Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic]

Size: px
Start display at page:

Download "Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic]"

Transcription

1 Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic]

2 Entropy 1. (Thermodynamics) a thermodynamic quantity that changes in a reversible process by an amount equal to the heat absorbed or emitted divided by the thermodynamic temperature. It is measured in joules per kelvin [J/K]. 2. (Statistical Physics) a statistical measure of the disorder of a closed system expressed by S = k B log W + c where W is the probability that a particular state of the system exists, and c is an arbitrary constant 3. (General Physics) lack of pattern or organization; disorder 4. (Electronics & Computer Science / Communications & Information) a measure of the efficiency of a system, such as a code or language, in transmitting information

3 1st Law of Thermodynamics & Thermodynamic Identity du = d 'q! d 'w The notation dʹ denotes an inexact differential, i.e., an integral over the quantity depends on the path taken. s(u,{x i })! ds =!s $ # & "!u% {x i }!!s $ # & = 1 "!u%{x i } T! du +!s $ # & "!x i % " du = Tds!T!s % $ ' #!x i &! du = Tds +T!s $ # & " d" % u u,{x n(i } u,{x n'i } dx i dx i d" = Tds ' pd" = d 'q! d 'w (1) 1st Law Energy conservation: the change in energy of a system du must equal the heat added to/removed from the system dʹ q and the work done on/by the system dʹ w. (2) Definition of temperature [from entropy s, which is written as a function of u and a set of other variables {x i } ] Expanding s as a linear function of it s first partial derivatives and rearranging, using (2) leads to (3) the thermodynamic identity. Here, pressure p is related to the partial derivative of s w.r.t. system volume.

4 Aside: Thermodynamic Potentials Potential: generalized force F i multiplied by a generalized displacement d i : Internal energy (U): " = F i d i U = U(S,V, { N i }) = TS " pv + µ i N i Helmholtz free energy (A): A = A(T,V, { N i }) = U " TS Gibbs free energy (G): G = G(T, p, { N i }) = U " TS + pv Enthalpy (H): H = H(S, p, { N i }) = U + pv Landau or Grand Potential (Ω): " = "(T,V,{ µ i }) = U # TS # µ i N i Chemical potential (µ i ): force related to particle exchange (of species i) between systems Euler s homogeneous function theorem allows U to be written in terms of TS, pv, T,p,µ i are intensive variables: they are unchanged if 2 or more identical systems are combined. S,V,N i [and, e.g., U] are extensive, scaling with system size. Legendre transforms applied to obtain other potentials Properties of potentials can be exploited for different purposes, e.g., Gibbs is useful for processes in T-p space. Maxwell relations: equivalence of mixed partial derivatives

5 Hydrostatic equilibrium & buoyancy Newton s 2nd Law of Motion in the z direction:! F = m! a z Consider first the case with equal environmental and parcel densities, i.e., " e = " b = " ("#x#y#z) d 2 #z dt 2 = $("#x#y#z)g + p(z)#x#y $ p(z + #z)#x#y In equilibrium, and applying limit δz 0, 0 = "#g " $p $z Consider now : z+δz z y δx p(z+δz) " e # " b (" b #x#y#z) d 2 #z = $(" dt 2 b #x#y#z)g + p(z)#x#y $ p(z + #z)#x#y " d 2 #z = $g + 1 &p dt 2 % b &z = $g ' 1$ % * e ), - B Buoyancy ( + % b ρ b x p(z) δy g ρ e

6 Relating buoyancy and entropy Defining the specific volume α as " = 1 #, we can rewrite the buoyancy as: $ B = "g 1" # e & % # b ' $ ) = "g 1" * b & ( % * e ' $ ) = g * b "* e ' & ) = g +* ( % ( * * e where " # " e and "# $ # b %# e Consider α=α(s,p). Then, at constant pressure: d! = "! "s p ds = "T " p s ds α is equivalent to specific enthalpy, h. The second equality here thus follows from the Maxwell relations for mixed second partial derivatives of h. Thus, B = g!!! = g ""T % $ '! #" p & s ds = ( "T "z s ds = )ds Use the hydrostatic relationship to covert derivative to a function of z.

