Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

Size: px
Start display at page:

Download "Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models"

Transcription

1 Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO() Grand Unified Models Natsumi Nagata Univ. of Minnesota/Kavli IPMU PANCK 2015 May 25-29, 2015 Ioannina, Greece Based on Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015) [arxiv: ].

2 Evidence for Dark Ma'er (DM) GalacUc scale Scale of galaxy clusters Cosmological scale D [µk 2 ] Angular scale Begeman et. al. (1991) Clowe et. al. (2006) Multipole moment, Planck (2013)

3 Stability of DM DM parucle should be stable or have a lifeume longer than the age of the Universe. Example Discrete symmetry Z N R- parity in supersymmetric models KK- parity in the universal extra- dimensional models etc. Introducing a discrete symmetry by hand? Is there any mechanism for the symmetry?

4 Discrete symmetry as a remnant U(1) Suppose that there is a U(1) gauge symmetry: Field φ i φ H Charge Q i Q H Higgs field which breaks the extra U(1) symmetry Q H 0 (mod. N) Aeer the Higgs field φ H gefng a VEV, both the agrangian and the VEV are invariant under the following transformauons: There remains a Z N symmetry! U(1) φ H Z N T. W. B. Kibble, G. azarides and Q. Shafi (1982). M. Krauss and F. Wilczek (1989). E. Ibanez and G. G. Ross (1991) S. P. MarUn (1992)

5 SO() GUT SM gauge symmetries + an addiuonal U(1) Rank 5 SO() GUT H. Georgi (1975) H. Fritzsch and P. Minkowski (1975) In fact, non- SUSY SO() GUT is quite promising. SM fermions + right- handed neutrinos are embedded into 16. Gauge coupling unificauon is realized with an intermediate gauge symmetry. SO() G int G SM M GUT M int Small neutrino masses are explained by heavy right- handed neutrinos. M int M R M int

6 Discrete symmetry in SO() In non- SUSY SO() GUTs, the extra U(1) is broken at M int By appropriately choosing the intermediate Higgs field, we can obtain SO() G int G SM Z N Group analysis M. De MonUgny and M. Masip (1994) Higgs Symmetry Z 2 Z 3 Equivalent to maser parity SO() contains U(1) B- If we focus on rather small representauons, Z 2 is the only possibility. SO() can explain the stability of DM! M. KadasUk, K. Kannike and M. Raidal (2009) M. Frigerio and T. Hambye (2009)

7 Our work Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015). We systemaucally examine DM in SO() GUT models. Construct SO() models which realize gauge coupling unificauon with an appropriate GUT scale. Two classes of DM candidates Non- equilibrium thermal DM (NETDM) WIMP DM Study the phenomenological consequences of our models DM relic abundance Proton decay lifeume Neutrino mass DM muluplet affects the gauge coupling running

8 Our work Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015). We systemaucally examine DM in SO() GUT models. Construct SO() models which realize gauge coupling unificauon with an appropriate GUT scale. Two classes of DM candidates Non- equilibrium thermal DM (NETDM) DM muluplet affects the gauge coupling running WIMP DM (in progress) Study the phenomenological consequences of our models DM relic abundance Proton decay lifeume Neutrino mass

9 Non- equilibrium thermal DM (NETDM) Y. Mambrini, K. A. Olive, J. Quevillon, B. Zaldivar (2013). SM singlet fermion DM Does not come into thermal equilibrium Non- thermally produced via heavy parucle exchange SM parucles DM Thermal bath Heavy parucles We can use intermediate- scale parucles as a mediator!

