Construction of designs for twophase experiments with Tabu search

Size: px
Start display at page:

Download "Construction of designs for twophase experiments with Tabu search"

Transcription

1 Construction of designs for twophase experiments with Tabu search Nha Vo-Thanh In collaboration with Professor Hans-Peter Piepho University of Hohenheim

2 Common bean experiment A breeding program by CIAT (the International Center for Tropical Agriculture) with common beans The goal is to breed new varieties - cooking time for common beans is one of the key trait 2

3 Common bean experiment Phase 1: a field experiment - 10 common beans (treatments) with 6 replications [- ] - 10 field blocks of size 6 [-0] Phase 2: a lab experiment - 60 samples from Phase 1 [Ti and Bj] - 15 days (4 samples/day, 1 machine) [D1-15] - response: cooking time for the common beans We are interested in - common beans - field blocks and days (blocking factors) 3

4 Common bean experiment 24 beans are selected from the same plot 4

5 Common bean experiment 10 Treatments 10 Field Blocks (FB) 6 Plots in FB 10 treatments 60 samples 15 Days 4 Observations in D 60 tests Factor-allocation diagram for the common bean experiment 5

6 Experimental plan Phase 1 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 6 plots 6

7 Experimental plan Phase 1 Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 7

8 Experimental plan Phase 1 Treatment Field Block Treatment 0 Field Block Samples Treatment 0 Field Block Treatment Field Block

9 Experimental plan Phase 2 Day 1 Day 2 Day 3 Day 4 Day 5 4 samples 4 samples 4 samples 4 samples 4 samples Day 6 Day 7 Day 8 Day 9 Day 10 4 samples 4 samples 4 samples 4 samples 4 samples Day 11 Day 12 Day 13 Day 14 Day 15 4 samples 4 samples 4 samples 4 samples 4 samples 9

10 Experimental plan Phase 2 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day

11 Two-phase experiments Phase 1: Treatments are arranged in b 1 blocks of size k 1 Phase 2: The samples obtained from Phase 1 are arranged in b 2 blocks of size k 2 Responses are measured at the end of Phase 2 Nonresolvable designs 11

12 Treatment Field Block Day D1 D1 D1 D1 D1 D1 D2 D2 D2 D2 D2 D2 D15 D15 D15 D15 D15 D15?? Common bean experiment Replicate 1 Replicate 6 12

13 Possible solutions Phase 1: finding an arrangement of 10 treatments in 10 blocks of size 6 Phase 2: finding an arrangement of 10 treatments in 15 days of size 4 => combining two arrangements (CycDesigN, or SAS) However, this approach doesnot take both block effects in two phases into account at the same time! Finding all possible arrangements? > 1 billion designs 13

14 Design of experiments Computer search algorithms Factor-Allocation diagram Anticipated models Design criteria (A-, D-, C-, E-, V-optimality) Construction methods Simulated annealing Tabu search Variable neighborhood search Compare design options 14

15 Response: - cooking time: y ijk, Y Statistical models - ith treatment, jth block, kth day Explanatory variables - Phase 1: common bean effects (trt i, X) - Phase 1: field block effects (block j, Z 1 ) - Phase 2: day effects (day k, Z 2 ) - Random errors (ε ij, ε ik, ε ijk ) Statistical models (fixed effects) - model 0: µ + trt i + block j + ε ij (Phase 1) - model 1: µ + trt i + day k + ε ik (Phase 2) - model 2: y ijk = µ + trt i + block j + day k + ε ijk X 15

16 A statistical model - Y = Xµ + Z 1 β 1 +Z 2 β 2 + ε Optimality criteria - M µ = Q (a.k.a. a reduced model), where M = X T VX ; Q = X T VY; V = I Z (Z T Z) - Z T - Z = [Z 1 Z 2 ] - M is the treatment information matrix A-optimality - minimizes the average pairwise variance of the treatment effects - is computed from M - D-optimality - maximizes the determinant matrix(m) - is computed from M 16