7 Dry adiabatic lapse rate Adiabatic parcel + ideal gas law [+hydrostatic eq] Tds = 0 = du + pd! p" = R d T For an ideal gas, the internal energy is a function of T only. [R d " 287Jkg #1 K #1 ] z leads to the dry adiabatic lapse rate γ d : % " d = # $T ( ' * & $z ) ds= 0 = g c p +10K /km [c p "1004Jkg #1 K #1 ] z 0 +δz T(z 0 +δz) T e (z 0 +δz) From the 1D force equation in the vertical [again applying the ideal gas law]: dw dt = g " e # " = g T # T e " T e T(z 0 + "z) # T e (z 0 ) $ % d "z z 0 T(z 0 ) =T e (z 0 ) T e (z 0 ) dw dt = g"z(# e $ # d ) /T e T e (z 0 + "z) # T e (z 0 ) $ % e "z

8 (Dry) Static Stability w = d"z dt # d 2 "z dt 2 & $ g % e $ % d ( ' T e ) + "z = 0 * d 2 "z + N 2 (z)"z = 0 N(z) = "g # " # e d dt 2 T e (z) N is known as the Brunt- V äisälä frequency. If γ e < γ d, N 2 (z) > 0, so solutions to the perturbation equation are oscillatory (sinusoids). In this case, the equilibrium is stable. If γ e > γ d, N 2 (z) < 0, so solutions to the perturbation equation are exponential (hyperbolic sine/cosine). In this case, the equilibrium is unstable. Height Slope: -γ Stable d Slope: Unstable Temperature -γ e

9 Let s re-evaluate radiative equilibrium Emanuel, 2005 Pure radiative equilibrium is in fact unstable for conditions in the troposphere [but is reasonable in the stratosphere]. Tropospheric γ d significantly exceeds the observed lapse rate (~6.5K/km) Need to account for vertical heat transport via convection [more shortly and later]

10 Moist atmosphere Ideal gas law for dry air (denoted d ) and water vapor (denoted v ): p d " d = R d T e" v = R v T p = p d + e # % $ R d R v = m v " 18 m d 28.9 = & ( ' The total pressure of moist (dry +vapor) air [Dalton s Law of Partial Pressures]: The density of moist air is: " = " d + " v = p $ & R d T 1# e ' ) % p( Virtual temperature (T v ): temperature to which dry air must be raised to have the same density as moist the same pressure # T v = T% 1" e "1 & ( $ p' Specific humidity (q): q = " v " = 0.622e p # 0.378e $ e p Using the definitions of q and T v, the equation of state of moist air is approximately: p " #R d T( q)

11 Saturation Consider the relative humidity (rh): rh = e e s Here, the saturation vapor pressure (e s ) is the maximum vapor pressure attainable at a given temperature The Clausius-Clapeyron equation governs the temperature dependence of e s for two-phase equilibrium: de s T = L T(" 2 #" 2 ) If 1 denotes the condensed phase (solid or liquid) and 2 the gaseous phase, α 2 >>α 1. From prior definitions and after integration: $ e s (T) "exp #0.622 L ' & ) % R d T(

12 Adiabatic process in a moist atmosphere Consider first the potential temperature for dry air, θ, which is the temperature a parcel of air would have if displaced, adiabatically and reversibly, to a reference pressure p 0 [typically, 1000 mb]: # " = T p & 0 % ( $ p ' ) ;) = R d c p [To derive: apply 1st law for an adiabatic process (ds=0), use definition of internal energy and ideal gas law, and integrate.] The (dry) entropy can be expressed in terms of θ:!s d = c p ln! d!s d = 0 " d! = 0 Note: the Δ notation indicates entropy is defined up to an arbitrary constant, i.e., Δs d =s d -constant. Now, for an adiabatic upward displacement of saturated air, condensation will occur, leading to a release of latent heat in the amount -Ldq s. The entropy change associated with this release is dδs c =(-Ldq s )/T. Equating dδs d and dδs c and integrating gives the equivalent potential temperature θ e : c p dln" = # L cdq s T % $ #d L cq s ( ' * & T ) # " e = " exp Lq & s % ( $ c p T'