10 Setup SO() GUT- scale parucles M GUT M int G int Broken by 126 Right- handed neutrinos Intermediate parucles T R G SM Z 2 DM EW SM parucles Mass spectrum is obtained with fine- tuning. Just like doublet- triplet splifng

11 Models Model I Model II G int SU(4) C SU(2) SU(2) R SU(4) C SU(2) SU(2) R D R DM (1, 1, 3) D in 45 D (15, 1, 1) W in 45 W R 1 2 R 54 R R 2 (, 1, 3) C (1, 1, 3) R (, 1, 3) C (, 3, 1) C (15, 1, 1) R log (M int ) 8.08(1) (5) log (M GUT ) (7) 15.87(2) g GUT (3) (2) We have obtained two promising models! R DM : DM muluplet R 1 : GUT- scale Higgs R 2 : intermediate Higgs D : ee- right parity (, 1, 3) C 126 Other Higgs fields make only the DM field light. Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

12 Gauge coupling unifica6on Model I Model II We use 2- loop RGEs. W/ DM W/O DM Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

13 Proton Decay W/ DM W/O DM Model I Model II M X : mass of GUT- scale gauge boson Future proton decay experiments can probe the models. Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

14 Neutrino mass Neutrino masses are given by the seesaw mechanism. P. Minkowski (1977), T. Yanagida (1979) M. Gell- Mann, P. Ramond, R. Slansky (1979) S.. Glashow (1980) R. N. Mohapatra and G. Senjanovic (1980) Model I Model II Model I is disfavored on the basis of small neutrino masses. Possible soluuon IntroducUon of (15, 2, 2) Higgs field to modify the neutrino Dirac mass. Scarcely affects the gauge coupling running

15 Non- equilibrium thermal DM (NETDM) SM#par'cles Model I DM h ψ 0 f ψ 0 φ +,W + R ψ + γ,z φ 0,WR 0, ψ + φ +,W + R h ψ 0 f ψ 0 Thermal#bath Heavy#par'cles Model II Boltzmann equauon h φ 0 ψ 0 h φ ψ 0 DM relic abundance is given as a funcuon of DM mass M DM and the reheaung temperature T RH.

16 DM relic abundance Model I Model II Model I predicts low reheaung temperature T RH in Model II is relauvely high challenging for baryogengesis Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

17 Conclusion We discuss SM singlet fermion DM candidates in SO(). Stability of DM is explained in terms of a remnant Z 2. Such DM parucles are produced via the exchange of intermediate parucles (NETDM scenario). We have found two promising models. Gauge coupling unificauon is achieved in the models. We computed reheaung temperature which realizes the correct DM density. Future proton decay experiments can probe the models.

18 Backup

19 Discrete symmetry in SO() Table 1: Irreducible representations containing µ N. Representation Highest weight Z 2 µ 0 45 ( ) + 54 ( ) + 2 ( ) + µ 1 16 ( ) 144 ( ) µ ( ) + Generic expression for a weight that is singlet under G SM. µ N =( NN N 0 N) A VEV of μ N yields Z N symmetry

20 Candidates for intermediate gauge group Table 2: Candidates for the intermediate gauge group G int. G int R 1 SU(4) C SU(2) SU(2) R 2 SU(4) C SU(2) SU(2) R D 54 SU(4) C SU(2) U(1) R 45 SU(3) C SU(2) SU(2) R U(1) B 45 SU(3) C SU(2) SU(2) R U(1) B D 2 SU(3) C SU(2) U(1) R U(1) B 45, 2 SU(5) U(1) 45, 2 Flipped SU(5) U(1) 45, 2

21 Candidates for NETDM Table 3: Candidates for the NETDM. G int R DM SO() SU(4) C SU(2) SU(2) R (1, 1, 3) 45 (15, 1, 1) 45, 2 (, 1, 3) 126 (15, 1, 3) 2 SU(4) C SU(2) U(1) R (15, 1, 0) 45, 2 (, 1, 1) 126 SU(3) C SU(2) SU(2) R U(1) B (1, 1, 3, 0) 45, 2 (1, 1, 3, 2) 126 SU(3) C SU(2) U(1) R U(1) B (1, 1, 1, 2) 126 SU(5) U(1) (24, 0) 45, 54, 2 (1, ) 126 (75, 0) 2 Flipped SU(5) U(1) (24, 0) 45, 54, 2 (50, 2) 126 (75, 0) 2 SM fermion DM SM Higgs SM fermions: Z 2 - odd SM Higgs: Z 2 - even DM should be Z 2 - even

