The Physics of Neutrinos. Renata Zukanovich Funchal IPhT/Saclay, France Universidade de São Paulo, Brazil

Size: px
Start display at page:

Download "The Physics of Neutrinos. Renata Zukanovich Funchal IPhT/Saclay, France Universidade de São Paulo, Brazil"

Transcription

1 The Physics of Neutrinos Renata Zukanovich Funchal IPhT/Saclay, France Universidade de São Paulo, Brazil

2 ectures : 1. Panorama of Experiments 2. Neutrino Oscillations 3. Models for Neutrino Masses 4. Neutrinos in Cosmology

3 ecture III Models for Neutrino Masses

4 False facts are highly injurious to the progress of science, for they often endure long; but false views, if supported by some evidence, do little harm, for every one takes a salutary pleasure in proving their falseness. Charles Darwin

5 Majorana x Dirac

6 Majorana x Dirac Dirac spinor Ψ=P Ψ+P R Ψ=Ψ +Ψ R 4 independent components Dirac equation iγ µ µ Ψ = mψ R iγ µ µ Ψ R = mψ

7 Majorana x Dirac Dirac spinor Ψ=P Ψ+P R Ψ=Ψ +Ψ R 4 independent components Dirac equation Weyl (1929) iγ µ µ Ψ = mψ R iγ µ µ Ψ R = mψ if m = 0 2-component spinor is enough ( or R ) Pauli (1933) rejected this idea because leads to Parity Violation andau, ee-yang, Salam (1957) propose to describe the massless neutrino by a Weyl spinor introduced in the SM in the 60 s

8 Majorana x Dirac Can we also describe a massive fermion using a 2-component spinor? (E. Majorana, 1937)

9 Majorana x Dirac Can we also describe a massive fermion using a 2-component spinor? (E. Majorana, 1937) _ c = C T charge conjugate field ( ) C = ( C ) R ( R ) C = ( C ) charge conjugation change chirality iγ µ µ (Ψ ) c = m(ψ R ) c iγ µ µ (Ψ R ) c = m(ψ ) c _,R ( R, ) C = C T R, e -i phase factor

10 Majorana x Dirac Can we also describe a massive fermion using a 2-component spinor? Yes! (E. Majorana, 1937) is unphysical - can be eliminated by rephasing Majorana Condition: ( ) C particle antiparticle Majorana Field: = + R = + ( ) C Majorana Equation: iγ µ µ Ψ = mcψ T

11 Majorana x Dirac Can we also describe a massive fermion using a 2-component spinor? Yes! (E. Majorana, 1937) is unphysical - can be eliminated by rephasing Majorana Condition: ( ) C particle antiparticle Majorana Field: = + R = + ( ) C Majorana Equation: iγ µ µ Ψ = mcψ T e.m. current vanishes Q 0 neutral particle Ψγ µ Ψ = Ψ c γ µ Ψ c = Ψ T C γ µ CΨ T = ΨC T γ µt C Ψ = Ψγ µ Ψ

12 Some Properties 0 = 0 C T = C = C -1 = -C C -1 = - T C -1 _ c = (C 0 * ) 0 = T 0 C 0 = T C C T T C * = (-C ) T (-C -1 ) = C T C -1 C T T C * = - C C -1 = -

13 Majorana x Dirac Dirac: Pˆ _ ˆT Ĉ _ (p, h) (-p, -h) (-p, -h) (p, -h) H neutrino (h =-1) RH antineutrino (h=+1) Majorana: Pˆ Ĉ ˆT (p, h) (-p, -h) (-p, -h) (p, -h) H neutrino (h=-1) interactions involve on H fields _ destroys H neutrino creates RH antineutrino destroys RH antineutrino creates H neutrino RH neutrino (h=+1) Dirac

14 Majorana x Dirac Dirac: Pˆ _ ˆT Ĉ _ (p, h) (-p, -h) (-p, -h) (p, -h) H neutrino (h =-1) RH antineutrino (h=+1) Majorana: Pˆ Ĉ ˆT (p, h) (-p, -h) (-p, -h) (p, -h) H neutrino (h=-1) interactions involve on H fields _ destroys H neutrino creates RH neutrino destroys RH neutrino creates H neutrino RH neutrino (h=+1) Majorana

15 Mass Problem Standard Model Atmo So Neutrino Oscillations Physics Beyond m 0 the Standard Model

16 Mass Problem Standard Model Elementary Particle Masses Span 11 orders of magnitude!

17 Mass Term M X R

18 Poor man s extension of the SM If ν = ν c = C ν T Dirac Particle symmetrize the model, offers no explanation to the smallness of m α (2,-1/2) E α (1,-1) N α (1,-0) Y = y d αβ Q α ΦD β + y u αβ Q α ΦU β + y αβ α ΦE β +h.c. + y ν αβ α ΦN β +h.c. EWSB Dirac Mass Term Higgs acquires a vev m D ν ν R +h.c.

