A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores

Size: px
Start display at page:

Download "A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores"

Transcription

1 A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores Kevin Viner Naval Research Laboratory, Monterey, CA September 26, 2012 Kevin Viner (NRL) PDE s on the sphere / 21

2 Introduction Navy Global Environmental Model (NAVGEM) 3TL SL-SI hydrostatic spectral transform horizontal, finite-difference vertical with Lorenz staggering hybrid pressure coordinates {u, v, θ v, p s } prognostic variables Currently T359L50 with t = 360s Requires heavy implicit biasing (α = 0.8) for stability...why? Kevin Viner (NRL) PDE s on the sphere / 21

3 SI scheme in NAVGEM Introduction Robert [3] semi-implicit scheme with {p s, T } ref = {800hPa, 300K } du dt dv = fu cos2 (Φ) dt a 2 dθ v = tt {τd} dt dp 1 s = [D p dt η + η = fv 1 φ a 2 λ c pθ v π a 2 λ tt a 2 {γ θ v φ µ c pθ v cos 2 (Φ) 0 tt () = [α() + () 0 + (1 α)() ] a 2 λ + δ p s λ } ( η p η )]dη tt{νd} π µ tt a 2 {γ θ v µ + δ p s µ } where {γ, δ, τ, ν} are prebuilt reference matrices. Performing a spectral transform allows reduction to a single Helmholtz equation in terms of D which can be solved through an eigenvalue decomposition of the mass matrix Γ = (γτ + δν). Kevin Viner (NRL) PDE s on the sphere / 21

4 Introduction Stability Conditions for SL advection SL removes the limiting CFL condition t < α x u associated with Eulerian advection The new stability condition is t < α x u, known as the Lipschitz or deformation CFL condition Shown with traditional linear backward trajectories from a regular grid... x D x D Crossing trajectories represent a non-unique solution...not allowed! i-1 i i+1 i+2 x xa A Kevin Viner (NRL) PDE s on the sphere / 21

5 semi-implicit scheme Introduction Fast mode terms are treated implicitly in Eulerian models to relax the CFL condition In SL models this has the effect relaxing the deformation CFL condition Generally, for a 3TL scheme (extension to 2TL is straightforward) for some prognostic variable ψ: EUL ψ t SL dψ dt = S 0 + F 0 + tt F L = F 0 M + ttf L What happens if F and S are not separable? Kevin Viner (NRL) PDE s on the sphere / 21

6 Problem SI-SL using potential temperature (or other conservative thermodynamic variable) Consider the "energy conversion term" in the thermodynamic equation for temperature (e.g., ECMWF s IFS) and potential temperature (e.g., NAVGEM, UKMO s UM) or similarly for enthalpy (e.g., NCEP s GFS-SL, Juang 2011 [1]) in a model utilizing a hybrid pressure coordinate η: F N = κωt p F N = η θ η = S vert The time discretization for the potential temperature case is then: dθ dt = tt F L. However, it has been noted by "The Joy of U.M. 6.3" (Staniforth et. al [4]) that the lack of a semi-implicitly treated energy conversion term on the RHS results in an unstable scheme. Kevin Viner (NRL) PDE s on the sphere / 21

7 Solutions Potential Remedies Circumvent the problem with reduced accuracy smoothing: Decentering (α > 0.5) increased diffusion increased time filter Return the missing nonlinear term to RHS: Vertically non-interpolating scheme for θ (see UKMO UM New Dynamics documentation) SL advection of perturbation θ (see UKMO UM ENDGame documentation, Wood et. al 2010 [2]) Kevin Viner (NRL) PDE s on the sphere / 21

8 Solutions Vertically non-interpolating scheme for θ Project the departure point onto the nearest vertical level, treat the remainder in an Eulerian semi-implicit fashion on RHS. x A k ' x D k+1 x Stable in linear stability analysis. However, unstable in practice. UKMO forced to result to heavy decentering to maintain stability (α 1) D Kevin Viner (NRL) PDE s on the sphere / 21