22 Gauge coupling unifica6on without DM Table 4: log (M int ), log (M GUT ), and g GUT. For each G int, the upper shaded (lower) row shows the 2-loop (1-loop) result. M int and M GUT are given in GeV. The blank entries indicate that gauge coupling unification is not achieved. G int log (M int ) log (M GUT ) g GUT SU(4) C SU(2) SU(2) R 11.17(1) (4) (4) (8) 16.07(2) (1) SU(4) C SU(2) SU(2) R D (3) 14.95(1) (1) (7) 15.23(3) (1) SU(4) C SU(2) U(1) R 11.35(2) 14.42(1) (1) 11.23(1) (8) (7) SU(3) C SU(2) SU(2) R U(1) B 9.46(2) 16.20(2) (8) 8.993(3) 16.68(4) (3) SU(3) C SU(2) SU(2) R U(1) B D.51(1) 15.38(2) (3).090(9) 15.77(1) (6) SU(3) C SU(2) U(1) R U(1) B

23 Gauge coupling unifica6on without DM SU(4) SU(2) SU(2) C R 1 loop 2 loops SU(4) SU(2) SU(2) C R SU(4) SU(2) SU(2) D C R 2 χ 8 2 χ 8 M int M int log log M int log M int log 1 loop 2 loops SU(4) SU(2) SU(2) D C R Best fit point 68% C 95% C 99% C g GUT Best fit point 68% C 95% C 99% C g GUT 2 χ log 1 loop 2 loops SU(4) SU(2) SU(2) C R M GUT 2 χ SU(4) SU(2) SU(2) D C R M GUT log 1 loop 2 loops M GUT log Best fit point 68% C 95% C 99% C SU(4) SU(2) SU(2) C R g GUT M GUT log SU(4) SU(2) SU(2) D C R Best fit point 68% C 95% C 99% C g GUT 2 χ SU(4) SU(2) SU(2) C R 1 loop 2 loops 2 χ SU(4) SU(2) SU(2) D C R 1 loop 2 loops M int log SU(4) SU(2) SU(2) C R M int log SU(4) SU(2) SU(2) D C R g GUT g GUT Best fit point 68% C 95% C 99% C M GUT log M GUT log Best fit point 68% C 95% C 99% C Figure 3: Contour plots for the allowed region in the g GUT -log (M int ), g GUT -log (M GUT ), and log (M GUT )-log (M int ) parameter planes in the top, middle, and bottom panels, respectively. eft panels are for G int = SU(4) C SU(2) SU(2) R, while right ones are for G int = SU(4) C SU(2) SU(2) R D. Stars represent the best-fit point. The colored regions correspond to 68, 95, and 99 % C.. limits determined from 2 ' 2.30, 5.99, 9.21.

24 Gauge coupling unifica6on with DM Table 5: Models that realize the gauge coupling unification. M int and M GUT are given in GeV. All of the values listed here are evaluated at one-loop level. SU(4) C SU(2) SU(2) R R DM R 2 log (M int ) log (M GUT ) g GUT (1, 1, 3) W (, 1, 3) C (1, 1, 3) R (1, 1, 3) D (, 1, 3) C (1, 1, 3) R SU(4) C SU(2) SU(2) R D R DM R 2 log (M int ) log (M GUT ) g GUT (15, 1, 1) W (, 3, 1) C (15, 1, 1) R (, 1, 3) C (, 1, 3) C (, 3, 1) C (15, 1, 1) W (15, 1, 3) R (15, 3, 1) R (, 1, 3) C (, 3, 1) C (15, 1, 1) D (15, 1, 3) R (15, 3, 1) R SU(3) C SU(2) SU(2) R U(1) B R DM R 2 log (M int ) log (M GUT ) g GUT (1, 1, 3, 0) W (1, 1, 3, 2) C (1, 1, 3, 0) R

arxiv: v1 [hep-ph] 24 Feb 2015

arxiv: v1 [hep-ph] 24 Feb 2015 LPT-Orsay-15-16 FTPI MINN 15/06 UMN TH 340/15 IPMU15-000 KCL-PH-TH/015-09 arxiv:150.0699v1 [hep-ph] 4 Feb 015 Dark Matter and Gauge Coupling Unification in Non-supersymmetric SO(10) Grand Unified Models