19 Poor man s extension of the SM Y = v + h y R + N yν N R 2 +h.c.,r e µ τ,r,r = V,R,R y = V y V R unitary matrices real positive numbers y αβ = y α δ αβ N,R ν e ν µ ν τ,r N,R = V ν,r N,R y ν = V ν yν V ν R real positive numbers y ν αβ = y ν α δ αβ unitary matrices

20 Poor man s extension of the SM m eα m νi D mass = v 2 y α e α e αr + v 2 y ν i ν i ν ir +h.c. charged fermions neutrino masses e,r µ τ,r e e e µ e τ,r new fields masses N,R ν 1 ν 2 ν 3,R Yukawas have to be fine-tuned to explain smallness of neutrino masses Ok. But what happens to the CC and NC?

21 Poor man s extension of the SM charged current for leptons j µ W, = 2 ν αγ µ P e α = 2 ν α γ µ e α = 2 N γ µ chiral flavor diagonal interaction = 2 N V ν V γ µ = 2 ν i U αi γ µ e α Mixing Matrix (Pontecorvo, Maki, Sakata, Nakagawa) define H flavor neutrinos as ν α = U αi ν i Mixing family epton Number ( e,, ) violated but Total epton Number () conserved

22 Poor man s extension of the SM neutral current for neutrinos j µ Z,ν = ν α γ µ ν α chiral flavor diagonal interaction = ν i γ µ ν i No Mixing here! NC is the same (GIM Mechanism) [S..Glashow, J. Iliopolos,. Maiani, Phys. Rev. D 2, 1285 (1970)] R is sterile!

23 Violating Processes Dirac mass term allows for e,, processes such as: ± e ± or ± e ± e + e - eg. ± e ± Γ = G Fm 5 µ 192π 3 3α em 32π j U µju ej = 0 jtext U µju ej m νi M W GIM Mechanism 2 SM : BR BR exp 2.4 x suppression W W W * U j e e j j j U ej e

24 Phases of U j µ W, = 2 ν i U αi γ µ e α Can re-phase e α e iφ α e α ν i e iφ i ν i j µ W, = 2 ν i e i(φ 1 φ e ) e i(φ i φ 1 ) e i(φ α φ e ) U αi γ µ e α 1 N - 1 N (N-1) = 2N-1 phases can be arbitrarily chosen N=3 5 phases can be eliminated from U only 1 physical phase

25 Basic Points : we need to introduce singlet R neutrino fields ( R ) we make use of the SM Higgs Mechanism D mass = m νν= m( ν R ν + ν ν R ) mass hierarchy problem remains e,, are violated is conserved (exact global symmetry at the classical level, just like B) m ν j = yν j v 2 generates a mixing matrix analogous to V CKM

26 +Clever extensions of the SM If ν = ν c = C ν T Majorana Particle if we introduce R we can have Majorana Mass Term 1 2 m R ν c R ν R +h.c. is violated by 2 units P ν c R = ν c R this is invariant under SU(2) U(1) Y

27 +Clever extensions of the SM If ν = ν c = C ν T Majorana Particle if we don t introduce R we can have Majorana Mass Term 1 2 m ν c ν +h.c. is violated by 2 units P R ν c = ν c but not invariant need to extend the SM... under SU(2) U(1) Y

28 Majorana Mass Term we can write a Majorana mass term with only P R ν c = ν c (or R ) ν c = ν = ν = ν + ν c = M mass = 1 2 m ν c ν +h.c. the 1/2 factor avoids double counting since and c are not independent M = 1 2 [ν ı ν + ν c ı ν c m (ν c ν + ν ν c )] M mass = m 2 ν T C ν + ν C ν

29 Basic Points: no need to introduce singlet R fields ( R ) use ν R ν c = C ν T and ν = ν c ν = ν + ν R = ν + C ν T M mass = m 2 (νc ν +h.c.) need a Higgs triplet (Y=1) to form a SU(2) U(1) Y invariant term ( ) e,, are violated is also violated by 2 units

30 The most general mass term is a Dirac-Majorana Mass Term D+M mass = D mass + M mass + MR mass D mass = m D ν R ν +h.c. Dirac Mass Term M mass = 1 2 m ν T C ν +h.c. Majorana Mass Term MR mass = 1 2 m R ν T R C ν R +h.c. Majorana Mass Term

31 Mixing in General N ν ν c R ν ν e ν µ ν τ ν c R D+M mass 1 2 N T C M D+M N +h.c. M D+M = ν c 1R ν c Ns R M M D (M D ) T M R Diagonalization of the Dirac-Majorana Mass Term Massive Majorana Neutrinos R R eptogenesis next week...