9 Solutions SL advection of perturbation θ as done in ENDGame The predictor-corrector and iterative Helmholtz solver applied in the UM are quite useful for this particular problem: Use solution from previous time step as basic state to keep θ vd small Eulerian advection of basic state is treated semi-implicitly by the predictor-corrector (No CFL worries) Iterative Helmholtz solver can be used to reduce the dependence of the discretization on the choice of basic state d(θ vd θvd 0) + v θ 0 dt vd = 0 Kevin Viner (NRL) PDE s on the sphere / 21

10 Solutions SL advection of perturbation θ as done is NAVGEM Since our SI scheme forces us to use θ v throughout our coupled equation set, in addition to gaining stability we have the opportunity to: reduce error in vertical integration of geopotential gradient terms treat variation in θ v due to terrain in an Eulerian fashion to eliminate terrain resonance Borrow idea from Wu et al 2008 [5] and most limited area models to define and extract hydrostatically balanced basic state a single vertical profile is used which represents a nonlinear regression to the U.S. standard atmosphere θ 0 = θ 0 (p) Kevin Viner (NRL) PDE s on the sphere / 21

11 Solutions NAVGEM implementation, continued du dt dv dt = fv 1 a 2 φ λ c pθv a 2 π λ = fu cos2 (Φ) φ a 2 µ c pθ v cos 2 (Φ) π µ a 2 dθ v dt = ω dθ 0 dp 1 dp s = [D p dt 0 η + p ( η η η )]dη dq = 0 dt φ π = c pθ v η p η = p t 1 [D p η + η ( U p cos 2 (Φ) λ + V p µ )]dη 0 Kevin Viner (NRL) PDE s on the sphere / 21

12 Experimental Setup Experimental setup Perform a few experiments for with and without modifications described: Single one month cold start Varied time step Cycled DA tests for 7 weeks (snapshots) SL details and physics may vary across experiments, but only difference in settings between compared results are modification discussed herein. Kevin Viner (NRL) PDE s on the sphere / 21

13 Results Stratospheric Warming: monthly mean zonal winds Control Perturbation Analysis c.f., GMAO MERRA Analysis for January 2011 Thanks to Y.-J. Kim Kevin Viner (NRL) PDE s on the sphere / 21

14 Results Stability: T239L60 Control Case with α = 0.80 Kevin Viner (NRL) PDE s on the sphere / 21

15 Results Stability: T239L60 Perturbation θ with α = 0.60 Kevin Viner (NRL) PDE s on the sphere / 21

16 Results hrs pressure vertical velocity at 0.2mb: Control case (with limiters) Kevin Viner (NRL) PDE s on the sphere / 21

17 Results hrs pressure vertical velocity at 0.2mb: Perturbation case (α = 0.55, no limiters) Kevin Viner (NRL) PDE s on the sphere / 21

18 Results Advantages/Limitations Advantages: Semi-implicit scheme is stable and effective Allows larger time steps without issue Reduced decentering retains high frequency motions that drive stratospheric/mesospheric circulations Better agreement with satellite observations at upper levels Limitations: choice of basic state is subjective and allows large variations in θ v Use without predictor-corrector leaves behind explicit nonlinear vertical advection term requiring weak decentering to avoid CFL violations over steep terrain Kevin Viner (NRL) PDE s on the sphere / 21

19 Results Influence of Basic State?...structure of θ Kevin Viner (NRL) PDE s on the sphere / 21

20 Results Influence of Basic State?...(θ pert θ ctrl ) Kevin Viner (NRL) PDE s on the sphere / 21

21 Summary Conclusions Application of a standard SISL scheme to a conservative thermodynamic variable leads to an unstable centered scheme The only way to realize stability using a centered scheme is to extract the vertical advection of said variable from the SL trajectory and treat it in an Eulerian manner Results show significant improvements above 10mb where decentering was most detrimental Future work will look to create more uniform θ v and attempt a more implicit treatment once we move to a two-time-level scheme Kevin Viner (NRL) PDE s on the sphere / 21

