Disk packing on logarithmic spiral lattices

Size: px
Start display at page:

Download "Disk packing on logarithmic spiral lattices"

Transcription

1 Disk packing on logarithmic spiral lattices Yoshikazu Yamagishi (Ryukoku Univ) (joint work with Takamichi Sushida (Hokkaido Univ)) 7-9 Jan 017, Tohoku University Disk packing Tohoku Univ 1 / 1

2 Phyllotaxis Phyllotaxis is the study of arrangement of leaves, florets, and other organs of plants. The main problem of mathematical phyllotaxis: why are the Fibonacci numbers so common in the spirals in living plants? Cylindrical model: Linear lattice L(z) = zz + Z, where Imz > 0. Centric model: logarithmic spiral lattice Λ(z) = { z j : j Z }, z = re 1θ D \ R. θ is called the divergence angle. r is called the plastochron ratio. { } Centric model: Archimedean spiral lattice je jθ 1 : j = 0, 1,.... { je Centric model: Parabolic spiral lattice jθ } 1 : j = 0, 1,.... Disk packing Tohoku Univ / 1

3 Voronoi tiling for the linear lattice Let L(z) = zz + Z be a linear lattice generated by z, where Imz > 0. The Voronoi region of the site point mz a is defined as V (mz a) = {ζ C : mz a ζ nz b ζ, nz b mz a}. The family {V (mz a)} mz a L(z) is a tiling of the plane C. An integer m > 0 is called a Voronoi parastichy number if the tile V (mz a) is edge-adjacent to the tile V (0) Disk packing Tohoku Univ 3 / 1

4 The parallellogram (0, mz a, (mz a) + (nz b), nz b) is an rectangle 0, mz a, (mz a) + (nz b), nz b) lie on a same circle The diagonals are of the same length (mz a) (nz b) = (mz a) + (nz b) (mz a)/(nz b) 1R The bifurcation diagram of Voronoi tilings consists of the half-circles (mz a)/(nz b) 1R, Im(z) > 0, for mb na = 1. Disk packing Tohoku Univ 4 / 1

5 Lemma Suppose that the tile V (0) is a hexagon and it is adjacent to V (mz a), V (nz b), V (mz a + nz b). Then a m < b n are (principal or intermediate) convergents of Re(z). Proof. We have mb na = 1, and a m < x < b n Disk packing Tohoku Univ 5 / 1

6 Circle packing along the linear lattice Consider the lattice L(z) = zz + Z. Denote by D(z, R) = {w C : w z < R}. The circle packing along the lattice L(z) is the family of disks {D(mz a, R) : mz a L(z)}, where R = min { mz a : mz a L(z) \ 0}. An integer m > 0 is called a packing parastichy number if R = mz a for some a Z. If it is the case, a/m is a (principal) convergent of Re(z). The bifurcation diagram of circle packings consists of sub-arcs of the half-circles mz a / nz b = 1, Im(z) > 0, for mb na = 1. The bifurcation diagrams for Voronoi tilings and circle packings are dual graphs to each other Disk packing Tohoku Univ 6 /

7 Logarithmic spiral lattice Consider a logarithmic spiral lattice Λ(z) = { z j : j Z }, z D \ R. Let 0 < R < 1. Suppose that the disks { D(z j, R z j ) } do not have j Z overlaps. That is, int(d(z j, R z j )) int(d(z k, R z k )) = for j k. The maximal R is given as R = min { z j z k z j + z k : j k }. An integer m > 0 is called a parastichy number of Λ(z) if a disk D(z j, R z j ) is adjacent to the disk D(z j+m, R z j+m ). Disk packing Tohoku Univ 7 / 1

8 Consider the function d(z, w) := z w z + w. Some of its properties are as follows. Boundedness: 0 d(z, w) 1. d(z, 0) = 1 for z 0. Symmetry: d(z, w) = d(w, z). Homogeneity: d(cz, cw) = cz cw cz + cw = z w z + w = d(z, w) for c 0. In particular, d(z, w) = d( 1 z, 1 w ). d(zm, 1) = d(z j+m, z j ). R = min { d(z j, z k ) : j k } = min { d(z j, 1) : j > 0 }. m > 0 is a parastichy number if R = d(z m, 1). Disk packing Tohoku Univ 8 / 1

