Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Size: px
Start display at page:

Download "Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution"

Transcription

1 Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015

2 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n in terms of one or more of the terms preceding it (i.e in terms of a 0, a 1, a 2,..., a n 1 ), for any n greater than some initial integer k. The values of the first few terms of the sequence needed to start computing with the recurrence relation are called the initial conditions.

3 The Fibonacci sequence Let F 0 = 1, F 1 = 1, F 2 = 2, F 3 = 3, F 4 = 5, etc.

4 The Fibonacci sequence Let F 0 = 1, F 1 = 1, F 2 = 2, F 3 = 3, F 4 = 5, etc. We find that F n = F n 1 + F n 2 for all n 2. The necessary initial conditions are F 0 = 1, F 1 = 1.

5 The Fibonacci sequence Let F 0 = 1, F 1 = 1, F 2 = 2, F 3 = 3, F 4 = 5, etc. We find that for all n 2. F n = F n 1 + F n 2 The necessary initial conditions are F 0 = 1, F 1 = 1. This sequence is known as the Fibonacci sequence and the terms of the sequence are known as Fibonacci numbers.

6 The Lucas Numbers The sequence of Lucas numbers 2, 1, 3, 4, 7, 11,... has the initial conditions L 1 = 2 and L 2 = 1 and the recursion L n = L n 1 + L n 2.

7 The Lucas Numbers The sequence of Lucas numbers 2, 1, 3, 4, 7, 11,... has the initial conditions L 1 = 2 and L 2 = 1 and the recursion L n = L n 1 + L n 2. Note that this is the same recursion relation as for the Fibonacci numbers.

8 The Catalan Numbers The sequence of Catalan numbers is given recursively by C n+1 = C 1 C n + C 2 C n C i C n+1 i + + C n C 1, with C 0 = C 1 = 1. The first eleven terms are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, C n can also be given non-recursively as follows: (2n)! C n+1 = (n + 1)!(n!) = 1 ( ) 2n, n = 0, 1, 2,.... n + 1 n

9 Significance of The Catalan Numbers (1) The number of ways to cut an (n + 2)-sided polygon into triangles by connecting its corners with n 1 non-intersecting straight line segments is equal to C n. Figure : Dividing the square. Figure : Dividing the pentagon.

10 Significance of The Catalan Numbers (2) The number of complete binary trees with n leaves is equal to C n 1. One leaf: Two leaves: Three leaves: Four leaves: Figure : Complete binary trees with one, two, three and four leaves

11 Definitions Definition A recurrence relation of the form a n = c 1 (n)a n 1 +c 2 (n)a n 2 +c 3 (n)a n c m (n)a n m +f (n) where c 1, c 2,..., c m and f are functions of n, is called a linear recurrence relation of order m.

12 Definitions Definition A recurrence relation of the form a n = c 1 (n)a n 1 +c 2 (n)a n 2 +c 3 (n)a n c m (n)a n m +f (n) where c 1, c 2,..., c m and f are functions of n, is called a linear recurrence relation of order m. The relation is homogeneous if f (n) = 0 for all n

13 Definitions Definition A recurrence relation of the form a n = c 1 (n)a n 1 +c 2 (n)a n 2 +c 3 (n)a n c m (n)a n m +f (n) where c 1, c 2,..., c m and f are functions of n, is called a linear recurrence relation of order m. The relation is homogeneous if f (n) = 0 for all n The relation has constant coefficients and is of order m when the c i (n) s are all constant and c m 0.

14 Definitions Definition A recurrence relation of the form a n = c 1 (n)a n 1 +c 2 (n)a n 2 +c 3 (n)a n c m (n)a n m +f (n) where c 1, c 2,..., c m and f are functions of n, is called a linear recurrence relation of order m. The relation is homogeneous if f (n) = 0 for all n The relation has constant coefficients and is of order m when the c i (n) s are all constant and c m 0. We consider recurrence relations that have the form a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0.