22 Summary A. White J. Thuburn T. Allen T. Davies M. Diamantakis M. Dubal M. Gross T. Melvin C. Smith M. Zerroukat N. Wood, A. Staniforth. Endgame formulation v3.01. Technical report, U.K.M.O. A. Robert. The integration of a spectral model of the atmosphere by the implicit method, journal =. A. Staniforth, A. White, N. Wood, J. Thuburn, M. Zerroukat, E. Cordero, and T. Davies. The joy of u.m model formulation, unified model documentation paper no. 15. Technical report, U.K.M.O. Tongwen Wu, Rucong Yu, and Fang Zhang. A modified framework for the atmospheric spectral model and its application. Kevin Viner (NRL) PDE s on the sphere / 21

23 Summary J. Atmos. Sci., 65: , Kevin Viner (NRL) PDE s on the sphere / 21

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

Semi-implicit methods, nonlinear balance, and regularized equations

Semi-implicit methods, nonlinear balance, and regularized equations ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 8: 1 6 (7 Published online 9 January 7 in Wiley InterScience (www.interscience.wiley.com.1 Semi-implicit methods, nonlinear balance, and regularized equations

More information

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate Juan Simarro and Mariano Hortal AEMET Agencia Estatal de

More information

Francis X. Giraldo,

Francis X. Giraldo, 1 Time-Integrators Francis X. Giraldo, giraldo@nrlmry.navy.mil, www.nrlmry.navy.mil/~giraldo/projects/nseam.html 1.1 Introduction Roughly speaking, there are 2 classes of TIs: 1. EulerianMethods(fixed-frame-e.g.,arockatthebottomofaflowing

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

An inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic equations

An inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic equations Quarterly Journalof the RoyalMeteorologicalSociety Q. J. R. Meteorol. Soc. : July DOI:./qj. n inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic

More information

Formulation and performance of the Variable-Cubic Atmospheric Model

Formulation and performance of the Variable-Cubic Atmospheric Model Formulation and performance of the Variable-Cubic Atmospheric Model John McGregor CSIRO Marine and Atmospheric Research Aspendale, Melbourne Southern Hemisphere PDEs on the Sphere NCAR 11 April 2014 CSIRO

More information

Computational challenges in Numerical Weather Prediction

Computational challenges in Numerical Weather Prediction Computational challenges in Numerical Weather Prediction Mike Cullen Oxford 15 September 2008 Contents This presentation covers the following areas Historical background Current challenges Why does it

More information

ECMWF Overview. The European Centre for Medium-Range Weather Forecasts is an international. organisation supported by 23 European States.

ECMWF Overview. The European Centre for Medium-Range Weather Forecasts is an international. organisation supported by 23 European States. ECMWF Overview The European Centre for Medium-Range Weather Forecasts is an international organisation supported by 3 European States. The center was established in 1973 by a Convention and the real-time

More information

Time-Parallel Algorithms for Weather Prediction and Climate Simulation

Time-Parallel Algorithms for Weather Prediction and Climate Simulation Time-Parallel Algorithms for Weather Prediction and Climate Simulation Jean Côté Adjunct Prof. ESCER Centre (Étude et la Simulation du Climat à l Échelle Régionale) Sciences de la Terre & de l Atmosphère

More information

Data Science in Academic Research & Physics of Wind Energy

Data Science in Academic Research & Physics of Wind Energy Data Science in Academic Research & Physics of Wind Energy Dr. Junling Huang Philomathia Research Fellow Berkeley Energy & Climate Institute University of California Berkeley Data Science in Academic Research

More information

CAM-SE: Lecture I. Peter Hjort Lauritzen

CAM-SE: Lecture I. Peter Hjort Lauritzen CAM-SE: Lecture I Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research 2nd WCRP Summer School on Climate