9 Theorem d(z, w) = z w z + w is a distance function in the plane C. Proof. We will show that d(z, 1) + d(w, 1) d(zw, 1). (d(zw, w) + d(w, 1) = d(z, 1) + d(w, 1) d(zw, 1)) Case 1. If 0 < z 1 w, z 1 w 1 + z + 1 w + 1 z 1 zw z z 1 + zw z zw 1 = + z + 1 zw + z zw + 1 zw + 1. Case. If 0 < w 1 z, exchange z, w in Case 1. Disk packing Tohoku Univ 9 / 1

10 Case 3. If z, w 1, so z 1 z 1 w 1 w 1, z 1 w 1 z 1 + zw z + z + 1 w + 1 zw + 1 zw z 1 z = z 1 + w 1 ( z + 1)( zw + 1) ( w + 1)( zw + 1) ( ) 1 z 1 ( w 1) w 1 ( z 1) 0, zw + 1 z + 1 w + 1 z 1 w 1 z 1 + zw z zw 1 + z + 1 w + 1 zw + 1 zw + 1. z 1 Case 4. If z, w 1, z 1 w 1, exchange z, w in Case 3. w 1 Case 5. If 0 < z, w 1, d(z, 1) + d(w, 1) = d(1, 1 z ) + d(1, 1 w ) d(1, 1 ) = d(zw, 1). zw Disk packing Tohoku Univ 10 / 1

11 Generalizations of the metric d : p-relative metric, Li(1998), Hästö(00) z w ( z p + w p ) 1/p, (1 p + ) Triangular ratio metric, Klén-Lindén-Vuorinen-Wang(014). sup ζ G z w z ζ + w ζ (z, w G) Disk packing Tohoku Univ 11 / 1

12 Golé (007) The equidistance curve { of d is a real algebraic } curve of degree 4, {z : d(z, 1) = c} = (1+ce it ) : 0 t < π, called Pascal s limaçon. 1 c Let ν(z) = z 1 z +1, z C. We have ν(z) = 1 if z R := {z R : z 0}, ν(z) < 1 if z C \ R, and ν(z) = d(z, 1). Let µ(w) = (1+w) 1 w, w D. Disk packing Tohoku Univ 1 / 1

13 Lemma The function µ = (1+w) is a homeomorphism of the unit disk D onto the 1 w region C \ R, with the inverse function ν = z 1 z +1. Proof. Let w = ν(z) = z 1 z +1, where z C \ R. We have µ(w) = (1 + w) ( z z 1) z z + z z + z = 1 w ( z + 1) = z 1 z + z + z = z, since z 1 = (z 1)( z 1). Let z = µ(w) = (1+w) 1 w, where w D. We have ν(z) = z 1 z + 1 = (1 + w) (1 w ) 1 + w + 1 w = w + w + w w + w + w since 1 + w = (1 + w)(1 + w). = w, Disk packing Tohoku Univ 13 / 1

14 van Iterson s function σ(z 1, z ) = r 1 r cos θ 1 θ, r 1 + r where z j = r j e iθ j, r j > 0, π < θ j π, j = 1,. We have σ(z 1, z ) = 1 d(z 1, z ). The bifurcation locus σ(z m, 1) = σ(z n, 1) is written as a variable-separated form cos nθ = φ m,n(r), φ m,n (r) := (1 + r n m n )r 1 + r m. cos mθ The function φ m,n (r) is monotone increasing on 0 r 1, with φ m,n (0) = 0, φ m,n (1) = 1. Disk packing Tohoku Univ 14 / 1

15 Rothen-Koch (1989) Let z = re 1θ. If mθ π 0 < r < 1. If mθ π nθ π, then d(zm, 1) > d(z n, 1) for any nθ < π, then there exists a (unique) 0 < r 0 < 1 such that d(z m, 1) = d(z n, 1) if r = r 0, d(z m, 1) > d(z n, 1) if 0 < r < r 0, and d(z m, 1) < d(z n, 1) if r 0 < r 1. Proof. If mθ nθ π π, we have cos nθ mθ / cos 1 > φ m,n (r) for any 0 < r < 1, which implies that σ(z m, 1) < σ(z n, 1), and hence d(z m, 1) > d(z n, 1) for any 0 < r < 1. If mθ nθ π < π, we have 0 < cos nθ mθ / cos < 1. By the Intermediate Value Theorem, there exists 0 < r 0 < 1 such that φ m,n (r 0 ) = cos nθ mθ / cos, which implies that σ(z m, 1) = σ(z n, 1) for r = r 0. The uniqueness of r 0 follow from the monotonicity of φ m,n. Disk packing Tohoku Univ 15 / 1

