ATM 298, Spring 2013 Lecture 6 Numerical Methods: VerBcal DiscreBzaBons April 22, Paul A. Ullrich (HH 251)

Size: px
Start display at page:

Download "ATM 298, Spring 2013 Lecture 6 Numerical Methods: VerBcal DiscreBzaBons April 22, Paul A. Ullrich (HH 251)"

Transcription

1 ATM 298, Spring 2013 Lecture 6 Numerical Methods: VerBcal DiscreBzaBons April 22, 2013 Paul A. Ullrich (HH 251) paullrich@ucdavis.edu

2 Course Projects Check out the short project descriptions! The next phase is turning towards hashing out the details for these projects. Recommended: Break up your project into a set of 3-5 steps. For each step, indicate what you need to do and what you need from me. 42 Days unbl project presentabons! Paul Ullrich ATM 298: Lecture 04 April 10,

3 Outline 1. Unique Aspects of the Vertical 2. Overview of Vertical Coordinate Systems 3. Terrain-following Variations 4. Vertical Computational Modes 5. Semi-Lagrangian Layers Slides are based on Michael Toy s talk on verhcal discrehzahons from the DCMIP workshop (2012)

4 Radius of the Earth km Atmosphere Depth 100 km Troposphere Depth 10 km Mountain Height 5 km

5 Unique Aspects of the Vertical Gravity acts in the verhcal (let s look at the verhcal momentum equahon) Typical scales (in m/s 2 ): dw dt u 2 + v 2 r g +2 u cos + r 2 w Dominant balance is between these two terms. Hydrosta)c balance

6 Unique Aspects of the Vertical For an approximately isothermal layer of the atmosphere, HydrostaBc balance: Ideal gas = p R d T 0 g 0 R d T = g Approx. SoluBon: gz p = p 0 exp R d T 0 z r a ExponenHal decay of pressure and density with height! Highly strabfied!

7 Unique Aspects of the Vertical Gradients are much stronger in the verbcal: It s much colder 10km straight up (- 50 C) and harder to breathe than 10km down the road. Paul Ullrich ATM 298: Lecture 06 April 22, 2013

8 Unique Aspects of the Vertical Boundary condihons at r = a (surface) and r = No flow through the surface Zero pressure up here

9 Unique Aspects of the Vertical Many dishnct physical processes: ConvecHon Boundary layer Viscous processes RadiaHon Waves Troposphere- Stratosphere InteracHon Some not- so physical processes: Model- top sponge layer (numerical viscosity)

10 Numerical Considerations Choice of coordinate system Height coordinates (Richardson 1922) Pressure coordinates (Eliassen 1949) Isentropic coordinates (Eliassen and Raustein 1968) Mass coordinates (Laprise 1992) Terrain- following or cut- cell? Ensure the hydrostahc relahon is sahsfied for a strahfied atmosphere Staggering of variables? How to handle boundary condihons?

11 Non-Hydrostatic Primitive Equations Five prognoshc equahons, one constraint equahon Shallow Atmosphere approximahon assumed du uv tan = +2 vsin dt a a z dv dt + u2 tan = 2 u sin a z dw dt = d dt = c v dt dt + pd dt = J r u p = R d T d + u h r z

12 Hydrostatic Primitive Equations Four prognoshc equahons, two constraint equahon du uv tan = +2 vsin dt a a z dv dt + u2 tan = 2 u sin a d dt = c v dt dt + pd dt = J r u z d + u h r z p = R d T g

13 Z-Coordinates (Shallow Atmosphere) CompuHng the verhcal velocity Non- hydrostabc (Predicted / Prognosed) dw dt = w = 1 Z g HydrostaBc (Diagnosed) r u h dz 1 Z z 0 w dz dt 1 p (B + Q)dz + 1 c p u h (u, v) HydrostaHc dynamical cores rarely use z- coordinates due to this mess Z z 0 J T dz B = 1 R z T 0 Q = u h rp Q p dz 1 c p R zt g Z zt z 0 R 1 z T 0 J T dz + R z T r u 0 h dz dz p r ( u h )dz Examples: Kasahara and Washington (1967) DeMaria (1995)

14 Vertical Coordinate Transforms z(x, y,,t)! (x, y, z, t) Z New generalized verbcal velocity: z z = = d u h r z

15 Vertical Coordinate Transforms z(x, y,,t)! (x, y, z, t) Z Prejy much any quanhty can be chosen for your verhcal coordinate, but it must be monotone: It must be either strictly increasing or decreasing as a func5on of height. Eliminates ophons such as temperature from being used as a verhcal coordinate.