32 Dirac-Majorana 0 (M D ) T M D+M = M D M R complex symmetric matrix M D is a 3xm complex matrix M R is a mxm symmetric matrix (a) mass eigenvalues of M R >> v framework of seesaw mechanism sterile neutrinos integrated out & get a low energy effective theory with 3 light active Majorana neutrinos (b) some mass eigenvalues of M R v more than 3 light Majorana neutrinos (c) M R = 0 equivalent to impose conservation, m=3 and we can identify the 3 sterile neutrinos c/ RH components of the H fields (Dirac Neutrinos)

33 Neutrino Mass & The Standard Seesaw Mechanisms

34 Effective agrangian Perspective SM is an Effective ower Energy Theory eff = SM + δ d=5 + δ d= non-renormalizable higher-dimension operators invariant under SU(2) X U(1) Y made of SM fields low energies with coefficients (model dependent) weighted by inverse powers of (new physics scale) δ d=5 = g Λ (T σ 2 Φ) C (Φ T σ 2 )+h.c. [S. Weinberg, Phys. Rev. ett. 43, 1566 (1979)] only possible d=5 operator δ d=5 = δ M mass = 1 2 EWSB gv 2 Λ νt C ν +h.c. Majorana Mass

35 Tree-level Realizations [E. Ma, Phys. Rev. ett. 81, 1171 (1998)]

36 Tree-level Realizations Φ Φ [E. Ma, Phys. Rev. ett. 81, 1171 (1998)] y N N R y N seesaw type I fermion singlets

37 Tree-level Realizations Φ Φ [E. Ma, Phys. Rev. ett. 81, 1171 (1998)] y N N R y N seesaw type I Φ µ Φ fermion singlets scalar triplet seesaw type II y

38 Tree-level Realizations Φ Φ [E. Ma, Phys. Rev. ett. 81, 1171 (1998)] y N N R y N seesaw type I Φ µ Φ fermion singlets Φ Φ y Σ Σ R y Σ seesaw type III fermion triplet y scalar triplet seesaw type II

39 Effective agrangian Perspective integrate out the heavy fields e is eff = exp i d 4 x eff (x) DN DNe is = e is SM DN DNe is N effective agrangian obtained by functional integration over heavy fields S N [N 0 ] : N 0 is the solution of the classical equations of motion for the N-field 1 D M = 1 M + 1 M D 1 M +... fermions

40 Φ y N N R y N Seesaw Type I Φ [P. Minkowski, Phys. ett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. ett. 44, 912 (1980) ] minimal seesaw agrangian: only add R neutrinos to SM

41 Φ y N N R y N Seesaw Type I Φ [P. Minkowski, Phys. ett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. ett. 44, 912 (1980) ] minimal seesaw agrangian: only add R neutrinos to SM KE = ı D+ ı RDR+ ı N R N R SM lepton doublets SM lepton singlets R neutrino singlets New Physics Scale Y = Φy R Φy N N R 1 2 N R M R N c R +h.c.

42 Φ y N N R y N Seesaw Type I Φ [P. Minkowski, Phys. ett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. ett. 44, 912 (1980) ] minimal seesaw agrangian: only add R neutrinos to SM KE = ı D+ ı RDR+ ı N R N R SM lepton doublets SM lepton singlets R neutrino singlets New Physics Scale Y = Φy R Φy N N R 1 2 N R M R N c R +h.c. EWSB m ν g Λ v2 = 1 2 yt N 1 y N v 2 M R Majorana Mass Matrix for light neutrinos

43 Φ y N N R y N Seesaw Type I Φ [P. Minkowski, Phys. ett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. ett. 44, 912 (1980) ] minimal seesaw agrangian: only add R neutrinos to SM KE = ı D+ ı RDR+ ı N R N R SM lepton doublets SM lepton singlets R neutrino singlets New Physics Scale Y = Φy R Φy N N R 1 2 N R M R N c R +h.c. EWSB m ν g Λ v2 = 1 2 yt N 1 y N v 2 M R Majorana Mass Matrix for light neutrinos M R should of the order TeV (10 5 TeV ) for y N 1 (y N 10-3 )

44 Φ y N N R y N Seesaw Type I Φ [P. Minkowski, Phys. ett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. ett. 44, 912 (1980) ] minimal seesaw agrangian: only add R neutrinos to SM KE = ı D+ ı RDR+ ı N R N R EWSB SM lepton doublets SM lepton singlets m ν g Λ v2 = 1 2 yt N R neutrino singlets 1 y N v 2 M R New Physics Scale Y = Φy R Φy N N R 1 2 N R M R N c R +h.c. Majorana Mass Matrix for light neutrinos Needs 3 N R to give mass to 3 ν M R should of the order TeV (10 5 TeV ) for y N 1 (y N 10-3 )