13 Moist Stability Starting with the vertical acceleration and using the definition of potential temperature, it can be shown that: d 2 "z dt 2 + N 2 (z)"z = 0 Thus: "# "z > 0 Stable "# "z < 0 Unstable d 2 "z dt + % g $# ( ' *"z = 0 2 &# $z ) Equivalent potential temperature can be used to evaluate stability for a moist atmosphere; by analogy, a moist adiabatic lapse γ m rate can be defined. A region of conditional instability emerges, for γ m < γ e < γ d. For unsaturated air, this region is stable; for saturated air, it s unstable. Height Conditionally Unstable m=-γ d Absolutely Unstable m=-γ m Absolutely Stable Temperature

14 Overview of convection [more later] Convection is an important source of atmospheric heating associated with H 2 O phase changes. Vertical motion field associated with convection is an important control on the space-time behavior of H 2 O vapor, other tracers, aerosols, and clouds. Global hydrologic cycle balance implies balance between global mean precipitation and evaporation rates [~3 mm day -1 ] although significant regional [sub-global] heterogeneity exists. Evaporation [aka latent heating] is an important component of the surface energy budget.

15 Convective adjustment Eliminates atmospheric column instability Environmental conditions that favor instability: Cooling aloft via cold air advection or longwave radiative cooling Warming of surface via warm air advection or solar heating Lifting of air mass through low-level convergence

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium Goal: Develop a 1D description of the [tropical] atmosphere Vertical temperature profile Total atmospheric mass: ~5.15x10

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

P sat = A exp [B( 1/ /T)] B= 5308K. A=6.11 mbar=vapor press. 0C.

P sat = A exp [B( 1/ /T)] B= 5308K. A=6.11 mbar=vapor press. 0C. Lecture 5. Water and water vapor in the atmosphere 14 Feb 2008 Review of buoyancy, with an unusual demonstration of Archimedes principle. Water is a polar molecule that forms hydrogen bonds. Consequently

More information

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity.

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity. Institute of Applied Physics University of Bern Outline A planetary atmosphere consists of different gases hold to the planet by gravity The laws of thermodynamics hold structure as vertical coordinate

More information

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere The vertical structure of the atmosphere. Physical properties of the atmosphere To first order, the gas pressure at the bottom of an atmospheric column balances the downward force of gravity on the column.

More information

Clouds and turbulent moist convection

Clouds and turbulent moist convection Clouds and turbulent moist convection Lecture 2: Cloud formation and Physics Caroline Muller Les Houches summer school Lectures Outline : Cloud fundamentals - global distribution, types, visualization

More information

GEF2200 atmospheric physics 2018

GEF2200 atmospheric physics 2018 GEF2200 atmospheric physics 208 Solutions: thermodynamics 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.8r Unsaturated air is lifted (adiabatically): The first pair of quantities

More information

Dynamic Meteorology: lecture 2

Dynamic Meteorology: lecture 2 Dynamic Meteorology: lecture 2 Sections 1.3-1.5 and Box 1.5 Potential temperature Radiatively determined temperature (boxes 1.1-1.4) Buoyancy (-oscillations) and static instability, Brunt-Vaisala frequency

More information

1. Water Vapor in Air

1. Water Vapor in Air 1. Water Vapor in Air Water appears in all three phases in the earth s atmosphere - solid, liquid and vapor - and it is one of the most important components, not only because it is essential to life, but

More information

ATMO 551a Fall 08. Equivalent Potential Temperature

ATMO 551a Fall 08. Equivalent Potential Temperature Equivalent Potential emperature he equivalent potential temperature, θ e, is the potential temperature that would result if all of the water in the air parcel were condensed and rained out by raising the

More information

Atmospheric Dynamics: lecture 2

Atmospheric Dynamics: lecture 2 Atmospheric Dynamics: lecture 2 Topics Some aspects of advection and the Coriolis-effect (1.7) Composition of the atmosphere (figure 1.6) Equation of state (1.8&1.9) Water vapour in the atmosphere (1.10)

More information

Lecture 3: Convective Heat Transfer I

Lecture 3: Convective Heat Transfer I Lecture 3: Convective Heat Transfer I Kerry Emanuel; notes by Paige Martin and Daniel Mukiibi June 18 1 Introduction In the first lecture, we discussed radiative transfer in the climate system. Here, we

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Thermodynamic Energy Equation

Thermodynamic Energy Equation Thermodynamic Energy Equation The temperature tendency is = u T x v T y w T z + dt dt (1) where dt/dt is the individual derivative of temperature. This temperature change experienced by the air parcel

More information

The Tropical Atmosphere: Hurricane Incubator

The Tropical Atmosphere: Hurricane Incubator The Tropical Atmosphere: Hurricane Incubator Images from journals published by the American Meteorological Society are copyright AMS and used with permission. A One-Dimensional Description of the Tropical

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr.