16 Non-Hydrostatic Equations Six prognoshc equahons, one constraint equahon " du uv tan = dt a a m " dv dt + u2 tan 1 = + 1 a m dw dt = c v dt dt + pd dt = J dz dt = @ New Mass Variable (General Coordinates) # # +2 v sin 2 u sin + r (mu h (m ) d + u h r z p = R d T

17 Non-Hydrostatic Equations Six prognoshc equahons, one constraint equahon " du uv tan = dt a a m " dv dt + u2 tan 1 = + 1 a m dw dt = c v dt dt + pd dt = J dz dt = + r (mu h (m ) d + u h z is predicted! Two- term horizontal pressure gradient! # # +2 v sin 2 u p = R d T

18 Pressure Coordinates = p! Non- HydrostaBc EquaBons HydrostaBc EquaBons VerHcal Momentum Layer mass is constant dw dt = 1 m g m = 1 g Horizontal pressure gradient Single term HPGF = 1 m r pz HPGF = gr p z p ConHnuity EquaHon + r p (mu (m!) =0 r p (u =0 VerHcal velocity difficult to diagnose DiagnosHc conhnuity equahon! ṗ = Z p 0 r p u h dp

19 Mass Coordinates AKA HydrostaHc pressure coordinates (Laprise 1992) = (x, y, z, t) Z 1 Arises from the hydrostahc pressure equahon: z (x, y, z = g Represents the mass of air above a given height. For a hydrostahcally balanced atmosphere this is the pressure p.

20 Mass Coordinates Non- HydrostaBc EquaBons HydrostaBc EquaBons Pseudo- density m = dz d = 1 g Layer mass is constant Same as Non- Hydrosta5c Horizontal pressure gradient HPGF = 1 r (gz) Double term pressure gradient Same as =1 ConHnuity EquaHon DiagnosHc conhnuity equahon r u =0 = Z 0 r u h d Same as Non- Hydrosta5c

21 Isentropic Coordinates AKA AdiabaHc coordinates = (PotenHal temperature) = T R/cp p0 p The verhcal velocity is proporhonal to the diabahc heahng: d dt = J c p R/cp p0 p For an adiabahc atmosphere the verhcal mohon is zero and coordinate surfaces are material surfaces (a quasi- Lagrangain verhcal coordinate) This minimizes errors associated with verhcal advechon

22 Isentropic Coordinates In non- hydrostahc models at high horizontal resoluhon, stahc instabilihes and turbulence present a challenge since the coordinate loses the monotonicity property. This is typically solved by hybridizing the coordinate with something which maintains monotonicity. VerHcal cross- sechon of isentropes associated with a breaking mountain wave.

23 Vertical Coordinates Summary of four common verhcal coordinates. Coordinate Non- HydrostaBc Models HydrostaBc Models Height (z) Suitable Not preferred (difficult to diagnose w) Pressure (p) Not preferred (difficult to diagnose ω) Suitable Mass (π) Suitable Suitable (idenhcal to p coordinate) PotenHal temperature (θ) Suitable (some challenges) Suitable

24 Representation of Topography Three main ophons for represenhng topography: Step topography Sigma coordinates (terrain- following) Shaved cell Figure: Adcror et al. (1997)

25 Representation of Topography Advantages: No issues with small cells Accurate representahon of horizontal pressure gradient force Disadvantages: Poorly represents the underlying topography Hard corners create a lot of spurious noise

26 Representation of Topography Advantages: Accurate treatment of pressure gradient force Accurate treatment of topography Disadvantages: Small grid cells can affect the maximum Hmestep size (CFL condihon)

27 Representation of Topography Advantages: Topography absorbed into evoluhon equahons Very accurate for smooth topography Disadvantages: Poor representahon of horizontal pressure- gradient force near steep p x p = g z topography gr p z =0= gr z 1 r p The discrete form of these terms don t necessarily cancel!