15 Characteristic Equation and Roots Definition x m c 1 x m 1 c 2 x m 2 c m = 0 is called the characteristic equation of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0.

16 Characteristic Equation and Roots Definition x m c 1 x m 1 c 2 x m 2 c m = 0 is called the characteristic equation of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0. The characteristic equation has m (not necessarily distinct) roots, r 1, r 2, r 3,... r m, referred to as characteristic roots.

17 Characteristic Equation and Roots Definition x m c 1 x m 1 c 2 x m 2 c m = 0 is called the characteristic equation of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0. The characteristic equation has m (not necessarily distinct) roots, r 1, r 2, r 3,... r m, referred to as characteristic roots. These roots may be real or complex.

18 Characteristic Equation and Roots Definition x m c 1 x m 1 c 2 x m 2 c m = 0 is called the characteristic equation of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0. The characteristic equation has m (not necessarily distinct) roots, r 1, r 2, r 3,... r m, referred to as characteristic roots. These roots may be real or complex. As c m 0, they are all different from 0.

19 Theorem: Solutions Theorem The sequence a n = r n is a solution of the recurrence a n = c 1 a n 1 + c 2 a n 2 + c 3 a n c m a n m, c m 0. if and only if r is a root of the characteristic equation x m c 1 x m 1 c 2 x m 2 c m = 0 Hence, for each characteristic root r, a n = r n is a solution. These are called fundamental solutions.

20 Operations on Solutions Let (a n ) and (b n ) be sequences. Addition of the sequences: (a n ) + (b n ) is the sequence (a n + b n ), i.e. (a 1, a 2, a 3,...) + (b 1, b 2, b 3,...) = (a 1 + b 1, a 2 + b 2, a 3 + b 3,...).

21 Operations on Solutions Let (a n ) and (b n ) be sequences. Addition of the sequences: (a n ) + (b n ) is the sequence (a n + b n ), i.e. (a 1, a 2, a 3,...) + (b 1, b 2, b 3,...) = (a 1 + b 1, a 2 + b 2, a 3 + b 3,...). A constant multiple, k(a n ), of a sequence (a n ) is k(a n ) = (ka 1, ka 2, ka 3,...).

22 Theorem: Linear Combinations of Solutions Theorem If (a n ) and (b n ) satisfy a homogeneous linear recurrence relation with constant coefficients, then (a n ) + (b n ) and k(a n ) satisfy the same recurrence relation.

23 General Solution Distinct Roots Theorem Let the roots r 1, r 2, r 3,..., r m of the characteristic equation be distinct. Then a n = k 1 r n 1 + k 2r n 2 + k 3r n 3 + k mr n m is a general solution of the homogeneous linear recurrence relation, i.e. every solution can be expressed in this form for some choice of constants k 1, k 2, k 3..., k m. I.e. the fundamental solutions of a recurrence relation form a basis of the vector space of solutions of that relation.

24 Solution Procedure Distinct Roots 1. Write down the characteristic equation for the relation.

25 Solution Procedure Distinct Roots 1. Write down the characteristic equation for the relation. 2. Find the m roots of the characteristic equation. If the roots are distinct we obtain m fundamental solutions.

26 Solution Procedure Distinct Roots 1. Write down the characteristic equation for the relation. 2. Find the m roots of the characteristic equation. If the roots are distinct we obtain m fundamental solutions. 3. Take an arbitrary linear combination of the fundamental solutions to obtain a general solution.

27 Solution Procedure Distinct Roots 1. Write down the characteristic equation for the relation. 2. Find the m roots of the characteristic equation. If the roots are distinct we obtain m fundamental solutions. 3. Take an arbitrary linear combination of the fundamental solutions to obtain a general solution. 4. Using the initial conditions, construct and solve a system of equations to obtain the specific solution.

28 Examples: Distinct Roots Solve the following recurrence relations: 1. a n = 5a n 1 6a n 2 for n > 2, and with a 1 = 2 and a 2 = 10.