17 Optimality criteria Variance-covariance matrix [ M - ] t 1 t 2 t 3 t n t 1 V 11 Cov 12 Cov 13 Cov 1n t 2 Cov 12 V 22 Cov 23 Cov 2n t 3 Cov 13 Cov 23 V 33 t n Cov 1n Cov 2n Cov 3n V nn Pairwise variances - v 12 = var( t1 t2 ) = (V 11 + V 22-2Cov 12 ) σ 2 - n(n-1)/2 = 45 pairwise comparisions - n = 10 17

18 Optimality criteria For a block design, the average variance of all estimated pairwise comparisons - v = 2δ2 v(v 1) treatments i<j v ij, where v is the number of For a complete block design, the average variance of all estimated pairwise comparisons - 2δ 2 /r, where r is the number of replications The overall average efficiency factor (John and Williams 1995) is defined as: 2δ2 /r 1 v 18

19 Quality of solution Computer search algorithms Metaheuristics search Optimal solution Nearly optimal solution Time 19

20 Search strategy Stage 1 Assign treatments to blocks in Phase 1 Stage 2 Assign samples to blocks in Phase 2, taking treatments and blocks in Phase 1 into account Tabu search 20

21 Search strategy Stage 2 Assign samples to blocks in Phase 2, taking treatments and blocks in Phase 1 into account Tabu search 21

22 Neighborhood designs Phase 1 Swap 2 treatments Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 22

23 Neighborhood designs Phase 1 Swap 2 treatments Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 23

24 Neighborhood designs Phase 1 Swap 2 treatments Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 24

25 Neighborhood designs Phase 1 Swap 2 treatments Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 25

26 Neighborhood designs Phase 2 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day

27 Neighborhood designs Phase 2 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day

28 Neighborhood designs Our example: - The number of treatments = 10 - Phase 1: The number of blocks = 10 The block size = 6 - Phase 2: The number of blocks = 15 The block size = 4 The total number of all neighborhood designs - Phase 1: = Phase 2: =

29 Local search SD = A starting design Step 1 Step 2 Step 3 SD All neighborhood designs (SD) BND = Select the best neighborhood design Compare with SD SD = BND n 0 iterations 29

30 Quality of solution Local search Iter k? Iter 2 Iter 1 Solution 30

31 Quality of solution Local search Tabu list Solution 31

32 Quality of solution Tabu search Tabu list move to a worse solution add a solution to a Tabu list Solution 32

33 Tabu search SD = A starting design; T = empty Step 1 Step 2 Step 3 SD All neighborhood designs (SD) BND = Select the best neighborhood design not in T SD = BND n 0 iterations 33

34 Stage 1: Steps 0 and 1 Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Design efficiency =

35 Stage 1: Steps 0 and 1 Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Design efficiency =

36 Stage 1: Steps 0 and 1 Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Design efficiency =

37 Stage 1: Step 2 Iteration Pos 1 Pos 2 Design efficiency swap

38 Stage 1: Step 2 Iteration Pos 1 Pos 2 Design efficiency swap 1 0 swap

39 Stage 1: Step 3 Block Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Design efficiency =

40 Stage 2: Steps 0 and 1 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 40

41 Stage 2: Steps 0 and 1 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day Design efficiency =

42 Stage 2: Step 2 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day Design efficiency =

43 Stage 2: Step 2 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day Design efficiency =

44 Stage 2: Step 2 Iteration Pos 1 Pos 2 Design efficiency D4 D12 swap 1 [, ] [, ]

45 Stage 2: Step 2 Iteration Pos 1 Pos 2 Design efficiency D4 D12 swap 1 [, ] [, ] D7 D13 swap 2 [, ] [, ]

46 Stage 2: Step 3 Day 1 Day 2 Day 3 Day 4 Day Day 6 Day 7 Day 8 Day 9 Day Day 11 Day 12 Day 13 Day 14 Day Design efficiency =

47 Results Design efficiency starting design optimal design One blocking factor (model 0) Two blocking factors (model 2) A 1 = A 2 = A 1 -A 2 =

48 Common bean experiment Phase 1: a field experiment - 68 common beans (treatments) with 3 replications - 17 blocks of size 12 Phase 2: a lab experiment samples from the first experiment - 4 machines (51 samples) - response: cooking time for the common beans We are interested in - common beans - field blocks and machines (blocking factors) 48