More information

Time-Parallel Algorithms for Weather Prediction and Climate Simulation

Time-Parallel Algorithms for Weather Prediction and Climate Simulation Time-Parallel Algorithms for Weather Prediction and Climate Simulation Jean Côté Adjunct Prof. ESCER Centre (Étude et la Simulation du Climat à l Échelle Régionale) Sciences de la Terre & de l Atmosphère

More information

NCAR Global Atmospheric Core Workshop, Boulder, June 2008

NCAR Global Atmospheric Core Workshop, Boulder, June 2008 NCAR Global Atmospheric Core Workshop, Boulder, June 2008 D. Majewski based on Christiane Jablonowski (email: cjablono@umich.edu) University of Michigan Goals of the Test Suite NASA/GFDL Test cases should

More information

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven Modelling the atmosphere Hennie Kelder University of Technology Eindhoven Content Basics of the atmosphere Atmospheric dynamics Large scale circulation Planetary waves Brewer-Dobson circulation Some Key

More information

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October Innsbruck Workshop October 29 21 EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS Luca Bonaventura - Modellistica e Calcolo Scientifico Dipartimento di Matematica

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

Adaptive Mesh Methods for Numerical Weather Prediction

Adaptive Mesh Methods for Numerical Weather Prediction Adaptive Mesh Methods for Numerical Weather Prediction submitted by Stephen P. Cook for the degree of Doctor of Philosophy of the University of Bath Department of Mathematical Sciences April 2016 COPYRIGHT

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Chapter 5. Fundamentals of Atmospheric Modeling

Chapter 5. Fundamentals of Atmospheric Modeling Overhead Slides for Chapter 5 of Fundamentals of Atmospheric Modeling by Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 January 30, 2002 Altitude

More information

The spectral transform method

The spectral transform method The spectral transform method by Nils Wedi European Centre for Medium-Range Weather Forecasts wedi@ecmwf.int Advanced Numerical Methods for Earth-System Modelling Slide 1 Advanced Numerical Methods for

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Tangent-linear and adjoint models in data assimilation

Tangent-linear and adjoint models in data assimilation Tangent-linear and adjoint models in data assimilation Marta Janisková and Philippe Lopez ECMWF Thanks to: F. Váňa, M.Fielding 2018 Annual Seminar: Earth system assimilation 10-13 September 2018 Tangent-linear

More information

Improving ECMWF s IFS model by Nils Wedi

Improving ECMWF s IFS model by Nils Wedi Improving ECMWF s IFS model by Nils Wedi wedi@ecmwf.int Anna Agusti-Panareda, Gianpaolo Balsamo, Peter Bauer, Peter Bechtold, Willem Deconinck, Mikhail Diamantakis, Mats Hamrud, Christian Kuehnlein, Martin

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

SWiM A Semi-Lagrangian, Semi-Implicit Shallow Water

SWiM A Semi-Lagrangian, Semi-Implicit Shallow Water Chapter 3 SWiM A Semi-Lagrangian, Semi-Implicit Shallow Water Model 3.1 Introduction There are a number of semi-lagrangian, semi-implicit models in use in the weather and climate communities today. The

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

ICON. The Icosahedral Nonhydrostatic modelling framework

ICON. The Icosahedral Nonhydrostatic modelling framework ICON The Icosahedral Nonhydrostatic modelling framework Basic formulation, NWP and high-performance computing aspects, and its perspective towards a unified model for seamless prediction Günther Zängl,

More information

Physics/Dynamics coupling

Physics/Dynamics coupling Physics/Dynamics coupling Sylvie Malardel ECMWF November 8, 2010 Sylvie Malardel (ECMWF) Physics/Dynamics coupling November 8, 2010 1 / 21 Coupling between Physics and Dynamics for convection permitting

More information

Univ. of Maryland-College Park, Dept. of Atmos. & Oceanic Science. NOAA/NCEP/Environmental Modeling Center