29 Examples: Distinct Roots Solve the following recurrence relations: 1. a n = 5a n 1 6a n 2 for n > 2, and with a 1 = 2 and a 2 = a n = a n a n 2 for n > 1, and with a 0 = 1 and a 1 = 2.

30 Examples: Distinct Roots Solve the following recurrence relations: 1. a n = 5a n 1 6a n 2 for n > 2, and with a 1 = 2 and a 2 = a n = a n a n 2 for n > 1, and with a 0 = 1 and a 1 = a n = 4a n a n 2 for for n > 2, and with a 1 = 2 and a 2 = 3.

31 Complex Roots Theorem If the roots of a characteristic equation of a homogeneous linear recurrence relation of degree two are complex numbers a + bi and a bi (i.e. the roots are complex conjugates) then the general solution of the recurrence relation is given by a n = ρ n (k 1 cos nθ + k 2 sin nθ) where ρ = a 2 + b 2, cos θ = a ρ and sin θ = b ρ.

32 Complex Roots Examples Solve the following recurrence relation: a n = 2 2a n 1 4a n 2 for n > 1, with a 0 = 1 and a 1 = 2.

33 Multiplicity of Roots A characteristic root r has multiplicity j if it appears as a root of the characteristic equation x m c 1 x m 1 c 2 x m 2 c m = 0 exactly j times. This is equivalent to (x r) j being a divisor of the polynomial x m c 1 x m 1 c 2 x m 2 c m but (x r) j+1 not being a divisor.

34 Repeated Roots Fundamental Solutions If r is a characteristic root of multiplicity j, then a n = r n, a n = nr n, a n = n 2 r n,... a n = n j 1 r n are linearly independent and can be taken as fundamental solutions.

35 Repeated Roots Example Solve the recurrence relation given by a n = 6a n 1 9a n 2 with a 0 = 1 and a 1 = 4.

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

Ma/CS 6a Class 24: More Generating Functions

Ma/CS 6a Class 24: More Generating Functions Ma/CS 6a Class 24: More Generating Functions Road signs from http://www.math.ucla.edu/~pak/ By Adam Sheffer Reminder: Generating Functions Given an infinite sequence of numbers a 0, a 1, a 2, the generating

More information

CIS Spring 2018 (instructor Val Tannen)

CIS Spring 2018 (instructor Val Tannen) CIS 160 - Spring 018 (instructor Val Tannen) Lecture 11 Tuesday, February 0 PROOFS: STRONG INDUCTION Example 1.1 Any integer n can be written as the product of one or more (not necessarily distinct) prime

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

Discrete Math. Instructor: Mike Picollelli. Day 10

Discrete Math. Instructor: Mike Picollelli. Day 10 Day 10 Fibonacci Redux. Last time, we saw that F n = 1 5 (( 1 + ) n ( 5 2 1 ) n ) 5. 2 What Makes The Fibonacci Numbers So Special? The Fibonacci numbers are a particular type of recurrence relation, a

More information

Discrete Mathematics -- Chapter 10: Recurrence Relations

Discrete Mathematics -- Chapter 10: Recurrence Relations Discrete Mathematics -- Chapter 10: Recurrence Relations Hung-Yu Kao ( 高宏宇 ) Department of Computer Science and Information Engineering, National Cheng Kung University First glance at recurrence F n+2

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

Lecture 7: Dynamic Programming I: Optimal BSTs

Lecture 7: Dynamic Programming I: Optimal BSTs 5-750: Graduate Algorithms February, 06 Lecture 7: Dynamic Programming I: Optimal BSTs Lecturer: David Witmer Scribes: Ellango Jothimurugesan, Ziqiang Feng Overview The basic idea of dynamic programming

More information

2-4. Holt McDougal Geometry

2-4. Holt McDougal Geometry Warm Up Write a conditional statement from each of the following. 1. The intersection of two lines is a point. If two lines intersect, then they intersect in a point. 2. An odd number is one more than

More information

Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES

Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES CS131 Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES A recurrence is a rule which defines each term of a sequence using the preceding terms. The Fibonacci

More information

Recurrences COMP 215

Recurrences COMP 215 Recurrences COMP 215 Analysis of Iterative Algorithms //return the location of the item matching x, or 0 if //no such item is found. index SequentialSearch(keytype[] S, in, keytype x) { index location

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

AROUND (1 + 2) n. (1 + x) 5 = 1 + 5x + 10x x 3 + 5x 4 + x 5.