16 Rothen-Koch (1989) Let z = re 1θ. Let m > 0 be a disk parastichy number for the spiral lattice Λ(z). Let a = [[ mθ mθ π ]] be the integer part of π. Then a m is a θ (principal) convergent of π. Proof. If a m is not a principal convergent of θ π, then there exists 0 < n < m such that nθ mθ π π. This implies that d(z n, 1) < d(z m, 1). m is not a disk parastichy number. G. van Iterson ( ). Bifurcation diagram of disk packing (1907). Disk packing Tohoku Univ 16 / 1

17 Bifurcation diagram of disk packing Disk packing Tohoku Univ 17 / 1

18 Voronoi tiling Logarithmic spiral lattice Λ(z) = { z j : j Z }. The Voronoi region of z j is defined as V j = { ζ C : ζ z j ζ z k, k } The family V = {V j } j is a tiling of the punctured plane C. m > 0 is called a Voronoi parastichy number if V 0, V m are (edge-)adjacent. Y-Sushida-Hizume, Nonlinearity 8 (015) Disk packing Tohoku Univ 18 / 1

19 Lemma (diagonals of the limaçon rectangle ) The points 1, z 1, z 1 z, z lie on a same circle in this order of vertices d(z 1, z ) = d(z 1 z, 1) If this is the case, we have d(z 1, z ) = d(z 1 z, 1) > d(z 1, 1), d(z, 1) z 1 z 1 z α 1 z Disk packing Tohoku Univ 19 / 1

20 Proof. The quadrilateral (1, z 1, z 1 z, z ) is inscribed in a circle in this order of vertices. Let α be the crossing point of the diagonals l(1, z 1 z ) and l(z 1, z ) (l(z, w) denotes the line segment with the endpoints z, w). Since the triangle (1, z 1, α) is similar to (z, z 1 z, α), we have z α 1 α = z 1z α z 1 α = z z 1 z 1 z 1 = z. The triangle (1, z, α) is similar to (z 1, z 1 z, α), so we have Thus we obtain z 1 α 1 α = z 1z α z α 1 α = z 1 α z 1 By the triangular inequality, we have = z 1 z 1 z 1 z = z α z = z 1. = z 1z 1 α, z 1 z d(z 1, 1) = z 1 1 z < z 1 α + α 1 z = z 1 α + α z = z 1 z z 1 + z z 1 + z = d(z 1, z ). Disk packing Tohoku Univ 0 / 1

21 Lemma The points 1, z m, z m+n, z n lie on a same circle in this order of vertices d(z m, z n ) = d(z m+n, 1) ψ m,n (θ) = ϕ m,n (r) ( cos mθ π ψ m,n (θ) := nθ π ) π cos ( mθ π + nθ π ) π, ϕ m,n(r) := r m + r n 1 + r m+n. If this is the case, d(z m, z n ) = d(z m+n, 1) > d(z m, 1), d(z n, 1) Disk packing Tohoku Univ 1 / 1

22 The bifurcation locus for Voronoi tilings g a m, b n r = g a m, b (θ) = ϕ 1 m,n (ψ m,n (θ)). n Y-Sushida-Hizume(015) : [ a m, b n ] [0, 1], Let z = re 1θ D \ R. Let ( a m, b n ) θ π, mb na = 1. If 0 < r = g a m, b (θ) < 1, V has Voronoi parastichy numbers m, n. n V has Voronoi parastichy numbers m, m + n, n if either a m < θ π < a+b m+n, g a m, (θ) < r < g b a (θ), n θ π = a+b m, a+b m+n m+n, g a m, (θ) < r < 1, or b n a+b m+n < θ π < b n, g a m, (θ) < r < g b a+b n m+n, b n (θ). Disk packing Tohoku Univ / 1