45 Φ y N N R y N Seesaw Type I Φ [A. Broncano, M.B. Gavela and E.E. Jenkins, Phys. ett. B 552, 177 (2003); Nucl. Phys. B 672, 163 (2003) ] only one d=6 tree level operator δ d=6 = g d=6 ( Φ) ı ( Φ ) EWSB corrections to d=4 KE terms of leptons where g d=6 = y N quadratically suppressed 1 M R 1 M R y N non-unitary low-energy leptonic mixing matrix

46 Φ y N N R y N Seesaw Type I Φ [A. Broncano, M.B. Gavela and E.E. Jenkins, Phys. ett. B 552, 177 (2003); Nucl. Phys. B 672, 163 (2003) ] only one d=6 tree level operator δ d=6 = g d=6 ( Φ) ı ( Φ ) EWSB corrections to d=4 KE terms of leptons where g d=6 = y N quadratically suppressed 1 M R 1 M R y N non-unitary low-energy leptonic mixing matrix U N = 1 2 U NN =(1 ) N N = U (1 )U with v2 2 gd=6 j µ Z,ν 1 2 ν iγ µ (N N) ij ν j

47 Φ µ Φ Seesaw Type II y [M. Magg and C. Wetterich, Phys. ett. B 94, 61 (1980); J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980); R.N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981)] add SU(2) triplet scalar field (Y=1) minimal agrangian gauge invariant allows for,(,φ) = y (σ ) + µ Φ (σ ) Φ+h.c. coupling to SM lepton doublets coupling to SM Higgs doublet = ( 1, 2, 3 ) where = ıσ2 () c physical fields 0 = u/ 2 = µ v 2 /( 2M 2 ) ( 1 ı 2 ) ( 1 + ı 2 ) if M Δ >> v EWSB m ν g Λ v2 = 2y u = 2y New Physics Scale µ M 2 v 2 Majorana Mass Matrix for light neutrinos

48 Φ µ Φ Seesaw Type II y [M. Magg and C. Wetterich, Phys. ett. B 94, 61 (1980); J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980); R.N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981)] add SU(2) triplet scalar field (Y=1) minimal agrangian gauge invariant allows for,(,φ) = y (σ ) + µ Φ (σ ) Φ+h.c. coupling to SM lepton doublets coupling to SM Higgs doublet = ( 1, 2, 3 ) physical fields if M Δ >> v EWSB where 0 = u/ 2 = µ v 2 /( 2M 2 ) m ν g Λ v2 = 2y u = 2y New Physics Scale = ıσ2 () c ( 1 ı 2 ) ( 1 + ı 2 ) µ One Δ can give mass to 3 ν M 2 v 2 Majorana Mass Matrix for light neutrinos

49 Φ µ y Φ Seesaw Type II [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] three d=6 tree level operators δ 4 = 1 M 2 y σ σy quartic Φ couplings δ 6Φ = 2(λ 3 + λ 5 ) µ 2 δ ΦD = µ 2 M 4 Φ σ Φ M 4 Φ Φ 3 D µ D µ Φ σ Φ many deviations from SM predictions but no non-unitary mixing matrix! [G F gets a correction, v gets shifted, M Z gets a correction etc.]

50 Φ Φ y Σ Σ R y Σ Seesaw Type III [R. Foot, H. ew, X.G.He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. ett. 81, 1171 (1998) ] add SU(2) fermion triplet Σ (Y=0)

51 Φ y Σ Σ R y Σ Φ Seesaw Type III [R. Foot, H. ew, X.G.He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. ett. 81, 1171 (1998) ] Σ = ı Σ R D Σ R add SU(2) fermion triplet 1 (Y=0) 2 Σ R M Σ Σ c R + Σ R y Σ ( Φ σ )+h.c. Majorana Mass Term Σ =(Σ 1, Σ 2, Σ 3 ) Σ ± 1 2 (Σ 1 ı Σ 2 ) Σ 0 Σ 3 Σ coupling with and Φ

52 Φ y Σ Σ R y Σ Φ Seesaw Type III [R. Foot, H. ew, X.G.He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. ett. 81, 1171 (1998) ] Σ = ı Σ R D Σ R add SU(2) fermion triplet 1 (Y=0) 2 Σ R M Σ Σ c R + Σ R y Σ ( Φ σ )+h.c. Majorana Mass Term Σ =(Σ 1, Σ 2, Σ 3 ) Σ ± 1 2 (Σ 1 ı Σ 2 ) Σ 0 Σ 3 Σ coupling with and Φ if M Σ >> v EWSB m ν g Λ v2 = y T Σ 1 y Σ v 2 2M Σ New Physics Scale Majorana Mass Matrix for light neutrinos