AROUND (1 + 2) n. (1 + x) 5 = 1 + 5x + 10x x 3 + 5x 4 + x 5. AROUND (1 + ) n 1. Calculator tricks. Let us take a simple pocket calculator and compute 1-st, -nd, 3-rd, and so on, powers of the number 1 +. Here are the results: 1 + =.41413... (1 + ) =.8847... (1 +

More information

GENERALIZATION OF AN IDENTITY OF ANDREWS

GENERALIZATION OF AN IDENTITY OF ANDREWS GENERALIZATION OF AN IDENTITY OF ANDREWS arxiv:math/060480v1 [math.co 1 Apr 006 Eduardo H. M. Brietze Instituto de Matemática UFRGS Caixa Postal 15080 91509 900 Porto Alegre, RS, Brazil email: brietze@mat.ufrgs.br

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University Method of Frobenius General Considerations L. Nielsen, Ph.D. Department of Mathematics, Creighton University Dierential Equations, Fall 2008 Outline 1 The Dierential Equation and Assumptions 2 3 Main Theorem

More information

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Geometry

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Geometry 2-4 Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Write a conditional statement from each of the following. 1. The intersection of two lines is a point. If two lines intersect, then they intersect

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February 4th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) 4 (e) 48 Problem. Suppose the function g(x) = f(x)

More information

Enumerating Binary Strings

Enumerating Binary Strings International Mathematical Forum, Vol. 7, 2012, no. 38, 1865-1876 Enumerating Binary Strings without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University Melbourne,

More information

Extended Binet s formula for the class of generalized Fibonacci sequences

Extended Binet s formula for the class of generalized Fibonacci sequences [VNSGU JOURNAL OF SCIENCE AND TECHNOLOGY] Vol4 No 1, July, 2015 205-210,ISSN : 0975-5446 Extended Binet s formula for the class of generalized Fibonacci sequences DIWAN Daksha M Department of Mathematics,

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 998 Comments to the author at krm@mathsuqeduau All contents copyright c 99 Keith

More information

A sequence of thoughts on constructible angles.

A sequence of thoughts on constructible angles. A sequence of thoughts on constructible angles. Dan Franklin & Kevin Pawski Department of Mathematics, SUNY New Paltz, New Paltz, NY 12561 Nov 23, 2002 1 Introduction In classical number theory the algebraic

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

How to Solve Linear Differential Equations

How to Solve Linear Differential Equations How to Solve Linear Differential Equations Definition: Euler Base Atom, Euler Solution Atom Independence of Atoms Construction of the General Solution from a List of Distinct Atoms Euler s Theorems Euler

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively.

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively. . Induction This class will demonstrate the fundamental problem solving technique of mathematical induction. Example Problem: Prove that for every positive integer n there exists an n-digit number divisible

More information

AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS. 1. Introduction

AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS. 1. Introduction SARAJEVO JOURNAL OF MATHEMATICS Vol.13 (26), No.2, (2017), 179188 DOI: 10.5644/SJM.13.2.05 AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS ZVONKO ƒerin In memory of my dear

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS. 1. Introduction

PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS. 1. Introduction PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS HUNTER LEHMANN AND ANDREW PARK Abstract. A graph on n vertices is said to admit a prime labeling if we can label its vertices with the first n natural

More information

Recursive Definitions. Recursive Definition A definition is called recursive if the object is defined in terms of itself.