Univ. of Maryland-College Park, Dept. of Atmos. & Oceanic Science. NOAA/NCEP/Environmental Modeling Center The Tangent Linear Normal Mode Constraint in GSI: Applications in the NCEP GFS/GDAS Hybrid EnVar system and Future Developments Daryl Kleist 1 David Parrish 2, Catherine Thomas 1,2 1 Univ. of Maryland-College

More information

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Jean-Baptiste GILET, Matthieu Plu and Gwendal Rivière CNRM/GAME (Météo-France, CNRS) 3rd THORPEX International Science Symposium Monterey,

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

Earth System Modeling Domain decomposition

Earth System Modeling Domain decomposition Earth System Modeling Domain decomposition Graziano Giuliani International Centre for Theorethical Physics Earth System Physics Section Advanced School on Regional Climate Modeling over South America February

More information

POD Model Reduction of Large Scale Geophysical Models. Ionel M. Navon

POD Model Reduction of Large Scale Geophysical Models. Ionel M. Navon POD Model Reduction of Large Scale Geophysical Models Ionel M. Navon School of Computational Science Florida State University Tallahassee, Florida Thanks to Prof. D. N. Daescu Dept. of Mathematics and

More information

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE INTRODUCTION V. Guryanov, A. Fahrutdinova, S. Yurtaeva Kazan State University, Kazan, Russia When constructing empirical

More information

The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model

The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model Q. J. R. Meteorol. Soc. (2), 128, pp. 1671 1687 The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model By MARIANO HORTAL European Centre for Medium-Range

More information

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Approved for public release; distribution is unlimited IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Sean L. Gibbons Captain, United

More information

Chapter 4. Nonlinear Hyperbolic Problems

Chapter 4. Nonlinear Hyperbolic Problems Chapter 4. Nonlinear Hyperbolic Problems 4.1. Introduction Reading: Durran sections 3.5-3.6. Mesinger and Arakawa (1976) Chapter 3 sections 6-7. Supplementary reading: Tannehill et al sections 4.4 and

More information

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu Linear model for investigation of nonlinear NWP model accuracy Marko Zirk, University of Tartu Introduction A method for finding numerical solution of non-hydrostatic linear equations of atmospheric dynamics

More information

Recent developments of the global semi-lagrangian atmospheric model

Recent developments of the global semi-lagrangian atmospheric model Recent developments of the global semi-lagrangian atmospheric model Mikhail Tolstykh, Vladimir Shashkin (Inst. of Numerical Math. RAS, Hydrometcentre of Russia), Alla Yurova (Hydrometcentre of Russia)

More information

Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo

Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo Hann-Ming Henry Juang Environmental Modeling Center, NCEP NWS,NOAA,DOC,USA

More information

Impact of Resolution on Extended-Range Multi-Scale Simulations

Impact of Resolution on Extended-Range Multi-Scale Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Resolution on Extended-Range Multi-Scale Simulations Carolyn A. Reynolds Naval Research Laboratory Monterey,

More information

The General Circulation of the Atmosphere: A Numerical Experiment

The General Circulation of the Atmosphere: A Numerical Experiment The General Circulation of the Atmosphere: A Numerical Experiment Norman A. Phillips (1956) Presentation by Lukas Strebel and Fabian Thüring Goal of the Model Numerically predict the mean state of the

More information

A Modified Dynamic Framework for the Atmospheric Spectral Model and Its Application

A Modified Dynamic Framework for the Atmospheric Spectral Model and Its Application JULY 2008 W U E T A L. 2235 A Modified Dynamic Framework for the Atmospheric Spectral Model and Its Application TONGWEN WU Beijing Climate Center, China Meteorological Administration, Beijing, China RUCONG

More information

Coupled Global-Regional Data Assimilation Using Joint States

Coupled Global-Regional Data Assimilation Using Joint States DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupled Global-Regional Data Assimilation Using Joint States Istvan Szunyogh Texas A&M University, Department of Atmospheric