53 Φ y Σ Σ R y Σ Φ Seesaw Type III [R. Foot, H. ew, X.G.He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. ett. 81, 1171 (1998) ] Σ = ı Σ R D Σ R if M Σ >> v EWSB add SU(2) fermion triplet 1 m ν g Λ v2 = y T Σ 1 y Σ v 2 2M Σ New Physics Scale (Y=0) 2 Σ R M Σ Σ c R + Σ R y Σ ( Φ σ )+h.c. Majorana Mass Term coupling with and Φ Σ =(Σ 1, Σ 2, Σ 3 ) Σ ± 1 2 (Σ 1 ı Σ 2 ) Σ 0 Σ 3 Majorana Mass Matrix for light neutrinos One Σ can give mass to 3 ν Σ

54 Φ y Σ Σ R y Σ Φ Seesaw Type III [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] only one d=6 tree level operator δ d=6 = g d=6 ( σ Φ) ıd ( Φ σ ) EWSB corrections to d=4 KE terms of light leptons and their coupling to W where g d=6 = y Σ quadratically suppressed 1 M Σ 1 M Σ y Σ non-unitary low-energy leptonic mixing matrix

55 Φ y Σ Σ R y Σ Φ Seesaw Type III [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] only one d=6 tree level operator δ d=6 = g d=6 ( σ Φ) ıd ( Φ σ ) EWSB corrections to d=4 KE terms of light leptons and their coupling to W where U N = g d=6 = y Σ quadratically suppressed 1 + Σ 2 1 M Σ 1 M Σ y Σ non-unitary low-energy leptonic mixing matrix U NN =(1 + Σ ) N N = U (1 + Σ )U with Σ v2 2 gd=6 j µ 3 (ν) 1 2 νγµ (N N) 1 ν j µ 3 () 1 2 γµ (NN ) 2

56 About the Seesaw = regulator cutoff Scale δm 2 H = y N y N 16π 2 one-loop contribution to the Higgs mass 2Λ 2 + 2M 2 N log M2 N Λ 2 [J.A. Casa, J. R. Espinosa and I. Hidalgo, JHEP 11, 057 (2004)] δm 2 H = 1 16π 2 3 λ 3 Λ 2 M 2 log Λ2 M 2 12 µ 2 log Λ2 M 2 [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] δm 2 H = 3 y Σ y Σ 16π 2 2Λ 2 + 2M 2 Σ log M2 Σ Λ 2

57 About the Seesaw = regulator cutoff Scale δm 2 H = y N y N 16π 2 one-loop contribution to the Higgs mass 2Λ 2 + 2M 2 N log M2 N Λ 2 [J.A. Casa, J. R. Espinosa and I. Hidalgo, JHEP 11, 057 (2004)] seesaw type I δm 2 H = 1 16π 2 3 λ 3 Λ 2 M 2 log Λ2 M 2 12 µ 2 log Λ2 M 2 [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] δm 2 H = 3 y Σ y Σ 16π 2 2Λ 2 + 2M 2 Σ log M2 Σ Λ 2

58 About the Seesaw = regulator cutoff Scale δm 2 H = y N y N 16π 2 one-loop contribution to the Higgs mass 2Λ 2 + 2M 2 N log M2 N Λ 2 [J.A. Casa, J. R. Espinosa and I. Hidalgo, JHEP 11, 057 (2004)] seesaw type I δm 2 H = 1 16π 2 3 λ 3 Λ 2 M 2 log Λ2 M 2 12 µ 2 log Λ2 M 2 [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] δm 2 H = 3 y Σ y Σ 16π 2 2Λ 2 + 2M 2 Σ log M2 Σ Λ 2 seesaw type III

59 About the Seesaw = regulator cutoff Scale δm 2 H = y N y N 16π 2 one-loop contribution to the Higgs mass 2Λ 2 + 2M 2 N log M2 N Λ 2 [J.A. Casa, J. R. Espinosa and I. Hidalgo, JHEP 11, 057 (2004)] seesaw type I δm 2 H = 1 16π 2 3 λ 3 Λ 2 M 2 log Λ2 M 2 seesaw type II 12 µ 2 log Λ2 M 2 [A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, JHEP 12, 061 (2007)] δm 2 H = 3 y Σ y Σ 16π 2 2Λ 2 + 2M 2 Σ log M2 Σ Λ 2 seesaw type III

60 RADIATIVE MODES [K. S. Babu, E. Ma, Phys. Rev. ett. 61, 674 (1988)] add only one N R so only 1 gets tree-level h - k ++ h - ν l c l R ν c Two-loop origin of neutrino mass Doubly suppressed by GIM masses too small!