49 Results Design efficiency One blocking factor (model 0) Two blocking factors (model 2) optimal design A 1 = A 2 = A 1 -A 2 =

50 Conclusion We introduced two-phase experiments We proposed a sequential approach to obtain designs for two-phase experiments We proposed a general algorithm based on Tabu search to obtain designs for two-phase experiments 50

51 Thank you for your attention! Questions? 51

G E INTERACTION USING JMP: AN OVERVIEW

G E INTERACTION USING JMP: AN OVERVIEW G E INTERACTION USING JMP: AN OVERVIEW Sukanta Dash I.A.S.R.I., Library Avenue, New Delhi-110012 sukanta@iasri.res.in 1. Introduction Genotype Environment interaction (G E) is a common phenomenon in agricultural

More information

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA.

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA. Analysis of Variance Read Chapter 14 and Sections 15.1-15.2 to review one-way ANOVA. Design of an experiment the process of planning an experiment to insure that an appropriate analysis is possible. Some

More information

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 Lecture 3: Linear Models Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector of observed

More information

Fractional Factorial Designs

Fractional Factorial Designs k-p Fractional Factorial Designs Fractional Factorial Designs If we have 7 factors, a 7 factorial design will require 8 experiments How much information can we obtain from fewer experiments, e.g. 7-4 =

More information

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29 REPEATED MEASURES Copyright c 2012 (Iowa State University) Statistics 511 1 / 29 Repeated Measures Example In an exercise therapy study, subjects were assigned to one of three weightlifting programs i=1:

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

META-ANALYSIS OF MULTIPLE TREATMENTS EXPERIMENTS

META-ANALYSIS OF MULTIPLE TREATMENTS EXPERIMENTS META-ANALYSIS OF MULTIPLE TREATMENTS EXPERIMENTS Samuel D. Zapata Assistant Professor and Extension Economist, Department of Agricultural Economics, Texas A&M AgriLife Extension Service, Texas A&M University,

More information

BIOSTATISTICAL METHODS

BIOSTATISTICAL METHODS BIOSTATISTICAL METHODS FOR TRANSLATIONAL & CLINICAL RESEARCH Cross-over Designs #: DESIGNING CLINICAL RESEARCH The subtraction of measurements from the same subject will mostly cancel or minimize effects

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

USE OF THE SAS VARCOMP PROCEDURE TO ESTIMATE ANALYTICAL REPEATABILITY. Anna Caroli Istituto di Zootecnica Veterinaria - Milano - Italy

USE OF THE SAS VARCOMP PROCEDURE TO ESTIMATE ANALYTICAL REPEATABILITY. Anna Caroli Istituto di Zootecnica Veterinaria - Milano - Italy INTRODUCTION USE OF THE SAS VARCOMP PROCEDURE TO ESTIMATE ANALYTICAL REPEATABILITY Anna Caroli Istituto di Zootecnica Veterinaria - Milano - Italy Researchers often have to assess if an analytical method

More information

A new algorithm for deriving optimal designs

A new algorithm for deriving optimal designs A new algorithm for deriving optimal designs Stefanie Biedermann, University of Southampton, UK Joint work with Min Yang, University of Illinois at Chicago 18 October 2012, DAE, University of Georgia,

More information

An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs

An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs Hongquan Xu Department of Statistics University of California 8130 Math Sciences Bldg Los Angeles,

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Multiple Sample Numerical Data

Multiple Sample Numerical Data Multiple Sample Numerical Data Analysis of Variance, Kruskal-Wallis test, Friedman test University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 /

More information

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis PLS205!! Lab 9!! March 6, 2014 Topic 13: Covariance Analysis Covariable as a tool for increasing precision Carrying out a full ANCOVA Testing ANOVA assumptions Happiness! Covariable as a Tool for Increasing

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

Optimal design of experiments

Optimal design of experiments Optimal design of experiments Session 5: Design construction Peter Goos 1 / 33 Constructing exact optimal designs direct approaches to maximize X T X Microsoft Excel mathematical programming run into problems

More information

Resampling Methods CAPT David Ruth, USN

Resampling Methods CAPT David Ruth, USN Resampling Methods CAPT David Ruth, USN Mathematics Department, United States Naval Academy Science of Test Workshop 05 April 2017 Outline Overview of resampling methods Bootstrapping Cross-validation

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design OBJECTIVES: The objective of an experimental design is to provide the maximum amount of reliable information at the minimum cost. In

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

1 One-way analysis of variance

1 One-way analysis of variance LIST OF FORMULAS (Version from 21. November 2014) STK2120 1 One-way analysis of variance Assume X ij = µ+α i +ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; where ɛ ij -s are independent and N(0, σ 2 ) distributed.