23 Bifurcation diagram of Voronoi tiling Disk packing Tohoku Univ 3 / 1

24 Voronoi spiral tiling Y-Sushida-Hizume, Nonlinearity 8 (015) Disk packing Tohoku Univ 4 / 1

25 Disk packing Tohoku Univ 5 / 1

26 Theorem A disk parastichy number is also a Voronoi parastichy number. Van Iterson s diagram of disk packing is a dual graph to the bifurcation diagram of Voronoi tiling. This shows that van Iterson s diagram has a tree structure, and it is connected and simply connected. Disk packing Tohoku Univ 6 / 1

27 Thank you! Disk packing Tohoku Univ 7 / 1

Program and information

Program and information Kyoto University March 26 and 27, 2018 Program and information Organizers: Takashi Sakajo, Darren Crowdy Sponsored by: Kyoto University Top Global Program Program March 26 (Monday) (All presentations will

More information

A DYNAMICAL SYSTEM FOR PLANT PATTERN FORMATION. Pau Atela (Smith College) Christophe Golé (Smith College) Scott Hotton (Miami University)

A DYNAMICAL SYSTEM FOR PLANT PATTERN FORMATION. Pau Atela (Smith College) Christophe Golé (Smith College) Scott Hotton (Miami University) A DYNAMICAL SYSTEM FOR PLANT PATTERN FORMATION Pau Atela (Smith College) Christophe Golé (Smith College) Scott Hotton (Miami University) 1 Phyllotaxis (Greek: phylon=leaf, taxis = order) Botanical elements

More information

Statistical Mechanics and Combinatorics : Lecture IV

Statistical Mechanics and Combinatorics : Lecture IV Statistical Mechanics and Combinatorics : Lecture IV Dimer Model Local Statistics We ve already discussed the partition function Z for dimer coverings in a graph G which can be computed by Kasteleyn matrix

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

III.3. Analytic Functions as Mapping, Möbius Transformations

III.3. Analytic Functions as Mapping, Möbius Transformations III.3. Analytic Functions as Mapping, Möbius Transformations 1 III.3. Analytic Functions as Mapping, Möbius Transformations Note. To graph y = f(x) where x,y R, we can simply plot points (x,y) in R 2 (that

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math (001) - Term 181 Recitation (1.1)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math (001) - Term 181 Recitation (1.1) Recitation (1.1) Question 1: Find a point on the y-axis that is equidistant from the points (5, 5) and (1, 1) Question 2: Find the distance between the points P(2 x, 7 x) and Q( 2 x, 4 x) where x 0. Question

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

Puiseux series dynamics and leading monomials of escape regions

Puiseux series dynamics and leading monomials of escape regions Puiseux series dynamics and leading monomials of escape regions Jan Kiwi PUC, Chile Workshop on Moduli Spaces Associated to Dynamical Systems ICERM Providence, April 17, 2012 Parameter space Monic centered

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information

Möbius Transformation

Möbius Transformation Möbius Transformation 1 1 June 15th, 2010 Mathematics Science Center Tsinghua University Philosophy Rigidity Conformal mappings have rigidity. The diffeomorphism group is of infinite dimension in general.

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

Schwarz lemma and automorphisms of the disk

Schwarz lemma and automorphisms of the disk Chapter 2 Schwarz lemma and automorphisms of the disk 2.1 Schwarz lemma We denote the disk of radius 1 about 0 by the notation D, that is, D = {z C : z < 1}. Given θ R the rotation of angle θ about 0,

More information

Math Requirements for applicants by Innopolis University

Math Requirements for applicants by Innopolis University Math Requirements for applicants by Innopolis University Contents 1: Algebra... 2 1.1 Numbers, roots and exponents... 2 1.2 Basics of trigonometry... 2 1.3 Logarithms... 2 1.4 Transformations of expressions...

More information

Common Core Edition Table of Contents

Common Core Edition Table of Contents Common Core Edition Table of Contents ALGEBRA 1 Chapter 1 Foundations for Algebra 1-1 Variables and Expressions 1-2 Order of Operations and Evaluating Expressions 1-3 Real Numbers and the Number Line 1-4

More information

I.G.C.S.E. Area. You can access the solutions from the end of each question

I.G.C.S.E. Area. You can access the solutions from the end of each question I.G.C.S.E. Area Index: Please click on the question number you want Question Question Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 You can access the solutions from the

More information

Random Walks on Hyperbolic Groups III

Random Walks on Hyperbolic Groups III Random Walks on Hyperbolic Groups III Steve Lalley University of Chicago January 2014 Hyperbolic Groups Definition, Examples Geometric Boundary Ledrappier-Kaimanovich Formula Martin Boundary of FRRW on