28 Representation of Topography p p s z z z s z T z s Gal- Chen and Somerville (1975) = T S T Skamarock and Klemp (2008) = p p s + Phillips (1957) Sigma coordinate Normalized hydrostahc pressure p p 1 p s p s p p 0 Simmons and Burridge (1981) Hybrid coordinate Schar et al. (2002) Hybrid coordinate

29 Representation of Topography Second- Order AdvecBon over Topography Sigma Coordinate Simmons and Burridge (1981) Hybrid coordinate Schar (2002) Hybrid coordinate Source: Schar et al. (2002)

30 Vertical Staggering Lorenz ( L ) grid Charney- Phillips ( CP ) grid v, p v, p v, p LocaHon of levels and interfaces is idenhcal. Only difference is staggering of velocity and potenhal temperature. p v p v p v p Like an Arakawa A- grid Like an Arakawa C- grid

31 Vertical Staggering Lorenz ( L ) grid Linearized verhcal + g =0 v, p v, p v, p Density perturbahon (affects magnitude) Ignore for now DiscreHzaHon on + 1 pk+1 p k 1 z k+1 z k 1 Pressure perturbahon (affects propagahon) =0 Like an Arakawa A- grid

32 Vertical Staggering: Lorenz Lorenz ( L ) grid Linearized verhcal + g =0 v, p v, p DiscreHzaHon on Lorenz + 1 pk+1 p k 1 z k+1 z k 1 =0 v, p SeparaHon of odd/even modes: VerHcal velocity evoluhon equahon is unable to see 2Δz modes in the pressure field. Like an Arakawa A- grid Called a ComputaBonal Mode

33 Vertical Staggering: Charney-Phillips Linearized verhcal + g =0 DiscreHzaHon on Charney- Phillips + 1 pk+1/2 p k 1/2 =0 z k+1/2 z k 1/2 No separahon of odd/even modes. No computahonal mode supported. Also see: Tokioka (1978) Arakawa and Moorthi (1988) Arakawa and Konor (1996) Charney- Phillips ( CP ) grid p v p v p v p Like an Arakawa C- grid

34 Vertical Staggering There are many possible choices of verhcal staggering besides the ones chosen here: For non- hydrostahc system there are 5 prognoshc variables We can choose any two thermodynamic variables from ρ, p, T, θ, etc. Some have computahonal modes. Others do not. Accurate representahon of waves (acoushc, inerha- gravity, Rossby) best achieved by minimizing finite differences over 2Δz. Charney- Phillips ( CP ) grid p v p v p v p Analyzed by Thuburn and Woollings (2005) in three coordinate systems.

35 Semi-Lagrangian Coordinates Instead of fixing the verhcal coordinate, a common strategy is the use of semi- Lagrangian (or quasi- Lagrangian) verhcal coordinates. This is analogous to the semi- Lagrangian advechon technique discussed last Hme, except only applied to the verhcal. Remapping to a fixed Eulerian grid is typically performed every 15 or 30 minutes. Introduced by Starr (1945) In models: Skamarock (1998) He (2002) Lin (2004) Zängl (2007) Toy and Randall (2009) Toy (2011) Figure: Nair et al. (2009)

36 Semi-Lagrangian Equations Six prognoshc equahons, one constraint equahon " du uv tan = If are floahng +2 v with sin dt a a verhcal velocity, " then dv dt + u2 tan 1 = + 1 there is # through layer surfaces. 2 u sin a m dw dt = c v dt dt + pd dt = J dz dt = z is predicted! + r (mu h (m ) d + u h @ p = R d T

37 Semi-Lagrangian Coordinates Layer thickness becomes a prognoshc variable: d( p k ) dt = k+1/2 k 1/2 Before layer thicknesses can become too thin / thick, they are remapped back to the fixed Eulerian grid. The remapping procedure takes the place of verhcal advechon. Figure: Nair et al. (2009)

38 Timestep Limitations (Non-Hydrostatic) Recall that stability of an explicit numerical method requires a CFL condihon to be sahsfied. For example: u t x apple 1 Here u is the maximum wave speed of the system, Δx is the grid spacing and Δt is the Hme step size. In the atmosphere, the fastest waves are sound waves, with a maximum speed of u r p 342m/s 100m 110km Only relevant for non- hydrostahc atmospheric models. HydrostaHc models do not support verhcally propagahng sound waves!