Recursive Definitions. Recursive Definition A definition is called recursive if the object is defined in terms of itself. Recursion Recursive Definitions Recursive Definition A definition is called recursive if the object is defined in terms of itself. Base Case Recursive definitions require a base case at which to either

More information

Recursive Definitions. Recursive Definition A definition is called recursive if the object is defined in terms of itself.

Recursive Definitions. Recursive Definition A definition is called recursive if the object is defined in terms of itself. Recursion Recursive Definitions Recursive Definition A definition is called recursive if the object is defined in terms of itself. Base Case Recursive definitions require a base case at which to either

More information

V. Adamchik 1. Recurrences. Victor Adamchik Fall of 2005

V. Adamchik 1. Recurrences. Victor Adamchik Fall of 2005 V. Adamchi Recurrences Victor Adamchi Fall of 00 Plan Multiple roots. More on multiple roots. Inhomogeneous equations 3. Divide-and-conquer recurrences In the previous lecture we have showed that if the

More information

SMT 2011 General Test and Solutions February 19, F (x) + F = 1 + x. 2 = 3. Now take x = 2 2 F ( 1) = F ( 1) = 3 2 F (2)

SMT 2011 General Test and Solutions February 19, F (x) + F = 1 + x. 2 = 3. Now take x = 2 2 F ( 1) = F ( 1) = 3 2 F (2) SMT 0 General Test and Solutions February 9, 0 Let F () be a real-valued function defined for all real 0, such that ( ) F () + F = + Find F () Answer: Setting =, we find that F () + F ( ) = Now take =,

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

Algorithmic Approach to Counting of Certain Types m-ary Partitions

Algorithmic Approach to Counting of Certain Types m-ary Partitions Algorithmic Approach to Counting of Certain Types m-ary Partitions Valentin P. Bakoev Abstract Partitions of integers of the type m n as a sum of powers of m (the so called m-ary partitions) and their

More information

Week 9-10: Recurrence Relations and Generating Functions

Week 9-10: Recurrence Relations and Generating Functions Week 9-10: Recurrence Relations and Generating Functions April 3, 2017 1 Some number sequences An infinite sequence (or just a sequence for short is an ordered array a 0, a 1, a 2,..., a n,... of countably

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi Definition (Linear homogeneous recurrence) A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n 1 + c 2 a n 2 +... + c k a

More information

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

More information

MATH 115 Concepts in Mathematics

MATH 115 Concepts in Mathematics South Central College MATH 115 Concepts in Mathematics Course Outcome Summary Course Information Description Total Credits 4.00 Total Hours 64.00 Concepts in Mathematics is a general education survey course

More information

Section 5.2 Solving Recurrence Relations

Section 5.2 Solving Recurrence Relations Section 5.2 Solving Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1 x n 1

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

Quiz 3 Reminder and Midterm Results

Quiz 3 Reminder and Midterm Results Quiz 3 Reminder and Midterm Results Reminder: Quiz 3 will be in the first 15 minutes of Monday s class. You can use any resources you have during the quiz. It covers all four sections of Unit 3. It has

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS THE REAL NUMBER SYSTEM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Computing generating functions for the number of descents in permutations which avoid a family of permutations that start with 1

Computing generating functions for the number of descents in permutations which avoid a family of permutations that start with 1 Computing generating functions for the number of descents in permutations which avoid a family of permutations that start with 1 Quang T. Bach Department of Mathematics University of California, San Diego

More information

Prime Labeling of Small Trees with Gaussian Integers

Prime Labeling of Small Trees with Gaussian Integers Rose-Hulman Undergraduate Mathematics Journal Volume 17 Issue 1 Article 6 Prime Labeling of Small Trees with Gaussian Integers Hunter Lehmann Seattle University Andrew Park Seattle University Follow this

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 87131

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 87131 ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 873 Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 79

More information

CSI2101-W08- Recurrence Relations

CSI2101-W08- Recurrence Relations Motivation CSI2101-W08- Recurrence Relations where do they come from modeling program analysis Solving Recurrence Relations by iteration arithmetic/geometric sequences linear homogenous recurrence relations