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

9-12 Mathematics Vertical Alignment ( )

9-12 Mathematics Vertical Alignment ( ) Algebra I Algebra II Geometry Pre- Calculus U1: translate between words and algebra -add and subtract real numbers -multiply and divide real numbers -evaluate containing exponents -evaluate containing

More information

Algebra 2 End of Course Review

Algebra 2 End of Course Review 1 Natural numbers are not just whole numbers. Integers are all whole numbers both positive and negative. Rational or fractional numbers are all fractional types and are considered ratios because they divide

More information

Winter 2014 Practice Final 3/21/14 Student ID

Winter 2014 Practice Final 3/21/14 Student ID Math 4C Winter 2014 Practice Final 3/21/14 Name (Print): Student ID This exam contains 5 pages (including this cover page) and 20 problems. Check to see if any pages are missing. Enter all requested information

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

0116ge. Geometry Regents Exam RT and SU intersect at O.

0116ge. Geometry Regents Exam RT and SU intersect at O. Geometry Regents Exam 06 06ge What is the equation of a circle with its center at (5, ) and a radius of 3? ) (x 5) + (y + ) = 3 ) (x 5) + (y + ) = 9 3) (x + 5) + (y ) = 3 4) (x + 5) + (y ) = 9 In the diagram

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1 MATH 85: COMPLEX ANALYSIS FALL 2009/0 PROBLEM SET 9 SOLUTIONS. Consider the functions defined y g a (z) = eiπz/2 e iπz/2 + Show that g a maps the set to D(0, ) while g maps the set and g (z) = eπz/2 e

More information

Common Core State Standards for Mathematics - High School

Common Core State Standards for Mathematics - High School to the Common Core State Standards for - High School I Table of Contents Number and Quantity... 1 Algebra... 1 Functions... 3 Geometry... 6 Statistics and Probability... 8 Copyright 2013 Pearson Education,

More information

E. Falbel and P.-V. Koseleff

E. Falbel and P.-V. Koseleff Mathematical Research Letters 9, 379 391 (2002) A CIRCLE OF MODULAR GROUPS IN PU(2,1) E. Falbel and P.-V. Koseleff Abstract. We prove that there exists a circle of discrete and faithful embeddings of the

More information

C=2πr C=πd. Chapter 10 Circles Circles and Circumference. Circumference: the distance around the circle

C=2πr C=πd. Chapter 10 Circles Circles and Circumference. Circumference: the distance around the circle 10.1 Circles and Circumference Chapter 10 Circles Circle the locus or set of all points in a plane that are A equidistant from a given point, called the center When naming a circle you always name it by

More information

Enumeration of domino tilings of a double Aztec rectangle

Enumeration of domino tilings of a double Aztec rectangle Enumeration of domino tilings of a double Aztec rectangle University of Nebraska Lincoln Lincoln, NE 68505 AMS Fall Central Sectional Meeting University of St. Thomas Minneapolis, MN, October 30, 2015

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

Complex Analysis Homework 9: Solutions

Complex Analysis Homework 9: Solutions Complex Analysis Fall 2007 Homework 9: Solutions 3..4 (a) Let z C \ {ni : n Z}. Then /(n 2 + z 2 ) n /n 2 n 2 n n 2 + z 2. According to the it comparison test from calculus, the series n 2 + z 2 converges

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-1: Basic Ideas 1 Introduction

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

Polar Form of a Complex Number (I)

Polar Form of a Complex Number (I) Polar Form of a Complex Number (I) The polar form of a complex number z = x + iy is given by z = r (cos θ + i sin θ) where θ is the angle from the real axes to the vector z and r is the modulus of z, i.e.