More information

On the Application of Affine Resolvable Designs to Variety. Trials

On the Application of Affine Resolvable Designs to Variety. Trials On the Application of Affine Resolvable Designs to Variety. Trials Tadeusz Caliński, Stanisław Czajka, and Wiesław Pilarczyk Depatment of Mathematical and Statistical Methods Poznań University of Life

More information

Threshold models with fixed and random effects for ordered categorical data

Threshold models with fixed and random effects for ordered categorical data Threshold models with fixed and random effects for ordered categorical data Hans-Peter Piepho Universität Hohenheim, Germany Edith Kalka Universität Kassel, Germany Contents 1. Introduction. Case studies

More information

Overall Plan of Simulation and Modeling I. Chapters

Overall Plan of Simulation and Modeling I. Chapters Overall Plan of Simulation and Modeling I Chapters Introduction to Simulation Discrete Simulation Analytical Modeling Modeling Paradigms Input Modeling Random Number Generation Output Analysis Continuous

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

n i n T Note: You can use the fact that t(.975; 10) = 2.228, t(.95; 10) = 1.813, t(.975; 12) = 2.179, t(.95; 12) =

n i n T Note: You can use the fact that t(.975; 10) = 2.228, t(.95; 10) = 1.813, t(.975; 12) = 2.179, t(.95; 12) = MAT 3378 3X Midterm Examination (Solutions) 1. An experiment with a completely randomized design was run to determine whether four specific firing temperatures affect the density of a certain type of brick.

More information

Artificial Intelligence Heuristic Search Methods

Artificial Intelligence Heuristic Search Methods Artificial Intelligence Heuristic Search Methods Chung-Ang University, Jaesung Lee The original version of this content is created by School of Mathematics, University of Birmingham professor Sandor Zoltan

More information

On construction of constrained optimum designs

On construction of constrained optimum designs On construction of constrained optimum designs Institute of Control and Computation Engineering University of Zielona Góra, Poland DEMA2008, Cambridge, 15 August 2008 Numerical algorithms to construct

More information

I-Optimal Versus D-Optimal Split-Plot Response Surface Designs

I-Optimal Versus D-Optimal Split-Plot Response Surface Designs I-Optimal Versus D-Optimal Split-Plot Response Surface Designs BRADLEY JONES SAS Institute and Universiteit Antwerpen PETER GOOS Universiteit Antwerpen and Erasmus Universiteit Rotterdam Response surface

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

UCLA Department of Statistics Papers

UCLA Department of Statistics Papers UCLA Department of Statistics Papers Title An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs Permalink https://escholarship.org/uc/item/1tg0s6nq Author

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Responses of phenology, synchrony and fecundity of breeding by African ungulates to interannual variation in rainfall

Responses of phenology, synchrony and fecundity of breeding by African ungulates to interannual variation in rainfall Responses of phenology, synchrony and fecundity of breeding by African ungulates to interannual variation in rainfall Joseph O. Ogutu A,B,D, Hans-Peter Piepho B and Holly T. Dublin C A International Livestock

More information

Resource Allocation In Trait Introgression A Markov Decision Process Approach

Resource Allocation In Trait Introgression A Markov Decision Process Approach Resource Allocation In Trait Introgression A Markov Decision Process Approach Ye Han Iowa State University yeh@iastateedu Nov 29, 2016 Ye Han (ISU) MDP in Trait Introgression Nov 29, 2016 1 / 27 Acknowledgement

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Introduction Edps/Psych/Stat/ 584 Applied Multivariate Statistics Carolyn J Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN c Board of Trustees,