More information

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. Math c Solutions: Exam 1 Fall 16 1. Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. x tan t x tan t y sec t y sec t t π 4 To eliminate the parameter,

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Recurrence Relations Reading (Epp s textbook) 5.6 5.8 1 Recurrence Relations A recurrence relation for a sequence aa 0, aa 1, aa 2, ({a n }) is a formula that relates each term a k

More information

COL106: Data Structures and Algorithms (IIT Delhi, Semester-II )

COL106: Data Structures and Algorithms (IIT Delhi, Semester-II ) 1 Solve the following recurrence relations giving a Θ bound for each of the cases 1 : (a) T (n) = 2T (n/3) + 1; T (1) = 1 (Assume n is a power of 3) (b) T (n) = 5T (n/4) + n; T (1) = 1 (Assume n is a power

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions Pre-Algebra and Elementary Algebra: 24 questions Basic operations using whole numbers, integers, fractions, decimals and percents Natural (Counting) Numbers: 1, 2, 3 Whole Numbers: 0, 1, 2, 3 Integers:

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

K th -order linear difference equation (Normal Form)

K th -order linear difference equation (Normal Form) The standard form of the general K th -order difference equation is x n + 1 = F(x n, x n - 1, x n - 2,..., x n - K + 1, P) where P is a vector of parameters. However, linear equations are normally expressed

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

Appendix C: Event Topics per Meet

Appendix C: Event Topics per Meet Appendix C: Event Topics per Meet Meet 1 1A Pre-algebra Topics Fractions to add and express as the quotient of two relatively prime integers Complex fractions and continued fractions Decimals, repeating

More information

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints view.php3 (JPEG Image, 840x888 pixels) - Scaled (71%) https://mail.ateneo.net/horde/imp/view.php3?mailbox=inbox&inde... 1 of 1 11/5/2008 5:02 PM 11 th Philippine Mathematical Olympiad Questions, Answers,

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 22, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 22, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 22, 2012 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

Mathematical Fundamentals

Mathematical Fundamentals Mathematical Fundamentals Sets Factorials, Logarithms Recursion Summations, Recurrences Proof Techniques: By Contradiction, Induction Estimation Techniques Data Structures 1 Mathematical Fundamentals Sets

More information

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 47 Computer Science & Engineering 235 to Discrete Mathematics Sections 7.1-7.2 of Rosen Recursive Algorithms 2 / 47 A recursive

More information

Linear Recurrence Relations

Linear Recurrence Relations Linear Recurrence Relations Linear Homogeneous Recurrence Relations The Towers of Hanoi According to legend, there is a temple in Hanoi with three posts and 64 gold disks of different sizes. Each disk

More information

Unconventional Space-filling Curves

Unconventional Space-filling Curves Unconventional Space-filling Curves Austin M. Gross 12 July 2007 A 2-dimensional space-filling curve, here, is a surjective continuous map from an interval to a 2-dimensional space. To construct a new

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS The real number SySTeM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Syllabus. + + x + n 1 n. + x + 2

Syllabus. + + x + n 1 n. + x + 2 1. Special Functions This class will cover problems involving algebraic functions other than polynomials, such as square roots, the floor function, and logarithms. Example Problem: Let n be a positive

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) (e) 8 Solution: Note that xy = (x + y) (x y) = 169

More information

The Method of Frobenius

The Method of Frobenius The Method of Frobenius R. C. Trinity University Partial Differential Equations April 7, 2015 Motivating example Failure of the power series method Consider the ODE 2xy +y +y = 0. In standard form this

More information

Individual Round CHMMC November 20, 2016

Individual Round CHMMC November 20, 2016 Individual Round CHMMC 20 November 20, 20 Problem. We say that d k d k d d 0 represents the number n in base 2 if each d i is either 0 or, and n d k ( 2) k + d k ( 2) k + + d ( 2) + d 0. For example, 0