More information

Quasi-uniform grids using a spherical helix

Quasi-uniform grids using a spherical helix Quasi-uniform grids using a spherical helix (Kyoto University) enomoto.takeshi.3n@kyoto-u.ac.jp 8 April 2014 Acknowledgments: Dr S. Iga provided NICAM s grids. Workshop on the Partial Differential Equations

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

Complex Analysis Problems

Complex Analysis Problems Complex Analysis Problems transcribed from the originals by William J. DeMeo October 2, 2008 Contents 99 November 2 2 2 200 November 26 4 3 2006 November 3 6 4 2007 April 6 7 5 2007 November 6 8 99 NOVEMBER

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

Example If the function for a sequence is f (n) = 2n 1 then the values are found by substituting the domain values into the function in order

Example If the function for a sequence is f (n) = 2n 1 then the values are found by substituting the domain values into the function in order Section 12 1A: Sequences A sequence is a function whose domain is the positive integers Z +. Z + represents the counting numbers 1, 2, 3, 4, 5, 6, 7,... We use the letter n to represent the domain of the

More information

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces 8 8 THE RIEMANN MAPPING THEOREM 8.1 Simply Connected Surfaces Our aim is to prove the Riemann Mapping Theorem which states that every simply connected Riemann surface R is conformally equivalent to D,

More information

12-neighbour packings of unit balls in E 3

12-neighbour packings of unit balls in E 3 12-neighbour packings of unit balls in E 3 Károly Böröczky Department of Geometry Eötvös Loránd University Pázmány Péter sétány 1/c H-1117 Budapest Hungary László Szabó Institute of Informatics and Economics

More information

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3 Analysis Math Notes Study Guide Real Analysis Contents Ordered Fields 2 Ordered sets and fields 2 Construction of the Reals 1: Dedekind Cuts 2 Metric Spaces 3 Metric Spaces 3 Definitions 4 Separability

More information

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10.

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10. 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 2) 8 3) 3 4) 6 2 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

8. Complex Numbers. sums and products. basic algebraic properties. complex conjugates. exponential form. principal arguments. roots of complex numbers

8. Complex Numbers. sums and products. basic algebraic properties. complex conjugates. exponential form. principal arguments. roots of complex numbers EE202 - EE MATH II 8. Complex Numbers Jitkomut Songsiri sums and products basic algebraic properties complex conjugates exponential form principal arguments roots of complex numbers regions in the complex

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 315 326 ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Hiroshige Shiga Tokyo Institute of Technology, Department of

More information

40th International Mathematical Olympiad

40th International Mathematical Olympiad 40th International Mathematical Olympiad Bucharest, Romania, July 999 Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points

More information

Isoperimetric inequalities and variations on Schwarz s Lemma

Isoperimetric inequalities and variations on Schwarz s Lemma Isoperimetric inequalities and variations on Schwarz s Lemma joint work with M. van den Berg and T. Carroll May, 2010 Outline Schwarz s Lemma and variations Isoperimetric inequalities Proof Classical Schwarz

More information

Composition Operators with Multivalent Symbol

Composition Operators with Multivalent Symbol Composition Operators with Multivalent Symbol Rebecca G. Wahl University of South Dakota, Vermillion, South Dakota 57069 March 10, 007 Abstract If ϕ is an analytic map of the unit disk D into itself, the

More information

f(w) f(a) = 1 2πi w a Proof. There exists a number r such that the disc D(a,r) is contained in I(γ). For any ǫ < r, w a dw

f(w) f(a) = 1 2πi w a Proof. There exists a number r such that the disc D(a,r) is contained in I(γ). For any ǫ < r, w a dw Proof[section] 5. Cauchy integral formula Theorem 5.. Suppose f is holomorphic inside and on a positively oriented curve. Then if a is a point inside, f(a) = w a dw. Proof. There exists a number r such

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Efficient packing of unit squares in a square

Efficient packing of unit squares in a square Loughborough University Institutional Repository Efficient packing of unit squares in a square This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional

More information

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A. Problem 1A Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1 (Hint: 1 1 (something)dz) Solution: The volume is 1 1 4xydz where x = y = 1 z 2 This integral has value 16/3 Problem 2A Let f(x)

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Math 632: Complex Analysis Chapter 1: Complex numbers

Math 632: Complex Analysis Chapter 1: Complex numbers Math 632: Complex Analysis Chapter 1: Complex numbers Spring 2019 Definition We define the set of complex numbers C to be the set of all ordered pairs (a, b), where a, b R, and such that addition and multiplication

More information

UNC Charlotte 2005 Comprehensive March 7, 2005

UNC Charlotte 2005 Comprehensive March 7, 2005 March 7, 2005 1 The numbers x and y satisfy 2 x = 15 and 15 y = 32 What is the value xy? (A) 3 (B) 4 (C) 5 (D) 6 (E) none of A, B, C or D 2 Suppose x, y, z, and w are real numbers satisfying x/y = 4/7,

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

Mid Term-1 : Solutions to practice problems

Mid Term-1 : Solutions to practice problems Mid Term- : Solutions to practice problems 0 October, 06. Is the function fz = e z x iy holomorphic at z = 0? Give proper justification. Here we are using the notation z = x + iy. Solution: Method-. Use

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric Axioms of a Metric Picture analysis always assumes that pictures are defined in coordinates, and we apply the Euclidean metric as the golden standard for distance (or derived, such as area) measurements.