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Neutrino masses : beyond d=5 tree-level operators

Neutrino masses : beyond d=5 tree-level operators Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Würzburg University based on arxiv:0907.3143, JEP 10 (2009) 076 and arxiv:1205.5140 to appear in JEP In collaboration with Daniel ernandez,

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case A cancellation mechanism for dark matter-nucleon interaction: non-abelian case University of Ioannina 31/3/2018 In collaboration with: Christian Gross, Alexandros Karam, Oleg Lebedev, Kyriakos Tamvakis

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1)

More information

Majoron as the QCD axion in a radiative seesaw model

Majoron as the QCD axion in a radiative seesaw model Majoron as the QCD axion in a radiative seesaw model 1 2 How to explain small neutrino mass ex) Type I Seesaw Heavy right-hand neutrino is added. After integrating out, neutrino Majorana mass is created.

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University Flavor Violation at the LHC Bhaskar Dutta Texas A&M University Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016, June 13th, 2016 1 Outline 1. Colored, Non colored

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Proton Decay and Flavor Violating Thresholds in the SO(10) Models

Proton Decay and Flavor Violating Thresholds in the SO(10) Models Proton Decay and Flavor Violating Thresholds in the SO(10) Models Yukihiro Mimura (Texas A&M University) Based on Proton decay in Collaboration with B. Dutta and R.N. Mohapatra Phys. Rev. Lett. 94, 091804

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

Flavor violating Z from

Flavor violating Z from Flavor violating Z from SO(10) SUSY GUT model Yu Muramatsu( 村松祐 ) CCNU Junji Hisano(KMI, Nagoya U. & IPMU), Yuji Omura (KMI) & Yoshihiro Shigekami (Nagoya U.) Phys.Lett.B744 (2015) 395, and JHEP 1611 (2016)

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

arxiv:hep-ph/ v1 5 Oct 2005

arxiv:hep-ph/ v1 5 Oct 2005 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/0510054v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Topological Defects, Gravity Waves and Proton Decay

Topological Defects, Gravity Waves and Proton Decay Topological Defects, Gravity Waves and Proton Decay Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with A. Ajaib, S. Boucenna, G. Dvali,

More information

P, C and Strong CP in Left-Right Supersymmetric Models

P, C and Strong CP in Left-Right Supersymmetric Models P, C and Strong CP in Left-Right Supersymmetric Models Rabindra N. Mohapatra a, Andrija Rašin b and Goran Senjanović b a Department of Physics, University of Maryland, College Park, MD 21218, USA b International

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Petr Vogel, Caltech INT workshop on neutrino mass measurements Seattle, Feb.8, 2010 The mixing angles and Δm 2 ij are quite

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

COSMOLOGICAL CONSTRAINTS ON HEAVY WEAKLY INTERACTING FERMIONS

COSMOLOGICAL CONSTRAINTS ON HEAVY WEAKLY INTERACTING FERMIONS 7 Nuclear Physics B177 (1981) 456-460 North-Holland Publishing Company COSMOLOGICAL CONSTRAINTS ON HEAVY WEAKLY INTERACTING FERMIONS Jeffrey A. HARVEY', Edward W. KOLB 2, David B. REISS' and Stephen WOLFRAM'

More information

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry arxiv:1106.3451v1 [hep-ph] 17 Jun 2011 S. Dev, Shivani Gupta and Radha Raman Gautam Department of Physics, Himachal Pradesh University,