More information

Split explicit methods

Split explicit methods Split explicit methods Almut Gassmann Meteorological Institute of the University of Bonn Germany St.Petersburg Summer School 2006 on nonhydrostatic dynamics and fine scale data assimilation Two common

More information

Vertical Coordinates and Upper Boundary Conditions. When selecting a vertical coordinate, there are three primary considerations to keep in mind:

Vertical Coordinates and Upper Boundary Conditions. When selecting a vertical coordinate, there are three primary considerations to keep in mind: Vertical Coordinates and Upper Boundary Conditions Introduction to Vertical Coordinate Systems Numerical models can be formulated with one of many vertical coordinates. A given numerical model will typically

More information

Comparing the formulations of CCAM and VCAM and aspects of their performance

Comparing the formulations of CCAM and VCAM and aspects of their performance Comparing the formulations of CCAM and VCAM and aspects of their performance John McGregor CSIRO Marine and Atmospheric Research Aspendale, Melbourne PDEs on the Sphere Cambridge 28 September 2012 CSIRO

More information

Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave

Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave James D. Doyle 1, Stephen D. Eckermann 2, Eric Hendricks 1, Qingfang Jiang 1, P. Alex Reinecke 1, Carolyn A. Reynolds 1, David C.

More information

11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model

11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model 11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model Julian T. Heming * Met Office, Exeter, UK 1. BACKGROUND TO MODEL UPGRADE The last major upgrade to the

More information

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle The WRF NMM Core Zavisa Janjic (Zavisa.Janjic@noaa.gov) Talk modified and presented by Matthew Pyle (Matthew.Pyle@noaa.gov) NMM Dynamic Solver Basic Principles Equations / Variables Model Integration Horizontal

More information

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008 1966-4 Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling 29 September - 10 October, 2008 Dynamics of the Eta model Part I Fedor Mesinger Environmental

More information

Data Assimilation Development for the FV3GFSv2

Data Assimilation Development for the FV3GFSv2 Data Assimilation Development for the FV3GFSv2 Catherine Thomas 1, 2, Rahul Mahajan 1, 2, Daryl Kleist 2, Emily Liu 3,2, Yanqiu Zhu 1, 2, John Derber 2, Andrew Collard 1, 2, Russ Treadon 2, Jeff Whitaker

More information

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers A primal-dual mixed finite element method for accurate and efficient atmospheric modelling on massively parallel computers John Thuburn (University of Exeter, UK) Colin Cotter (Imperial College, UK) AMMW03,

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

How does 4D-Var handle Nonlinearity and non-gaussianity?

How does 4D-Var handle Nonlinearity and non-gaussianity? How does 4D-Var handle Nonlinearity and non-gaussianity? Mike Fisher Acknowledgements: Christina Tavolato, Elias Holm, Lars Isaksen, Tavolato, Yannick Tremolet Slide 1 Outline of Talk Non-Gaussian pdf

More information

A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models

A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models Frank Giraldo Department of Applied Math, Naval Postgraduate School, Monterey CA 93943 Collaborators: Jim Kelly

More information

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ

More information

Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing

Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing 1 Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing Marko Zirk, Rein Rõõm Tartu University, Estonia Marko.Zirk@ut.ee, Rein.Room@ut.ee 1 1 Introduction

More information

Radiative contribution to the North-American cold air outbreaks in a Lagrangian perspective

Radiative contribution to the North-American cold air outbreaks in a Lagrangian perspective Radiative contribution to the North-American cold air outbreaks in a Lagrangian perspective Natalia Bliankinshtein, Y. Huang, J. R. Gyakum and E. Atallah Department of Atmospheric and Oceanic Sciences

More information

Evaluation of three spatial discretization schemes with the Galewsky et al. test

Evaluation of three spatial discretization schemes with the Galewsky et al. test Evaluation of three spatial discretization schemes with the Galewsky et al. test Seoleun Shin Matthias Sommer Sebastian Reich Peter Névir February 22, 2 Abstract We evaluate the Hamiltonian Particle Methods