More information

Outline Topic 21 - Two Factor ANOVA

Outline Topic 21 - Two Factor ANOVA Outline Topic 21 - Two Factor ANOVA Data Model Parameter Estimates - Fall 2013 Equal Sample Size One replicate per cell Unequal Sample size Topic 21 2 Overview Now have two factors (A and B) Suppose each

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu Feb, 2018, week 7 1 / 17 Some commonly used experimental designs related to mixed models Two way or three way random/mixed effects

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients 17: INFERENCE FOR MULTIPLE REGRESSION Inference for Individual Regression Coefficients The results of this section require the assumption that the errors u are normally distributed. Let c i ij denote the

More information

To reduce the cost of industrial experimentation one can forgo complete randomization. An example of a design with restricted

To reduce the cost of industrial experimentation one can forgo complete randomization. An example of a design with restricted Research Article (www.interscience.wiley.com) DOI: 10.1002/qre.1047 Published online 8 July 2009 in Wiley InterScience Design and Analysis of Industrial Strip-plot Experiments Heidi Arnouts, a Peter Goos

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Lecture 11: Nested and Split-Plot Designs

Lecture 11: Nested and Split-Plot Designs Lecture 11: Nested and Split-Plot Designs Montgomery, Chapter 14 1 Lecture 11 Page 1 Crossed vs Nested Factors Factors A (a levels)and B (b levels) are considered crossed if Every combinations of A and

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek Two-factor studies STAT 525 Chapter 19 and 20 Professor Olga Vitek December 2, 2010 19 Overview Now have two factors (A and B) Suppose each factor has two levels Could analyze as one factor with 4 levels

More information

Sample Size / Power Calculations

Sample Size / Power Calculations Sample Size / Power Calculations A Simple Example Goal: To study the effect of cold on blood pressure (mmhg) in rats Use a Completely Randomized Design (CRD): 12 rats are randomly assigned to one of two

More information

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik Factorial Treatment Structure: Part I Lukas Meier, Seminar für Statistik Factorial Treatment Structure So far (in CRD), the treatments had no structure. So called factorial treatment structure exists if

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Lecture 10. Factorial experiments (2-way ANOVA etc)

Lecture 10. Factorial experiments (2-way ANOVA etc) Lecture 10. Factorial experiments (2-way ANOVA etc) Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regression and Analysis of Variance autumn 2014 A factorial experiment

More information

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout 4a): χ 2 test of

More information

Analysis of Survival Data Using Cox Model (Continuous Type)

Analysis of Survival Data Using Cox Model (Continuous Type) Australian Journal of Basic and Alied Sciences, 7(0): 60-607, 03 ISSN 99-878 Analysis of Survival Data Using Cox Model (Continuous Type) Khawla Mustafa Sadiq Department of Mathematics, Education College,

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

Formation of Student Groups with the Help of Optimization

Formation of Student Groups with the Help of Optimization Department of Mathematics Formation of Student Groups with the Help of Optimization Kaj Holmberg LiTH-MAT-R--2014/14--SE Department of Mathematics Linköping University S-581 83 Linköping, Sweden. Formation

More information

Exercise.13 Formation of ANOVA table for Latin square design (LSD) and comparison of means using critical difference values

Exercise.13 Formation of ANOVA table for Latin square design (LSD) and comparison of means using critical difference values xercise.13 Formation of NOV table for Latin square design (LS) and comparison of means using critical difference values Latin Square esign When the experimental material is divided into rows and columns

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Repeated Measures Data

Repeated Measures Data Repeated Measures Data Mixed Models Lecture Notes By Dr. Hanford page 1 Data where subjects are measured repeatedly over time - predetermined intervals (weekly) - uncontrolled variable intervals between

More information

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.2 Advanced Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Acceptance Function Initial Temperature Equilibrium State Cooling Schedule Stopping Condition Handling Constraints

More information

Optimal design of experiments

Optimal design of experiments Optimal design of experiments Session 4: Some theory Peter Goos / 40 Optimal design theory continuous or approximate optimal designs implicitly assume an infinitely large number of observations are available

More information

BIOS 6649: Handout Exercise Solution

BIOS 6649: Handout Exercise Solution BIOS 6649: Handout Exercise Solution NOTE: I encourage you to work together, but the work you submit must be your own. Any plagiarism will result in loss of all marks. This assignment is based on weight-loss