39 Timestep Limitations CFL CondiHon: u t x apple 1 with u 342 m/s 100m for x = 110 km t apple 321? s 110km for x = 100 m t apple 0.3? s In prachce, limihng the Hme step size to be governed by the verhcal coordinate is too severe! Need a bejer approach

40 Timestep Limitations Filtered EquaBons: AnelasHc approximahon (Ogura and Phillips, 1962) Pseudo- Incompressible approximahon (Durran, 1989) Unified approximahon (Arakawa and Konor 2005) (basic premise is to derive a new set of equahons which do not contain sound waves and so maximum wave speed is limited by advechon) Numerical Methods: Implicit Hme stepping in the verhcal

41 That s all!

Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling

Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling Michael D. Toy NCAR Earth System Laboratory/ Advanced Study Program Boulder, Colorado, USA 9th International SRNWP

More information

Design of a Nonhydrostatic Atmospheric Model Based on a Generalized Vertical Coordinate

Design of a Nonhydrostatic Atmospheric Model Based on a Generalized Vertical Coordinate JULY 2009 T O Y A N D R A N D A L L 2305 Design of a Nonhydrostatic Atmospheric Model Based on a Generalized Vertical Coordinate MICHAEL D. TOY AND DAVID A. RANDALL Department of Atmospheric Science, Colorado

More information

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate Juan Simarro and Mariano Hortal AEMET Agencia Estatal de

More information

ATM 298, Spring 2013 Lecture 2 The Equa;ons of Fluid Mo;on April 3, Paul A. Ullrich (HH 251)

ATM 298, Spring 2013 Lecture 2 The Equa;ons of Fluid Mo;on April 3, Paul A. Ullrich (HH 251) ATM 298, Spring 2013 Lecture 2 The Equa;ons of Fluid Mo;on April 3, 2013 Paul A. Ullrich (HH 251) paullrich@ucdavis.edu Global Atmospheric Modeling Global atmospheric models were originally constructed

More information

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations Scale analysis relevant to the tropics [large-scale synoptic systems]* Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations *Reminder: Midlatitude scale

More information

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves Chapter. The continuous equations φ=gh Φ=gH φ s =gh s Fig..5: Schematic of the shallow water model, a hydrostatic, incompressible fluid with a rigid bottom h s (x,y), a free surface h(x,y,t), and horizontal

More information

Lecture 23. Vertical coordinates General vertical coordinate

Lecture 23. Vertical coordinates General vertical coordinate Lecture 23 Vertical coordinates We have exclusively used height as the vertical coordinate but there are alternative vertical coordinates in use in ocean models, most notably the terrainfollowing coordinate

More information

Some Issues in Isentropic Coordinate Modelling and Modelling the Tropopause

Some Issues in Isentropic Coordinate Modelling and Modelling the Tropopause Some Issues in Isentropic Coordinate Modelling and Modelling the Tropopause 1. Introduction J Thuburn Department of Meteorology, University of Reading, Reading, United Kingdom j.thuburn@reading.ac.uk The

More information

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle The WRF NMM Core Zavisa Janjic (Zavisa.Janjic@noaa.gov) Talk modified and presented by Matthew Pyle (Matthew.Pyle@noaa.gov) NMM Dynamic Solver Basic Principles Equations / Variables Model Integration Horizontal

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

Generalizing the Boussinesq Approximation to Stratified Compressible Flow

Generalizing the Boussinesq Approximation to Stratified Compressible Flow Generalizing the Boussinesq Approximation to Stratified Compressible Flow Dale R. Durran a Akio Arakawa b a University of Washington, Seattle, USA b University of California, Los Angeles, USA Abstract

More information

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere

MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere Sebastian Borchert, Günther Zängl, Michael Baldauf (1), Guidi Zhou, Hauke Schmidt,

More information

APPENDIX B. The primitive equations

APPENDIX B. The primitive equations APPENDIX B The primitive equations The physical and mathematical basis of all methods of dynamical atmospheric prediction lies in the principles of conservation of momentum, mass, and energy. Applied to

More information

A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores

A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores Kevin Viner Naval Research Laboratory, Monterey, CA September 26, 2012 Kevin Viner (NRL) PDE

More information

Chapter 2. The continuous equations

Chapter 2. The continuous equations Chapter. The continuous equations Fig. 1.: Schematic of a forecast with slowly varying weather-related variations and superimposed high frequency Lamb waves. Note that even though the forecast of the slow