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

0811ge. Geometry Regents Exam

0811ge. Geometry Regents Exam 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 ) 8 3) 3 4) 6 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

Geometric Complex Analysis. Davoud Cheraghi Imperial College London

Geometric Complex Analysis. Davoud Cheraghi Imperial College London Geometric Complex Analysis Davoud Cheraghi Imperial College London May 9, 2017 Introduction The subject of complex variables appears in many areas of mathematics as it has been truly the ancestor of many

More information

Brunswick School Department Honors Geometry Unit 6: Right Triangles and Trigonometry

Brunswick School Department Honors Geometry Unit 6: Right Triangles and Trigonometry Understandings Questions Knowledge Vocabulary Skills Right triangles have many real-world applications. What is a right triangle? How to find the geometric mean of two numbers? What is the Pythagorean

More information

TESTING HOLOMORPHY ON CURVES

TESTING HOLOMORPHY ON CURVES TESTING HOLOMORPHY ON CURVES BUMA L. FRIDMAN AND DAOWEI MA Abstract. For a domain D C n we construct a continuous foliation of D into one real dimensional curves such that any function f C 1 (D) which

More information

Lecture 3: Tropicalizations of Cluster Algebras Examples David Speyer

Lecture 3: Tropicalizations of Cluster Algebras Examples David Speyer Lecture 3: Tropicalizations of Cluster Algebras Examples David Speyer Let A be a cluster algebra with B-matrix B. Let X be Spec A with all of the cluster variables inverted, and embed X into a torus by

More information

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued).

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). Bessel s differential equation of order m 0: z 2 d2 f dz 2 + z df dz + (z2 m 2 )f = 0 The equation is considered on the

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 1. Please write your 1- or 2-digit exam number on

More information

Index. Excerpt from "Calculus" 2013 AoPS Inc. Copyrighted Material INDEX

Index. Excerpt from Calculus 2013 AoPS Inc.  Copyrighted Material INDEX Index #, 2 \, 5, 4 [, 4 - definition, 38 ;, 2 indeterminate form, 2 22, 24 indeterminate form, 22 23, see Euler s Constant 2, 2, see infinity, 33 \, 6, 3, 2 3-6-9 triangle, 2 4-dimensional sphere, 85 45-45-9

More information

MEROMORPHIC FUNCTIONS WHOSE JULIA SETS CONTAIN A FREE JORDAN ARC

MEROMORPHIC FUNCTIONS WHOSE JULIA SETS CONTAIN A FREE JORDAN ARC Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 18, 1993, 273 298 MEROMORPHIC FUNCTIONS WHOSE JULIA SETS CONTAIN A FREE JORDAN ARC Gwyneth M. Stallard Imperial College of Science,

More information

Problems for MATH-6300 Complex Analysis

Problems for MATH-6300 Complex Analysis Problems for MATH-63 Complex Analysis Gregor Kovačič December, 7 This list will change as the semester goes on. Please make sure you always have the newest version of it.. Prove the following Theorem For

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1) 1. Factor the polynomial x 3 x + 1 and find the Galois group of its splitting field if the ground

More information

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26 Math 814 HW 3 October 16, 2007 p. 54: 9, 14, 18, 24, 25, 26 p.54, Exercise 9. If T z = az+b, find necessary and sufficient conditions for T to cz+d preserve the unit circle. T preserves the unit circle

More information

DESK Secondary Math II

DESK Secondary Math II Mathematical Practices The Standards for Mathematical Practice in Secondary Mathematics I describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Phyllotaxis dynamics: A study of transitions between plant patterns

Phyllotaxis dynamics: A study of transitions between plant patterns A Division III Thesis by Luke Grecki For the School of Natural Science Phyllotaxis dynamics: A study of transitions between plant patterns Chairperson: Ken Hoffman Member: Lee Spector Member: Christophe