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Section 7.2 Solving Linear Recurrence Relations

Section 7.2 Solving Linear Recurrence Relations Section 7.2 Solving Linear Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1

More information

IYGB. Special Extension Paper A. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas

IYGB. Special Extension Paper A. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas IYGB Special Extension Paper A Time: 3 hours 30 minutes Candidates may NOT use any calculator Information for Candidates This practice paper follows the Advanced Level Mathematics Core and the Advanced

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Second Order Linear Equations

Second Order Linear Equations Second Order Linear Equations Linear Equations The most general linear ordinary differential equation of order two has the form, a t y t b t y t c t y t f t. 1 We call this a linear equation because the

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

Instructions. 2. Four possible answers are provided for each question and only one of these is correct.

Instructions. 2. Four possible answers are provided for each question and only one of these is correct. Instructions 1. This question paper has forty multiple choice questions. 2. Four possible answers are provided for each question and only one of these is correct. 3. Marking scheme: Each correct answer

More information

15 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 2012

15 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 2012 1 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 01 1. Let f be the function such that f(x) = { x if x 1 x if x > 1 What is the total length of the graph of f(f(...f(x)...)) from x =

More information

CN#4 Biconditional Statements and Definitions

CN#4 Biconditional Statements and Definitions CN#4 s and Definitions OBJECTIVES: STUDENTS WILL BE ABLE TO WRITE AND ANALYZE BICONDITIONAL STATEMENTS. Vocabulary biconditional statement definition polygon triangle quadrilateral When you combine a conditional

More information

Lucas sequences and infinite sums

Lucas sequences and infinite sums and infinite sums Szabolcs Tengely tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Numeration and Substitution 2014 University of Debrecen Debrecen This research was supported by the European

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 2 Dr. Hyunyoung Lee 1 Strategy for Exam Preparation - Start studying now (unless have already started) - Study class notes (lecture slides and

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial PENRITH HIGH SCHOOL MATHEMATICS EXTENSION 013 Assessor: Mr Ferguson General Instructions: HSC Trial Total marks 100 Reading time 5 minutes Working time 3 hours Write using black or blue pen. Black pen

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION THE FIBONACCI NUMBER OF GENERALIZED PETERSEN GRAPHS Stephan G. Wagner Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria e-mail: wagner@finanz.math.tu-graz.ac.at

More information

CS361 Homework #3 Solutions

CS361 Homework #3 Solutions CS6 Homework # Solutions. Suppose I have a hash table with 5 locations. I would like to know how many items I can store in it before it becomes fairly likely that I have a collision, i.e., that two items

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide n c: Solve the problem

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Propositional Logic. What is discrete math? Tautology, equivalence, and inference. Applications

Propositional Logic. What is discrete math? Tautology, equivalence, and inference. Applications What is discrete math? Propositional Logic The real numbers are continuous in the senses that: between any two real numbers there is a real number The integers do not share this property. In this sense

More information

Individual Solutions

Individual Solutions Individual s November 19, 017 1. A dog on a 10 meter long leash is tied to a 10 meter long, infinitely thin section of fence. What is the minimum area over which the dog will be able to roam freely on

More information

AMBIGUITY PROBLEMS WITH POLAR COORDINATES

AMBIGUITY PROBLEMS WITH POLAR COORDINATES AMBIGUITY PROBLEMS WITH POLAR COORDINATES A given point in the plane can be represented by more than one pair of polar coordinates, and Section 9.7 of Thomas and Finney, Calculus, Ninth Edition, discusses

More information

SOLUTIONS, what is the value of f(4)?

SOLUTIONS, what is the value of f(4)? 005 Georgia Tech High School Mathematics Competition Junior-Varsity Multiple-Choice Examination Version A Problem : If f(x) = x4 x +x x SOLUTIONS, what is the value of f(4)? (A) 6 (B) 70 (C) 78 (D) 8 (E)

More information