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance Timothy Hanson Department of Statistics, University of South Carolina Stat 506: Introduction to Experimental Design 1 / 11 ANalysis of COVAriance Add a continuous predictor to an

More information

Classes of Second-Order Split-Plot Designs

Classes of Second-Order Split-Plot Designs Classes of Second-Order Split-Plot Designs DATAWorks 2018 Springfield, VA Luis A. Cortés, Ph.D. The MITRE Corporation James R. Simpson, Ph.D. JK Analytics, Inc. Peter Parker, Ph.D. NASA 22 March 2018 Outline

More information

Design of Engineering Experiments Chapter 5 Introduction to Factorials

Design of Engineering Experiments Chapter 5 Introduction to Factorials Design of Engineering Experiments Chapter 5 Introduction to Factorials Text reference, Chapter 5 page 170 General principles of factorial experiments The two-factor factorial with fixed effects The ANOVA

More information

Principal Component Analysis & Factor Analysis. Psych 818 DeShon

Principal Component Analysis & Factor Analysis. Psych 818 DeShon Principal Component Analysis & Factor Analysis Psych 818 DeShon Purpose Both are used to reduce the dimensionality of correlated measurements Can be used in a purely exploratory fashion to investigate

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Lecture 10: Experiments with Random Effects

Lecture 10: Experiments with Random Effects Lecture 10: Experiments with Random Effects Montgomery, Chapter 13 1 Lecture 10 Page 1 Example 1 A textile company weaves a fabric on a large number of looms. It would like the looms to be homogeneous

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Abstract. Designs for variety trials with very low replication. How do we allow for variation between the plots? Variety Testing

Abstract. Designs for variety trials with very low replication. How do we allow for variation between the plots? Variety Testing Abstract Designs for variety trials with very low replication R A Bailey University of St Andrews QMUL (emerita) TU Dortmund, June 05 In the early stages of testing new varieties, it is common that there

More information

RANDOM and REPEATED statements - How to Use Them to Model the Covariance Structure in Proc Mixed. Charlie Liu, Dachuang Cao, Peiqi Chen, Tony Zagar

RANDOM and REPEATED statements - How to Use Them to Model the Covariance Structure in Proc Mixed. Charlie Liu, Dachuang Cao, Peiqi Chen, Tony Zagar Paper S02-2007 RANDOM and REPEATED statements - How to Use Them to Model the Covariance Structure in Proc Mixed Charlie Liu, Dachuang Cao, Peiqi Chen, Tony Zagar Eli Lilly & Company, Indianapolis, IN ABSTRACT

More information

Rearrangement Algorithm and Maximum Entropy

Rearrangement Algorithm and Maximum Entropy University of Illinois at Chicago Joint with Carole Bernard Vrije Universiteit Brussel and Steven Vanduffel Vrije Universiteit Brussel R/Finance, May 19-20, 2017 Introduction An important problem in Finance:

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

In-house germination methods validation studies: analysis

In-house germination methods validation studies: analysis 1 In-house germination methods validation studies: analysis Jean-Louis Laffont - ISTA Statistics Committee Design assumptions for the validation study Based on peer validation guidelines From Table 1 in

More information

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA iron retention (log) 0 1 2 3 high Fe2+ high Fe3+ low Fe2+ low Fe3+ medium Fe2+ medium Fe3+ 2 Two-way ANOVA In the one-way design there is only one factor. What if there are several factors? Often, we are

More information

MULTIVARIATE ANALYSIS OF VARIANCE

MULTIVARIATE ANALYSIS OF VARIANCE MULTIVARIATE ANALYSIS OF VARIANCE RAJENDER PARSAD AND L.M. BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 lmb@iasri.res.in. Introduction In many agricultural experiments,

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

SAS Program Part 1: proc import datafile="y:\iowa_classes\stat_5201_design\examples\2-23_drillspeed_feed\mont_5-7.csv" out=ds dbms=csv replace; run;

SAS Program Part 1: proc import datafile=y:\iowa_classes\stat_5201_design\examples\2-23_drillspeed_feed\mont_5-7.csv out=ds dbms=csv replace; run; STAT:5201 Applied Statistic II (two-way ANOVA with contrasts Two-Factor experiment Drill Speed: 125 and 200 Feed Rate: 0.02, 0.03, 0.05, 0.06 Response: Force All 16 runs were done in random order. This