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

Non-hydrostatic sound-proof equations of motion for gravity-dominated compressible fl ows. Thomas Dubos

Non-hydrostatic sound-proof equations of motion for gravity-dominated compressible fl ows. Thomas Dubos Non-hydrostatic sound-proof of for gravity-dominated compressible fl ows Thomas Dubos Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Palaiseau, France Fabrice Voitus Centre National de

More information

2.6 Primitive equations and vertical coordinates

2.6 Primitive equations and vertical coordinates Chater 2. The continuous equations 2.6 Primitive equations and vertical coordinates As Charney (1951) foresaw, most NWP modelers went back to using the rimitive equations, with the hydrostatic aroximation,

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

The Advanced Research WRF (ARW) Dynamics Solver

The Advanced Research WRF (ARW) Dynamics Solver Dynamics: Introduction The Advanced Research WRF (ARW) Dynamics Solver 1. What is a dynamics solver? 2. Variables and coordinates 3. Equations 4. Time integration scheme 5. Grid staggering 6. Advection

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Discretisation of the pseudo-incompressible Equations with implicit LES for Gravity Wave Simulation DACH2010. Felix Rieper, Ulrich Achatz

Discretisation of the pseudo-incompressible Equations with implicit LES for Gravity Wave Simulation DACH2010. Felix Rieper, Ulrich Achatz Discretisation of the pseudo-incompressible Equations with implicit LES for Gravity Wave Simulation DACH2010, Ulrich Achatz Institut für Atmosphäre und Umwelt Aim of the project Analysis: Propagation and

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

Split explicit methods

Split explicit methods Split explicit methods Almut Gassmann Meteorological Institute of the University of Bonn Germany St.Petersburg Summer School 2006 on nonhydrostatic dynamics and fine scale data assimilation Two common

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

2 Equations of Motion

2 Equations of Motion 2 Equations of Motion system. In this section, we will derive the six full equations of motion in a non-rotating, Cartesian coordinate 2.1 Six equations of motion (non-rotating, Cartesian coordinates)

More information

The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core

The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core Frank Giraldo Department of Applied Mathematics Naval Postgraduate School Monterey CA 93943 http://faculty.nps.edu/projects/numa

More information

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Approved for public release; distribution is unlimited IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Sean L. Gibbons Captain, United

More information

Formulation and performance of the Variable-Cubic Atmospheric Model

Formulation and performance of the Variable-Cubic Atmospheric Model Formulation and performance of the Variable-Cubic Atmospheric Model John McGregor CSIRO Marine and Atmospheric Research Aspendale, Melbourne Southern Hemisphere PDEs on the Sphere NCAR 11 April 2014 CSIRO

More information

Nonlinear Balance on an Equatorial Beta Plane

Nonlinear Balance on an Equatorial Beta Plane Nonlinear Balance on an Equatorial Beta Plane David J. Raymond Physics Department and Geophysical Research Center New Mexico Tech Socorro, NM 87801 April 26, 2009 Summary Extension of the nonlinear balance

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

HWRF Dynamics The WRF-NMM

HWRF Dynamics The WRF-NMM HWRF Dynamics The WRF-NMM Zavisa Janjic Creator of the NMM Samuel Trahan - Presenter Matt Pyle NMM Dynamic Solver Basic Principles Equations / Variables Model Integration Horizontal Grid Spatial Discretization

More information

Numerical effects on vertical wave propagation in deep-atmosphere models

Numerical effects on vertical wave propagation in deep-atmosphere models Quarterly Journalof the Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 567 580, January 018 B DOI:10.100/qj.39 Numerical effects on vertical wave propagation in deep-atmosphere models D. J.

More information

Physics-Based Animation

Physics-Based Animation CSCI 5980/8980: Special Topics in Computer Science Physics-Based Animation 13 Fluid simulation with grids October 20, 2015 Today Presentation schedule Fluid simulation with grids Course feedback survey

More information

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu Linear model for investigation of nonlinear NWP model accuracy Marko Zirk, University of Tartu Introduction A method for finding numerical solution of non-hydrostatic linear equations of atmospheric dynamics

More information

ECMWF Overview. The European Centre for Medium-Range Weather Forecasts is an international. organisation supported by 23 European States.