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. References: ESCI 340 - Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. DeCaria Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU Enthalpy and the Moist Adiabat We have described the dry adiabat where an air parcel is lifted rapidly causing the air parcel to expand as the environmental pressure decreases and the air parcel does work

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

1. Static Stability. (ρ V ) d2 z (1) d 2 z. = g (2) = g (3) T T = g T (4)

1. Static Stability. (ρ V ) d2 z (1) d 2 z. = g (2) = g (3) T T = g T (4) NCAR (National Center for Atmospheric Research) has an excellent resource for education called COMET-MetEd. There you can find some really great tutorials on SkewT-LogP plots: visit http://www.meted.ucar.edu/mesoprim/skewt/index.htm.

More information

Reversible vs. irreversible processes

Reversible vs. irreversible processes Reversible vs. irreversible processes A reversible process is one for which the final states of the universe (system and environment) are iden

More information

Quasi-equilibrium transitions

Quasi-equilibrium transitions Quasi-equilibrium transitions We have defined a two important equilibrium conditions. he first is one in which there is no heating, or the system is adiabatic, and dh/ =0, where h is the total enthalpy

More information

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air Lecture Ch. 6 Saturation of moist air Relationship between humidity and dewpoint Clausius-Clapeyron equation Dewpoint Temperature Depression Isobaric cooling Moist adiabatic ascent of air Equivalent temperature

More information

GEF2200 Atmosfærefysikk 2012

GEF2200 Atmosfærefysikk 2012 GEF2200 Atmosfærefysikk 2012 Løsningsforslag til oppgavesett 4 WH06 3.46 (WH 2.49) The air parcel has the properties p = 1000hPa, T = 15 C and T d = 4 C. b Lifting the air parcel to p 2 = 900hPa, T 2 we

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere Physical Properties of the Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

Lecture 7. Science A-30 February 21, 2008 Air may be forced to move up or down in the atmosphere by mechanical forces (wind blowing over an obstacle,

Lecture 7. Science A-30 February 21, 2008 Air may be forced to move up or down in the atmosphere by mechanical forces (wind blowing over an obstacle, Lecture 7. Science A-30 February 21, 2008 Air may be forced to move up or down in the atmosphere by mechanical forces (wind blowing over an obstacle, like a mountain) or by buoyancy forces. Air that is

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Chapter 5. Atmospheric Moisture

Chapter 5. Atmospheric Moisture Chapter 5 Atmospheric Moisture hydrologic cycle--movement of water in all forms between earth & atmosphere Humidity: amount of water vapor in air vapor pressure saturation vapor pressure absolute humidity

More information

First Law of Thermodyamics U = Q + W. We can rewrite this by introducing two physical. Enthalpy, H, is the quantity U + pv, as this

First Law of Thermodyamics U = Q + W. We can rewrite this by introducing two physical. Enthalpy, H, is the quantity U + pv, as this First Law of Thermodyamics U = Q + W where U is the increase in internal energy of the system, Q is the heat supplied to the system and W is the work done on the system. We can rewrite this by introducing

More information

Parcel Model. Atmospheric Sciences September 30, 2012

Parcel Model. Atmospheric Sciences September 30, 2012 Parcel Model Atmospheric Sciences 6150 September 30, 2012 1 Governing Equations for Precipitating Convection For precipitating convection, we have the following set of equations for potential temperature,

More information

Parcel Model. Meteorology September 3, 2008

Parcel Model. Meteorology September 3, 2008 Parcel Model Meteorology 5210 September 3, 2008 1 Governing Equations for Precipitating Convection For precipitating convection, we have the following set of equations for potential temperature, θ, mixing

More information

Introduction. Lecture 6: Water in Atmosphere. How Much Heat Is Brought Upward By Water Vapor?