61 RADIATIVE MODES [A. Zee, Phys. ett. 93B, 389 (1980)] 1, 2 = scalar doublets = charged scalar singlet h - k ++ h - ν l c l R ν c 2 does not couple to leptons One-loop origin of neutrino mass Ruled-out by data...

62 RADIATIVE MODES [A. Zee, Phys. ett. B93, 389 (1980); K. S. Babu, Phys. ett. B203, 132 (1988); J. T. Peltoniemi and J. W. F. Valle, Phys. ett. B304, 147 (1993)] trilinear coupling which breaks B- double suppressed by lepton mass ν f h - k ++ y l v h μ y l v h - l c l R c l R l f ν c k ++ = doubly-charged scalar h - = singly-charged scalar Two-loop origin of neutrino mass M M µ fy l hy l f T v 2 I Not yet ruled-out by data...

63 RADIATIVE MODES [E. Ma Phys. Rev. D73, (2006)] add 3 N R s + a new scalar doublet scotogenic neutrino h - k ++ h - assume new conserved Z 2 symmetry : N and odd under Z 2 ν l c l R c l R l SM ν c particles even under Z 2 One-loop origin of neutrino mass (νφ 0 lφ + )N (νη 0 lη + )N Not yet ruled-out by data...

64 SUSY & R-parity Violation [see Y. Grossman and S. Rakshit, Phys. Rev. D 69, (2004) and Ref. therein] EWSB H d, H u and sneutrinos acquire vev

65 SUSY & R-parity Violation

66 SUSY & R-parity Violation only one massive tree-level inclusion of radiative corrections give rise to masses to all 3 neutrinos

67 B- SPONTANEOUSY BROKEN [Y. Chikashige, R.N. Mohapatra, R.D> Peccei, Phys. ett. B98, 265 (1981); PR 45, 1926 (1980)] introduce a gauge singlet scalar S =2 y = l,l a ll N c lr N l R S + h.c. <S> acquires a vev global U B- M ll = a ll S Majorana Mass J Majoron (Goldstone Boson)

68 Extra Flat Dimensions [K.R. Dienes et al., Nucl. Phys. B557, 25 (1999); N. Arkani-Hamed et al., Phys. Rev D65, (2002); G.R. Dvali and A.Yu. Smirnov, Nucl. Phys. B563, 63 (1999); R. N. Mohapatra et al., Phys. ett. B 466, 115 (1999); R.N. Mohapatra and A. Perez-orenzana, Nucl. Phys. B576, 466 (2000)] δ = 1 S = Γ J J =0,..., 4 SM particles propagate in the 3-D brane 3 families of SM singlets propagate in the 4-D bulk d 4 xdyiψ α Γ J J Ψ α + SM flavor neutrinos d 4 x (i ν γ α µ µ ν α + λ αβ H ν Ψ α β (x, 0) + h.c.) R Yukawa couplings to SM H λαβ = h αβ / M : the 5D Dirac ϒ matrices SM singlet bulk fermion fields One can decompose Ψ α (x,y) in KK-modes a = radius of the largest compact extra dimension M 2 Pl =(M ) δ+2 V δ Ψ α (x, y) = 1 2πa N= Ψ α(n) (x) e iny/a

69 Extra Flat Dimensions [K.R. Dienes et al., Nucl. Phys. B557, 25 (1999); N. Arkani-Hamed et al., Phys. Rev D65, (2002); G.R. Dvali and A.Yu. Smirnov, Nucl. Phys. B563, 63 (1999); R. N. Mohapatra et al., Phys. ett. B 466, 115 (1999); R.N. Mohapatra and A. Perez-orenzana, Nucl. Phys. B576, 466 (2000)] ν (0) αr Ψ(0) αr ν (0) α ν α ν (N) αr, 1 Ψ (N) αr, ± Ψ( N) αr, 2 N =1,..., α,β m D αβ = h αβ vm /M Pl m D αβ + g 2 ν (0) α ν(0) βr + 2 α N=1 l α γ µ (1 γ 5 ) ν (0) α Naturally Small Dirac Mass Term ν (0) α ν(n) βr + α W µ + h.c. N=1 N a ν(n) α ν(n) αr

70 Flavor Models try to describe the structure of masses Enforce a G F symmetry non-abelian global Text discrete commute w/ gauge group spontaneously high energies need to extend the scalar sector (Flavon Fields) G F = A4, S4, Dn etc.. many models... constrains Yukawas : the pattern of mass and mixing