ECMWF Overview. The European Centre for Medium-Range Weather Forecasts is an international. organisation supported by 23 European States. ECMWF Overview The European Centre for Medium-Range Weather Forecasts is an international organisation supported by 3 European States. The center was established in 1973 by a Convention and the real-time

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

CAM-SE: Lecture I. Peter Hjort Lauritzen

CAM-SE: Lecture I. Peter Hjort Lauritzen CAM-SE: Lecture I Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research 2nd WCRP Summer School on Climate

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 34 Outline 1 Lecture 7: Recall on Thermodynamics

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics for Geophysical Fluid Dynamics Dave Lee Los Alamos National Laboratory Outline Connection of finite volumes to differential forms Key ideas of differential forms Differential forms for discrete data Construction

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University January 13th, 2015 Key Papers Introduction Arakawa and Lamb 1981 Salmon 2004

More information

Dust devils, water spouts, tornados

Dust devils, water spouts, tornados Balanced flow Things we know Primitive equations are very comprehensive, but there may be a number of vast simplifications that may be relevant (e.g., geostrophic balance). Seems that there are things

More information

Dynamic Meteorology (lecture 9, 2014)

Dynamic Meteorology (lecture 9, 2014) Dynamic Meteorology (lecture 9, 2014) Topics Assessment criteria High frequency waves (no rota5on) Boussinesq approxima/on Normal model analysis of the stability of hydrosta/c balance Buoyancy waves and

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

THE UNIVERSITY OF READING

THE UNIVERSITY OF READING THE UNIVERSITY OF READING Entropy and Potential Vorticity in Dynamical Core Atmosphere Models Tim Woollings A thesis submitted for the degree of Doctor of Philosophy Department of Meteorology October 2004

More information

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October Innsbruck Workshop October 29 21 EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS Luca Bonaventura - Modellistica e Calcolo Scientifico Dipartimento di Matematica

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

Pressure corrected SPH for fluid animation

Pressure corrected SPH for fluid animation Pressure corrected SPH for fluid animation Kai Bao, Hui Zhang, Lili Zheng and Enhua Wu Analyzed by Po-Ram Kim 2 March 2010 Abstract We present pressure scheme for the SPH for fluid animation In conventional

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance OCN-ATM-ESS 587 Simple and basic dynamical ideas.. Newton s Laws Pressure and hydrostatic balance The Coriolis effect Geostrophic balance Lagrangian-Eulerian coordinate frames Coupled Ocean- Atmosphere

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

M.Sc. in Meteorology. Numerical Weather Prediction Prof Peter Lynch

M.Sc. in Meteorology. Numerical Weather Prediction Prof Peter Lynch M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

10 Shallow Water Models

10 Shallow Water Models 10 Shallow Water Models So far, we have studied the effects due to rotation and stratification in isolation. We then looked at the effects of rotation in a barotropic model, but what about if we add stratification

More information

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere The vertical structure of the atmosphere. Physical properties of the atmosphere To first order, the gas pressure at the bottom of an atmospheric column balances the downward force of gravity on the column.

More information

Finite element exterior calculus framework for geophysical fluid dynamics

Finite element exterior calculus framework for geophysical fluid dynamics Finite element exterior calculus framework for geophysical fluid dynamics Colin Cotter Department of Aeronautics Imperial College London Part of ongoing work on UK Gung-Ho Dynamical Core Project funded

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms, Chapter 1 Notes A Note About Coordinates We nearly always use a coordinate system in this class where the vertical, ˆk, is normal to the Earth s surface and the x-direction, î, points to the east and the

More information

Scalable Non-Linear Compact Schemes

Scalable Non-Linear Compact Schemes Scalable Non-Linear Compact Schemes Debojyoti Ghosh Emil M. Constantinescu Jed Brown Mathematics Computer Science Argonne National Laboratory International Conference on Spectral and High Order Methods

More information

Atmospheric Dynamics with Polyharmonic Spline RBFs

Atmospheric Dynamics with Polyharmonic Spline RBFs Photos placed in horizontal position with even amount of white space between photos and header Atmospheric Dynamics with Polyharmonic Spline RBFs Greg Barnett Sandia National Laboratories is a multimission

More information

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems Bob Peeters Joint work with Onno Bokhove & Jason Frank TW, University of Twente, Enschede CWI, Amsterdam PhD-TW colloquium, 9th

More information

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations OUTLINE: The Hydrostatic Approximation - Euler Equations in Spherical Coordinates - The Approximation and the Equations - Critique of Hydrostatic Approximation Inertial Instability - The Phenomenon - The