Introduction. Lecture 6: Water in Atmosphere. How Much Heat Is Brought Upward By Water Vapor? Lecture 6: Water in Atmosphere Introduction Over 70% of the planet is covered by water Water is unique in that it can simultaneously exist in all three states (solid, liquid, gas) at the same temperature

More information

Naraine Persaud, Entry Code ME-11 1

Naraine Persaud, Entry Code ME-11 1 Naraine Persaud, Entry Code ME-11 1 Persaud, N. 2005. Adiabatic cooling. In: Water Encyclopedia Volume 4: Oceanography; Meteorology; Physics and Chemistry; Water Law; and Water History, Art, and Culture.

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp A problem with using entropy as a variable is that it is not a particularly intuitive concept. The mechanics of using entropy for evaluating system evolution is well developed, but it sometimes feels a

More information

Buoyancy and Coriolis forces

Buoyancy and Coriolis forces Chapter 2 Buoyancy and Coriolis forces In this chapter we address several topics that we need to understand before starting on our study of geophysical uid dynamics. 2.1 Hydrostatic approximation Consider

More information

Lecture 3: Convection

Lecture 3: Convection EESC V2100 The Climate System spring 2004 Lecture 3: Convection Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA kushnir@ldeo.columbia.edu Layers of the

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

Exam 1 (Chaps. 1-6 of the notes)

Exam 1 (Chaps. 1-6 of the notes) 10/12/06 ATS 541 - Atmospheric Thermodynamics and Cloud Physics 1 Exam 1 (Chaps. 1-6 of the notes) ATS 541 students: Answer all questions ATS 441 students: You may delete problem 3 or problem 5 1. [10

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

Atmospheric Dynamics: lecture 3

Atmospheric Dynamics: lecture 3 Atmospheric Dynamics: lecture 3 Moist convection Dew point temperature/lapse rate/lcl Equivalent potential temperature Conditional and potential instability Thermodynamic diagram CAPE Introduction to Python

More information

ATMO551a Fall Vertical Structure of Earth s Atmosphere

ATMO551a Fall Vertical Structure of Earth s Atmosphere Vertical Structure of Earth s Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

1. Heterogeneous Systems and Chemical Equilibrium

1. Heterogeneous Systems and Chemical Equilibrium 1. Heterogeneous Systems and Chemical Equilibrium The preceding section involved only single phase systems. For it to be in thermodynamic equilibrium, a homogeneous system must be in thermal equilibrium

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

Water in the Atmosphere Understanding Weather and Climate

Water in the Atmosphere Understanding Weather and Climate Water in the Atmosphere Understanding Weather and Climate Climate 2 1 Cloud Development and Forms Understanding Weather and Climate Climate 2 2 Learning Objectives 1. The various atmospheric lifting mechanisms

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chapter 4. Atmospheric Temperature and Stability

Chapter 4. Atmospheric Temperature and Stability Chapter 4. Atmospheric Temperature and Stability 4.1 The temperature structure of the atmosphere Most people are familiar with the fact that the temperature of the atmosphere decreases with altitude. The

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Temperature profile of the Troposphere

Temperature profile of the Troposphere roposphere he troposphere is the lowest atmospheric layer reaching an altitude o about 20 km. Density, pressure and temperature decline with altitude. he troposphere is largely convective, which translates

More information

Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press Cooke

Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press Cooke Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press 2012. Cooke Units Radiation Budget Planetary Energy Balance Turbulence Feedbacks snow and Ice feedback water vapor feedback combining

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

Convection and buoyancy oscillation

Convection and buoyancy oscillation Convection and buoyancy oscillation Recap: We analyzed the static stability of a vertical profile by the "parcel method"; For a given environmental profile (of T 0, p 0, θ 0, etc.), if the density of an

More information

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year)

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year) AT 620 Notes These notes were prepared by Prof. Steven A. Rutledge (and adapted slightly for the Fall 2009 course, and again slightly for this year) You may access Prof. Cotton s notes, password cloud9

More information

1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents

1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents CHAPTER 6 HUMIDITY, SATURATION, AND STABILITY MULTIPLE CHOICE QUESTIONS 1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents 2., annual precipitation

More information

Simplified Microphysics. condensation evaporation. evaporation

Simplified Microphysics. condensation evaporation. evaporation Simplified Microphysics water vapor condensation evaporation cloud droplets evaporation condensation collection rain drops fall out (precipitation) = 0 (reversible) = (irreversible) Simplified Microphysics