More information

CORE AND NO-TREAT EQUILIBRIUM IN TOURNAMENT GAMES WITH EXTERNALITIES

CORE AND NO-TREAT EQUILIBRIUM IN TOURNAMENT GAMES WITH EXTERNALITIES CORE AND NO-TREAT EQUILIBRIUM IN TOURNAMENT GAMES WITH EXTERNALITIES RYO MIZUNO Abstract. We consider a situation where coalitions are formed to divide a resource. As in real life, the value of a payoff

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample Size Re-estimation

Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample Size Re-estimation Research Article Received XXXX (www.interscience.wiley.com) DOI: 10.100/sim.0000 Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample

More information

Orthogonal contrasts for a 2x2 factorial design Example p130

Orthogonal contrasts for a 2x2 factorial design Example p130 Week 9: Orthogonal comparisons for a 2x2 factorial design. The general two-factor factorial arrangement. Interaction and additivity. ANOVA summary table, tests, CIs. Planned/post-hoc comparisons for the

More information

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA s:5 Applied Linear Regression Chapter 8: ANOVA Two-way ANOVA Used to compare populations means when the populations are classified by two factors (or categorical variables) For example sex and occupation

More information

A Study on Minimal-point Composite Designs

A Study on Minimal-point Composite Designs A Study on Minimal-point Composite Designs by Yin-Jie Huang Advisor Ray-Bing Chen Institute of Statistics, National University of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 007 Contents Introduction Construction

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Particle swarm optimization approach to portfolio optimization

Particle swarm optimization approach to portfolio optimization Nonlinear Analysis: Real World Applications 10 (2009) 2396 2406 Contents lists available at ScienceDirect Nonlinear Analysis: Real World Applications journal homepage: www.elsevier.com/locate/nonrwa Particle

More information

Lecture 4. Basic Designs for Estimation of Genetic Parameters

Lecture 4. Basic Designs for Estimation of Genetic Parameters Lecture 4 Basic Designs for Estimation of Genetic Parameters Bruce Walsh. Aug 003. Nordic Summer Course Heritability The reason for our focus, indeed obsession, on the heritability is that it determines

More information

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Repeated Measurement ANOVA. Sungho Won, Ph. D. Graduate School of Public Health Seoul National University

Repeated Measurement ANOVA. Sungho Won, Ph. D. Graduate School of Public Health Seoul National University 1 Repeated Measurement ANOVA Sungho Won, Ph. D. Graduate School of Public Health Seoul National University 2 Analysis of Variance (ANOVA) Main idea Evaluate the effect of treatment by analyzing the amount

More information

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC

AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC Journal of Applied Statistical Science ISSN 1067-5817 Volume 14, Number 3/4, pp. 225-235 2005 Nova Science Publishers, Inc. AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC FOR TWO-FACTOR ANALYSIS OF VARIANCE

More information

An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed Levels and Small Runs

An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed Levels and Small Runs An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed Levels and Small Runs Hongquan u epartment of Statistics University of California Los Angeles, CA 90095 ( hqxu@stat.ucla.edu)

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013

STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013 Example: STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013 An experiment is designed to study pigment dispersion in paint. Four different methods of mixing a particular

More information

Presentation in Convex Optimization

Presentation in Convex Optimization Dec 22, 2014 Introduction Sample size selection in optimization methods for machine learning Introduction Sample size selection in optimization methods for machine learning Main results: presents a methodology

More information

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects Topic 5 - One-Way Random Effects Models One-way Random effects Outline Model Variance component estimation - Fall 013 Confidence intervals Topic 5 Random Effects vs Fixed Effects Consider factor with numerous

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Optimal Blocking by Minimizing the Maximum Within-Block Distance

Optimal Blocking by Minimizing the Maximum Within-Block Distance Optimal Blocking by Minimizing the Maximum Within-Block Distance Michael J. Higgins Jasjeet Sekhon Princeton University University of California at Berkeley November 14, 2013 For the Kansas State University

More information