More information

The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling

The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling Mark R. Petersen with Matthew W. Hecht, Darryl D. Holm, and Beth A. Wingate Los Alamos National

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

2 A: The Shallow Water Equations

2 A: The Shallow Water Equations 2 A: The Shallow Water Equations 2.1 Surface motions on shallow water Consider two-dimensional (x-z) motions on a nonrotating, shallow body of water, of uniform density, as shown in Fig. 1 below. The ow

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

Weather Forecasting Models in Met Éireann. Eoin Whelan UCD Seminar 3 rd April 2012

Weather Forecasting Models in Met Éireann. Eoin Whelan UCD Seminar 3 rd April 2012 Weather Forecasting Models in Met Éireann Eoin Whelan UCD Seminar 3 rd April 2012 Overview Background HIRLAM Models Local Implementation Verification Development work Background Met Éireann Dept of the

More information

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws ESS314 Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe Conservation Laws The big differences between fluids and other forms of matter are that they are continuous and they deform internally

More information

Time-Parallel Algorithms for Weather Prediction and Climate Simulation

Time-Parallel Algorithms for Weather Prediction and Climate Simulation Time-Parallel Algorithms for Weather Prediction and Climate Simulation Jean Côté Adjunct Prof. ESCER Centre (Étude et la Simulation du Climat à l Échelle Régionale) Sciences de la Terre & de l Atmosphère

More information

Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic]

Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic] Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic] Entropy 1. (Thermodynamics) a thermodynamic quantity that changes in a

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

g (z) = 1 (1 + z/a) = 1

g (z) = 1 (1 + z/a) = 1 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Colin Cotter (Imperial College London) & Sebastian Reich (Universität Potsdam) Outline 1. Hydrostatic and semi-geostrophic

More information

Godunov methods in GANDALF

Godunov methods in GANDALF Godunov methods in GANDALF Stefan Heigl David Hubber Judith Ngoumou USM, LMU, München 28th October 2015 Why not just stick with SPH? SPH is perfectly adequate in many scenarios but can fail, or at least

More information

Computational challenges in Numerical Weather Prediction

Computational challenges in Numerical Weather Prediction Computational challenges in Numerical Weather Prediction Mike Cullen Oxford 15 September 2008 Contents This presentation covers the following areas Historical background Current challenges Why does it

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

FIM: A vertically flow-following, finite-volume icosahedral model

FIM: A vertically flow-following, finite-volume icosahedral model FIM: A vertically flow-following, finite-volume icosahedral model J.L. Lee 1, R. Bleck 2, A.E. MacDonald 1, J.-W. Bao 1, S. Benjamin 1, J. Middlecoff 3, N. Wang 3, and J. Brown 1 1 NOAA/Earth System Research

More information

MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates

MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates The vertical coordinates: The z-coordinate The Terrain-following coordinate Advantage: Simple Disadvantage: Poorly resolve topography

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

Developing a nonhydrostatic isopycnalcoordinate

Developing a nonhydrostatic isopycnalcoordinate Developing a nonhydrostatic isopycnalcoordinate ocean model Oliver Fringer Associate Professor The Bob and Norma Street Environmental Fluid Mechanics Laboratory Dept. of Civil and Environmental Engineering

More information

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere ATMOS 5130 Lecture 6 Atmospheric Pressure Pressure Profiles for Idealized Atmosphere Goal Understand how temperature, pressure and altitude are related in the atmosphere. Recall from last lecture Hypsometric

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

On the regime of validity of sound-proof model equations for atmospheric flows

On the regime of validity of sound-proof model equations for atmospheric flows On the regime of validity of sound-proof model equations for atmospheric flows Rupert Klein Mathematik & Informatik, Freie Universität Berlin ECMWF, Non-hydrostatic Modelling Workshop Reading, November

More information

Vertical Coordinates and Upper Boundary Conditions. When selecting a vertical coordinate, there are three primary considerations to keep in mind:

Vertical Coordinates and Upper Boundary Conditions. When selecting a vertical coordinate, there are three primary considerations to keep in mind: Vertical Coordinates and Upper Boundary Conditions Introduction to Vertical Coordinate Systems Numerical models can be formulated with one of many vertical coordinates. A given numerical model will typically

More information