71 What should you take home?

72 What should you take home? Neutrinos are the only known particles that can have Majorana Mass violating

73 What should you take home? Neutrinos are the only known particles that can have Majorana Mass violating Effective Theory arguments indicate that mass is due to Physics Beyond the SM

74 What should you take home? Neutrinos are the only known particles that can have Majorana Mass violating Effective Theory arguments indicate that mass is due to Physics Beyond the SM The basic seesaw mechanisms are elegant ways to implement small masses in models beyond SM

75 What should you take home? Neutrinos are the only known particles that can have Majorana Mass violating Effective Theory arguments indicate that mass is due to Physics Beyond the SM The basic seesaw mechanisms are elegant ways to implement small masses in models beyond SM But there are other ways...

76 Consequences of masses & mixings Decay: 2 1 happens in all models (harmless is m < few ev ) e happens in all models (constrain models where m is of rad. origin) Some models have new particles few x 100 GeV / NV interactions that can be HC eptogenesis is possible (next week)

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Neutrino masses : beyond d=5 tree-level operators

Neutrino masses : beyond d=5 tree-level operators Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Würzburg University based on arxiv:0907.3143, JEP 10 (2009) 076 and arxiv:1205.5140 to appear in JEP In collaboration with Daniel ernandez,

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Neutrino mass spectrum from the seesaw extension

Neutrino mass spectrum from the seesaw extension Neutrino mass spectrum from the seesaw extension Darius Jurciukonis, homas Gajdosik, Andrius Juodagalvis and omas Sabonis arxiv:11.691v1 [hep-ph] 31 Dec 01 Vilnius University, Universiteto 3, -01513, Vilnius,

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Hiroaki SUGIYAMA (Univ. of Toyama, Japan) 1/21

Hiroaki SUGIYAMA (Univ. of Toyama, Japan) 1/21 Hiroaki SUGIYAMA (Univ. of Toyama, Japan) 1/21 Introduction 2/21 Neutrino masses are extremely smaller than other fermion masses. Naïve : Tree-level neutrino mass with SM Higgs VEV Particles : Interactions

More information

Probing Extra-Dimensions with Neutrinos Oscillations

Probing Extra-Dimensions with Neutrinos Oscillations Probing Extra-Dimensions with Neutrinos Oscillations Renata Zukanovich Funchal Universidade de São Paulo, Brazil work in collaboration with P. A.N. Machado and H. Nunokawa (in preparation) 12: 1HXWULQR

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

arxiv:hep-ph/ v1 5 Oct 2005

arxiv:hep-ph/ v1 5 Oct 2005 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/0510054v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO() Grand Unified Models Natsumi Nagata Univ. of Minnesota/Kavli IPMU PANCK 2015 May 25-29, 2015 Ioannina, Greece Based on Y. Mambrini, N. Nagata,

More information

arxiv: v2 [hep-ph] 10 Jun 2013

arxiv: v2 [hep-ph] 10 Jun 2013 March 2013 Generalized Inverse Seesaws Sandy S. C. Law 1 and Kristian L. McDonald 2 arxiv:1303.4887v2 [hep-ph] 10 Jun 2013 * Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan ARC

More information

arxiv: v1 [hep-ph] 2 May 2017

arxiv: v1 [hep-ph] 2 May 2017 Scotogenic model with B L symmetry and exotic neutrinos A. C. B. Machado Laboratorio de Física Teórica e Computacional Universidade Cruzeiro do Sul Rua Galvão Bueno 868 São Paulo, SP, Brazil, 01506-000

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil Neutrinos & Large Extra Dimensions Renata Zukanovich Funchal Universidade de São Paulo, Brazil What is ν? Workshop June 26, 2012 ν Masses & Mixings Majorana CP Violating phases solar atmospheric accelerator

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

arxiv: v1 [hep-ph] 21 Dec 2012

arxiv: v1 [hep-ph] 21 Dec 2012 Parametrizing the Neutrino sector of the seesaw extension in tau decays D. Jurčiukonis a,1,. Gajdosik b,, A. Juodagalis a,3 and. Sabonis a,4 a Institute of heoretical Physics and Astronomy, Vilnius Uniersity,

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) ierarchy problems (from lecture 1) Planck-weak hierarchy problem Flavor (hierarchy) puzzle...extra dimensions can address both... Extra dimensions:

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

A novel and economical explanation for SM fermion masses and mixings

A novel and economical explanation for SM fermion masses and mixings Eur. Phys. J. C 06) 76:50 DOI 0.40/epjc/s005-06-45-y etter A novel and economical explanation for SM fermion masses and mixings A. E. Cárcamo Hernández a Universidad Técnica Federico Santa María and Centro