More information

Test Corrections for Unit 1 Test

Test Corrections for Unit 1 Test MUST READ DIRECTIONS: Read the directions located on www.koltymath.weebly.com to understand how to properly do test corrections. Ask for clarification from your teacher if there are parts that you are

More information

ATHS FC Math Department Al Ain Revision worksheet

ATHS FC Math Department Al Ain Revision worksheet ATHS FC Math Department Al Ain Revision worksheet Section Name ID Date Lesson Marks 3.3, 13.1 to 13.6, 5.1, 5.2, 5.3 Lesson 3.3 (Solving Systems of Inequalities by Graphing) Question: 1 Solve each system

More information

High School Math. Grades Scope and Sequence

High School Math. Grades Scope and Sequence High School Units-All-03feb12.docx High School Math Grades 9 11 Scope and Sequence High School Units-All-03feb12.docx TRADITIONAL Grade 9 Algebra One A0 Introductory Unit 5 days 5 A1 Modeling with Functions

More information

A4 Linear Equations & Inequalities in Two Variables 15 days. A5 Quadratic Functions. 5 days A-CED 2 A-CED 3 A-CED 4 A-REI 5 A-REI 6 A-REI 10 A-REI 12

A4 Linear Equations & Inequalities in Two Variables 15 days. A5 Quadratic Functions. 5 days A-CED 2 A-CED 3 A-CED 4 A-REI 5 A-REI 6 A-REI 10 A-REI 12 TRADITIONAL Grade 9: Algebra One A0 Intro Unit 5 days A1 Modeling with Functions 15 days N-Q 1 N-Q 2 N-Q 3 F-IF 1 F-IF 2 F-IF 3 F-IF 4* F-IF 5* F-IF 9* F-LE 1 F-LE 1a,1b F-LE 3 F-LE 5 A2 Linear Functions

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12

Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12 Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12 Grade 9 Grade 12 AA similarity Angle-angle similarity. When twotriangles have corresponding angles that are congruent, the triangles are similar.

More information

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C THE RESIDUE THEOREM ontents 1. The Residue Formula 1 2. Applications and corollaries of the residue formula 2 3. ontour integration over more general curves 5 4. Defining the logarithm 7 Now that we have

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 24, 2011 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

The geometry of the Weil-Petersson metric in complex dynamics

The geometry of the Weil-Petersson metric in complex dynamics The geometry of the Weil-Petersson metric in complex dynamics Oleg Ivrii Apr. 23, 2014 The Main Cardioid Mandelbrot Set Conjecture: The Weil-Petersson metric is incomplete and its completion attaches the

More information

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ Lecture 6 Consequences of Cauchy s Theorem MATH-GA 45.00 Complex Variables Cauchy s Integral Formula. Index of a point with respect to a closed curve Let z C, and a piecewise differentiable closed curve

More information

Thompson s group T as automorphism group of a cellular complex

Thompson s group T as automorphism group of a cellular complex Thompson s group of a cellular complex (joint work with Maxime Nguyen) Université Joseph Fourier Universitat Politècnica de Catalunya GAGTA 5. Manresa, 14 July 2011 Introduction Motivation Tits (1970)

More information

Complex Numbers. z = x+yi

Complex Numbers. z = x+yi Complex Numbers The field of complex numbers is the extension C R consisting of all expressions z = x+yi where x, y R and i = 1 We refer to x = Re(z) and y = Im(z) as the real part and the imaginary part

More information

Geometry. Separating Maps of the Lattice E 8 and Triangulations of the Eight-Dimensional Torus. G. Dartois and A. Grigis.

Geometry. Separating Maps of the Lattice E 8 and Triangulations of the Eight-Dimensional Torus. G. Dartois and A. Grigis. Discrete Comput Geom 3:555 567 (000) DOI: 0.007/s004540000 Discrete & Computational Geometry 000 Springer-Verlag New York Inc. Separating Maps of the Lattice E 8 and Triangulations of the Eight-Dimensional

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

arxiv: v1 [math.dg] 28 Jun 2008

arxiv: v1 [math.dg] 28 Jun 2008 Limit Surfaces of Riemann Examples David Hoffman, Wayne Rossman arxiv:0806.467v [math.dg] 28 Jun 2008 Introduction The only connected minimal surfaces foliated by circles and lines are domains on one of

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information