More information

Radiative Transfer Chapter 3, Hartmann

Radiative Transfer Chapter 3, Hartmann Radiative Transfer Chapter 3, Hartmann Shortwave Absorption: Clouds, H 2 0, O 3, some CO 2 Shortwave Reflection: Clouds, surface, atmosphere Longwave Absorption: Clouds, H 2 0, CO 2, CH 4, N 2 O Planck

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics Atmospheric Composition What is the composition of the Earth s atmosphere? Gaseous Constituents of the Earth s atmosphere (dry air) Constituent Molecular Weight Fractional Concentration

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Kelvin Effect Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Vapor Pressure (e) e < e # e = e # Vapor Pressure e > e # Relative humidity RH =

More information

Atmospheric Composition הרכב האטמוספירה

Atmospheric Composition הרכב האטמוספירה Atmospheric Composition הרכב האטמוספירה N 2 O 2 Trace Gases Water Vapor (H 2 O) Argon (Ar) Carbon Dioxide (CO 2 ) Neon (Ne) Helium (He) Methane (CH 4 ) Nitrous Oxide (N 2 O) Ozone (O 3 ) Nitrogen and oxygen

More information

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Atmospheric Sciences 6150 Cloud System Modeling 2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Arakawa (1969, 1972), W. Gray

More information

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States See CalTech 2005 paper on course web site Free troposphere assumed to have moist adiabatic lapse rate (s* does

More information

Chapter 6 Clouds. Cloud Development

Chapter 6 Clouds. Cloud Development Chapter 6 Clouds Chapter overview Processes causing saturation o Cooling, moisturizing, mixing Cloud identification and classification Cloud Observations Fog Why do we care about clouds in the atmosphere?

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

Final Examination. Part A Answer ONLY TWELVE QUESTIONS in Part A. (Each question is 3 points)

Final Examination. Part A Answer ONLY TWELVE QUESTIONS in Part A. (Each question is 3 points) ATS 210 Spring Term 2001 NAME: Final Examination This is a 2 hour, closed-book examination. Calculators may be used. All answers should be written on the examination paper. Use the final sheet for any

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is:

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is: 1 Appendix C Useful Equations Purposes: Provide foundation equations and sketch some derivations. These equations are used as starting places for discussions in various parts of the book. C.1. Thermodynamic

More information

2 Equations of Motion

2 Equations of Motion 2 Equations of Motion system. In this section, we will derive the six full equations of motion in a non-rotating, Cartesian coordinate 2.1 Six equations of motion (non-rotating, Cartesian coordinates)

More information

Chapter 5 - Atmospheric Moisture

Chapter 5 - Atmospheric Moisture Chapter 5 - Atmospheric Moisture Understanding Weather and Climate Aguado and Burt Water Water Vapor - water in a gaseous form, not droplets. Water can also achieve solid and liquid phases on Earth Temperature

More information

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System Lecture 1: Introduction to the Climate System T mass (& radiation) T & mass relation in vertical mass (& energy, weather..) Energy T vertical stability vertical motion thunderstorm What are included in

More information

Synoptic Meteorology I: Skew-T Diagrams and Thermodynamic Properties

Synoptic Meteorology I: Skew-T Diagrams and Thermodynamic Properties Synoptic Meteorology I: Skew-T Diagrams and Thermodynamic Properties For Further Reading Most information contained within these lecture notes is drawn from Chapters 1, 2, 4, and 6 of The Use of the Skew

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

A new theory for moist convection in statistical equilibrium

A new theory for moist convection in statistical equilibrium A new theory for moist convection in statistical equilibrium A. Parodi(1), K. Emanuel(2) (2) CIMA Research Foundation,Savona, Italy (3) EAPS, MIT, Boston, USA True dynamics: turbulent, moist, non-boussinesq,

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011

EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011 EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011 Professor: J.D. Wilson Time available: 50 mins Value: 20% Instructions: For each of the 30 multi-choice questions, choose the most logical option. Use

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

What did we learn in Ch. 1? Final Exam 2014: 6 Questions. Energy Transfers Link Ch Reversible-Adiabatic-Work. What did we learn in Ch. 3?