More information

AOS 452 Lab 13 Handout Upper-Level Frontogenesis and Sawyer-Eliassen Circulations

AOS 452 Lab 13 Handout Upper-Level Frontogenesis and Sawyer-Eliassen Circulations AOS 452 Lab 13 Handout Upper-Level Frontogenesis and Sawyer-Eliassen Circulations Introduction As we discussed in class, fronts are locations at which we cannot ignore the effects of ageostrophy. Furthermore,

More information

Introduction of a Stabilized Bi-Conjugate Gradient iterative solver for Helmholtz s Equation on the CMA GRAPES Global and Regional models.

Introduction of a Stabilized Bi-Conjugate Gradient iterative solver for Helmholtz s Equation on the CMA GRAPES Global and Regional models. Introduction of a Stabilized Bi-Conjugate Gradient iterative solver for Helmholtz s Equation on the CMA GRAPES Global and Regional models. Peng Hong Bo (IBM), Zaphiris Christidis (Lenovo) and Zhiyan Jin

More information

Latest thoughts on stochastic kinetic energy backscatter - good and bad

Latest thoughts on stochastic kinetic energy backscatter - good and bad Latest thoughts on stochastic kinetic energy backscatter - good and bad by Glenn Shutts DARC Reading University May 15 2013 Acknowledgments ECMWF for supporting this work Martin Leutbecher Martin Steinheimer

More information

On the prognostic treatment of stratospheric ozone in the Environment Canada global NWP system

On the prognostic treatment of stratospheric ozone in the Environment Canada global NWP system On the prognostic treatment of stratospheric ozone in the Environment Canada global NWP system Jean de Grandpré, Y. J. Rochon, C.A. McLinden, S. Chabrillat and Richard Ménard Outline Ozone assimilation

More information

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #2 Planetary Wave Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Observational motivation 2. Forced planetary waves in the stratosphere 3. Traveling planetary

More information

Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models

Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models Erich Becker Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany Including contributions from Ulrike

More information

Scalable Non-Linear Compact Schemes

Scalable Non-Linear Compact Schemes Scalable Non-Linear Compact Schemes Debojyoti Ghosh Emil M. Constantinescu Jed Brown Mathematics Computer Science Argonne National Laboratory International Conference on Spectral and High Order Methods

More information

A Proposed Test Suite for Atmospheric Model Dynamical Cores

A Proposed Test Suite for Atmospheric Model Dynamical Cores A Proposed Test Suite for Atmospheric Model Dynamical Cores Christiane Jablonowski (cjablono@umich.edu) University of Michigan, Ann Arbor PDEs on the Sphere Workshop Monterey, CA, June/26-29/2006 Motivation

More information

Background Error Covariance Modelling

Background Error Covariance Modelling Background Error Covariance Modelling Mike Fisher Slide 1 Outline Diagnosing the Statistics of Background Error using Ensembles of Analyses Modelling the Statistics in Spectral Space - Relaxing constraints

More information

Weather Forecasting Models in Met Éireann. Eoin Whelan UCD Seminar 3 rd April 2012

Weather Forecasting Models in Met Éireann. Eoin Whelan UCD Seminar 3 rd April 2012 Weather Forecasting Models in Met Éireann Eoin Whelan UCD Seminar 3 rd April 2012 Overview Background HIRLAM Models Local Implementation Verification Development work Background Met Éireann Dept of the

More information

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations Institute for Mathematics Applied to the Geosciences (IMAGe) National Center for Atmospheric Research (NCAR) Boulder CO

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Circulation and Vorticity

Circulation and Vorticity Circulation and Vorticity Example: Rotation in the atmosphere water vapor satellite animation Circulation a macroscopic measure of rotation for a finite area of a fluid Vorticity a microscopic measure

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 10 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Pseudo-Time Integration 1 / 10 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 10 Outline 1