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Petr Vogel, Caltech INT workshop on neutrino mass measurements Seattle, Feb.8, 2010 The mixing angles and Δm 2 ij are quite

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Updated S 3 Model of Quarks

Updated S 3 Model of Quarks UCRHEP-T56 March 013 Updated S 3 Model of Quarks arxiv:1303.698v1 [hep-ph] 7 Mar 013 Ernest Ma 1 and Blaženka Melić 1, 1 Department of Physics and Astronomy, University of California, Riverside, California

More information

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry arxiv:1106.3451v1 [hep-ph] 17 Jun 2011 S. Dev, Shivani Gupta and Radha Raman Gautam Department of Physics, Himachal Pradesh University,

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D ) 21th. December 2007 Seminar Univ. of Toyama D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D75.033001) Plan to talk 1; 2; 2-1); canonical seesaw 2-2); radiative seesaw(ma model) 3; Textures

More information

Supersymmetric Seesaws

Supersymmetric Seesaws Supersymmetric Seesaws M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain Thanks to: J. Esteves, S.

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Probing Seesaw and Leptonic CPV

Probing Seesaw and Leptonic CPV Probing Seesaw and Leptonic CPV Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Based on works: BB, Senjanović, 06 BB, Nemevšek, Senjanović, 07 Arhrib, BB, Ghosh, Han, Huang, Puljak, Senjanović, 09

More information

Lepton Flavor Violation in Left-Right theory

Lepton Flavor Violation in Left-Right theory Lepton Flavor Violation in Left-Right theory Clara Murgui IFIC, Universitat de Valencia-CSIC References This talk is based on: P. Fileviez Perez, C. Murgui and S. Ohmer, Phys. Rev. D 94 (2016) no.5, 051701

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Fermions of the ElectroWeak Theory

Fermions of the ElectroWeak Theory Fermions of the ElectroWeak Theory The Quarks, The eptons, and their Masses. This is my second set of notes on the Glashow Weinberg Salam theory of weak and electromagnetic interactions. The first set

More information

Neutrino Mass Models: a road map

Neutrino Mass Models: a road map Neutrino Mass Models: a road map S.F.King School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK E-mail: king@soton.ac.uk Abstract. In this talk we survey some of the recent

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College ondon Flavour Physics Conference Quy Nhon 7/01-0/08/014 Neutrinoless double beta decay μ e γ μ + e conversion in nuclei Δ e =, Δ μ = 0, Δ = epton

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Predictions of SU(9) orbifold family unification

Predictions of SU(9) orbifold family unification Predictions of SU9 orbifold family unification arxiv:1508.0657v [hep-ph] 0 Oct 2015 Yuhei Goto and Yoshiharu Kawamura Department of Physics Shinshu University Matsumoto 90-8621 Japan December 1 2017 Abstract

More information

Neutrinos - Theory. M. Hirsch.

Neutrinos - Theory. M. Hirsch. Neutrinos - Theory M. irsch mahirsch@ific.uv.es Astroparticle and igh Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain WIN 2014, 08/06/2015 p.1/74 Outline

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Majoron as the QCD axion in a radiative seesaw model

Majoron as the QCD axion in a radiative seesaw model Majoron as the QCD axion in a radiative seesaw model 1 2 How to explain small neutrino mass ex) Type I Seesaw Heavy right-hand neutrino is added. After integrating out, neutrino Majorana mass is created.

More information

Elements of Grand Unification

Elements of Grand Unification Elements of Grand Unification Problems with the Standard Model The Two Paths Grand Unification The Georgi-Glashow SU(5) Model Beyond SU(5) arger Groups Supersymmetry Extra Dimensions Additional Implications

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

P, C and Strong CP in Left-Right Supersymmetric Models

P, C and Strong CP in Left-Right Supersymmetric Models P, C and Strong CP in Left-Right Supersymmetric Models Rabindra N. Mohapatra a, Andrija Rašin b and Goran Senjanović b a Department of Physics, University of Maryland, College Park, MD 21218, USA b International

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

arxiv:hep-ph/ v2 19 Sep 2005

arxiv:hep-ph/ v2 19 Sep 2005 BNL-HET-04/10 Seesaw induced electroweak scale, the hierarchy problem and sub-ev neutrino masses arxiv:hep-ph/0408191v2 19 Sep 2005 David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames,IA

More information

Fermions of the ElectroWeak Theory

Fermions of the ElectroWeak Theory Fermions of the ElectroWeak Theory The Quarks, The eptons, and their Masses. This is my second set of notes on the Glashow Weinberg Salam theory of weak and electromagnetic interactions. The first set

More information