What did we learn in Ch. 1? Final Exam 2014: 6 Questions. Energy Transfers Link Ch Reversible-Adiabatic-Work. What did we learn in Ch. 3? Final Exam 0: 6 Questions. First/Second Laws Question. Definitions Question 3. Clausius-Clapeyron with q/h/e) Question. Köhler, Clouds, and Stability Question 5. Climate Model and Sensitivity Question

More information

Brief Overview of the Global Atmosphere

Brief Overview of the Global Atmosphere Brief Overview of the Global Atmosphere Images on pages 3, 5 through 9, 19, 77 through 80 and 90 are copyrighted by Academic Press, NY, 1999. The images are in a chapter entitled "Quasi-equilibrium thinking"

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

Clouds and atmospheric convection

Clouds and atmospheric convection Clouds and atmospheric convection Caroline Muller CNRS/Laboratoire de Météorologie Dynamique (LMD) Département de Géosciences ENS M2 P7/ IPGP 1 What are clouds? Clouds and atmospheric convection 3 What

More information

Orographic Precipitation II: Effects of Phase Change on Orographic Flow. Richard Rotunno. National Center for Atmospheric Research, USA

Orographic Precipitation II: Effects of Phase Change on Orographic Flow. Richard Rotunno. National Center for Atmospheric Research, USA Orographic Precipitation II: Effects of Phase Change on Orographic Flow Richard Rotunno National Center for Atmospheric Research, USA Condensation D Dt vs w( x, ) vs U Large-Scale Flow 0 H L Dynamics w

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 About Water on the Earth: The Hydrological Cycle Review 3-states of water, phase change and Latent Heat Indices of Water Vapor Content in the

More information

Answers to Clicker Questions

Answers to Clicker Questions Answers to Clicker Questions Chapter 1 What component of the atmosphere is most important to weather? A. Nitrogen B. Oxygen C. Carbon dioxide D. Ozone E. Water What location would have the lowest surface

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

A History of Modifications to SUBROUTINE CONVECT by Kerry Emanuel

A History of Modifications to SUBROUTINE CONVECT by Kerry Emanuel A History of Modifications to SUBROUTINE CONVECT by Kerry Emanuel The following represents modifications to the convection scheme as it was originally described in Emanuel, K.A., 1991, J. Atmos. Sci.,

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Global Energy Balance: Greenhouse Effect

Global Energy Balance: Greenhouse Effect Global Energy Balance: Greenhouse Effect Atmospheric Composition & Structure Physical Causes of Greenhouse Effects Chapter 3: 44 48. Atmospheric Composition Why does water vapor vary so much? Saturation

More information

ATMO 551a Intro to Optical Depth Fall τ υ,z. dz = di υ. B[ v,t(z) ]e

ATMO 551a Intro to Optical Depth Fall τ υ,z. dz = di υ. B[ v,t(z) ]e Atmospheric Radiative Transfer We need to understand how energy is transferred via radiation within the atmosphere. We introduce the concept of optical depth. We will further show that the light moves

More information

ScienceDirect. Numerical modeling of atmospheric water content and probability evaluation. Part I

ScienceDirect. Numerical modeling of atmospheric water content and probability evaluation. Part I Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 70 ( 2014 ) 321 329 12th International Conference on Computing and Control for the Water Industry, CCWI2013 Numerical modeling

More information

(Assignment continues on next page) 1

(Assignment continues on next page) 1 MEA712: Mesoscale Modeling Class mesoscale model (CMM) project, assignment 1 Due at start of class on Thursday, 5 October. In class supervised work period on Tuesday, 3 October. We will be following a

More information

Moist Convection. Chapter 6

Moist Convection. Chapter 6 Moist Convection Chapter 6 1 2 Trade Cumuli Afternoon cumulus over land 3 Cumuls congestus Convectively-driven weather systems Deep convection plays an important role in the dynamics of tropical weather

More information

The atmosphere s water

The atmosphere s water The atmosphere s water Atmospheric Moisture and Precipitation Properties of Water The Hydrosphere and the Hydrologic Cycle Humidity The Adiabatic Process Clouds Precipitation Air Quality Main points for

More information

WaVaCS summerschool Autumn 2009 Cargese, Corsica

WaVaCS summerschool Autumn 2009 Cargese, Corsica Introduction Part I WaVaCS summerschool Autumn 2009 Cargese, Corsica Holger Tost Max Planck Institute for Chemistry, Mainz, Germany Introduction Overview What is a parameterisation and why using it? Fundamentals

More information