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

Hamiltonian particle-mesh simulations for a non-hydrostatic vertical slice model

Hamiltonian particle-mesh simulations for a non-hydrostatic vertical slice model Hamiltonian particle-mesh simulations for a non-hydrostatic vertical slice model Seoleun Shin Sebastian Reich May 6, 29 Abstract A Lagrangian particle method is developed for the simulation of atmospheric

More information

Toward the Mitigation of Spurious Cloud-Edge Supersaturation in Cloud Models

Toward the Mitigation of Spurious Cloud-Edge Supersaturation in Cloud Models 1224 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 Toward the Mitigation of Spurious Cloud-Edge Supersaturation in Cloud Models WOJCIECH W. GRABOWSKI AND HUGH MORRISON National Center for Atmospheric

More information

Numerical explorations of a forward-backward diffusion equation

Numerical explorations of a forward-backward diffusion equation Numerical explorations of a forward-backward diffusion equation Newton Institute KIT Programme Pauline Lafitte 1 C. Mascia 2 1 SIMPAF - INRIA & U. Lille 1, France 2 Univ. La Sapienza, Roma, Italy September

More information

The Advanced Research WRF (ARW) Dynamics Solver

The Advanced Research WRF (ARW) Dynamics Solver Dynamics: Introduction The Advanced Research WRF (ARW) Dynamics Solver 1. What is a dynamics solver? 2. Variables and coordinates 3. Equations 4. Time integration scheme 5. Grid staggering 6. Advection

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

Quasi-geostrophic system

Quasi-geostrophic system Quasi-eostrophic system (or, why we love elliptic equations for QGPV) Charney s QG the motion of lare-scale atmospheric disturbances is overned by Laws of conservation of potential temperature and potential

More information

3.4. Monotonicity of Advection Schemes

3.4. Monotonicity of Advection Schemes 3.4. Monotonicity of Advection Schemes 3.4.1. Concept of Monotonicity When numerical schemes are used to advect a monotonic function, e.g., a monotonically decreasing function of x, the numerical solutions

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

Dynamical kernel of the Aladin NH spectral limited-area model: Revised formulation and sensitivity experiments

Dynamical kernel of the Aladin NH spectral limited-area model: Revised formulation and sensitivity experiments Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 155 169, January 2010 Part A Dynamical kernel of the Aladin NH spectral limited-area model: Revised formulation and sensitivity

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling ICON The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling Günther Zängl and the ICON deelopment team PDEs on the sphere 2012 Outline Introduction: Main

More information

The CMC 15km Global Deterministic Prediction System with the Yin-Yang grid.

The CMC 15km Global Deterministic Prediction System with the Yin-Yang grid. The CMC 15km Global Deterministic Prediction System with the Yin-Yang grid. Abdessamad Qaddouri and Vivian Lee Environment Canada The 15th ECMWF Workshop on High Performance Computing in Meteorology October

More information

Dynamic Meteorology (Atmospheric Dynamics)

Dynamic Meteorology (Atmospheric Dynamics) Lecture 1-2012 Dynamic Meteorology (Atmospheric Dynamics) Lecturer: Aarnout van Delden Office: BBG, room 615 a.j.vandelden@uu.nl http://www.staff.science.uu.nl/~delde102/index.php Students (background

More information

Boundary layer controls on extratropical cyclone development

Boundary layer controls on extratropical cyclone development Boundary layer controls on extratropical cyclone development R. S. Plant (With thanks to: I. A. Boutle and S. E. Belcher) 28th May 2010 University of East Anglia Outline Introduction and background Baroclinic

More information

Vorticity in natural coordinates

Vorticity in natural coordinates Vorticity in natural coordinates (see Holton pg 95, section 4.2.) Let s consider the vertical vorticity component only, i.e. ζ kˆ ω, we have ω u dl kˆ ω lim --- lim ----------------- curve is in xy plane

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 65 Partial Differential Equations Week 1, Day 3 1 Nov 014 1 Partial Differential Equation An equation that defines the relationship between an unknown

More information