 k 34. x 3

x k 34 k 34. x 3 A A A A A B A =, C =. f k k x k l f f 3 = k 3 k 3 x k 34 k 34 x 3 k 3 l 3 k 34 l 34. f 4 x 4 K K = [ ] 4 K = K (K) = (K) I m m R I m m = [e, e,, e m ] R = [a, a,, a m ] R = (r ij ) r r r m R = r r m. r

More information

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) 1 YEAR ALGEBRA AND CALCULUS SM 1 PART A: (ALTEBRA) VECTOR SPACES AND MATRICES CONTENTS Lesson Lesson Lesson Lesson Lesson Lesson 1 : Vector Spaces 2 : Matrices : Basic

More information

Modern Geometry Homework.

Modern Geometry Homework. Modern Geometry Homework 1 Cramer s rule We now wish to become experts in solving two linear equations in two unknowns over our field F We first recall that a 2 2 matrix a b A = c b its determinant is

More information

A Linear Algebraic Approach to Quaternions

A Linear Algebraic Approach to Quaternions A Linear Algebraic Approach to Quaternions David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Angles of Elevation and Depression

Angles of Elevation and Depression Angles of Elevation and Depression Study the following figure carefully. angle of elevation angle of depression When we see an object above us, the angle between our line of sight and the horizontal is

More information

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions CFG Simplification (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions 1 Eliminating useless symbols 1. A symbol X is generating if there exists: X * w, for

More information

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES italian journal of pure and applied mathematics n. 32 2014 (561 578) 561 ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES Barbora Batíková Department of Mathematics CULS Kamýcká 129, 165 21 Praha

More information