More information

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector Masaki Asano (ICRR, Univ. of Tokyo) arxiv:08104601 Collaborator: Junji Hisano (ICRR), Takashi Okada (ICRR),

More information

NO GUTS, ALL GLORY: CHARGE QUANTIZATION. John Kehayias Kavli IPMU (WPI) The University of Tokyo SUSY 2013 Trieste, Italy August 26 31

NO GUTS, ALL GLORY: CHARGE QUANTIZATION. John Kehayias Kavli IPMU (WPI) The University of Tokyo SUSY 2013 Trieste, Italy August 26 31 NO GUTS, ALL GLORY: CHARGE QUANTIZATION CP IN THE NONLINEAR -MODEL ARXIV:1308.???? WITH SIMEON HELLERMAN AND TSUTOMU YANAGIDA John Kehayias Kavli IPMU (WPI) The University of Tokyo SUSY 2013 Trieste, Italy

More information

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL THE 4TH KIAS WORKSHOP ON PARTICLE PHYSICS AND COSMOLOGY ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL ZHAOFENG KANG, KIAS, SEOUL, 10/31/2014 BASED ON AN UNBORN PAPER, WITH P. KO, Y. ORIKAS

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Proton decay theory review

Proton decay theory review Proton decay theory review Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Lyon, 12 1 Introduction STANDARD MODEL: renormalizable level: accidental B and L conservation (no invariants that violate

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

SUSY GUTs, DM and the LHC

SUSY GUTs, DM and the LHC SUSY GUTs, DM and the LHC Smaragda Lola Dept. of Physics, University of Patras Collaborators [JCAP 1603 (2016) and in progress] R. de Austri, M.Canonni, J.Ellis, M. Gomez, Q. Shafi Outline Ø No SUSY signal

More information

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Michele Frigerio Laboratoire Charles Coulomb, CNRS & UM2, Montpellier MF & Carlos E. Yaguna, arxiv:1409.0659 [hep-ph] GDR neutrino

More information

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model Sudhanwa Patra, 1, Anjishnu Sarkar, 2, Utpal Sarkar, 1,3, and Urjit A. Yajnik 4,5, 1 Physical Research Laboratory, Ahmedabad

More information

Neutrinos as Pathfinders

Neutrinos as Pathfinders Neutrinos as Pathfinders José W F Valle IFIC AHEP on facebook November 2015 HISTORIC DISCOVERY 1 HISTORIC DISCOVERY 1 Last stone HISTORIC DISCOVERY 2 THE PRECISION ERA... Schechter & JV PRD22 (1980) 2227

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Masaki Asano The Graduate University for Advanced Studies Collaborated with Shigeki Matsumoto Nobuchika Okada Yasuhiro

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

Z -portal right-handed neutrino dark ma4er in the minimal U(1)x extended Standard Model

Z -portal right-handed neutrino dark ma4er in the minimal U(1)x extended Standard Model Z -portal right-handed neutrino dark ma4er in the minimal U(1)x extended Standard Model Nobuchika Okada University of Alabama In collaborapon with Satomi Okada (Yamagata Univ., Japan) Ref: NO & S. Okada,

More information

arxiv:astro-ph/ v4 5 Jun 2006

arxiv:astro-ph/ v4 5 Jun 2006 BA-06-12 Coleman-Weinberg Potential In Good Agreement With WMAP Q. Shafi and V. N. Şenoğuz Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

More information

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv: arxiv:1407.4192 Unified Dark Matter SUSY2014 Stephen J. Lonsdale The University of Melbourne In collaboration with R.R. Volkas Unified Dark Matter Motivation: Asymmetric dark matter models Asymmetric symmetry

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Origin of Mass of the Higgs Boson

Origin of Mass of the Higgs Boson Origin of Mass of the Higgs Boson Christopher T. Hill Fermilab University of Toronto, April 28, 2015 A fundamental Higgs Mechanism was supposed to explain the origin of electroweak mass A fundamental Higgs

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

A String Model for Preons and the Standard Model Particles. Abstract

A String Model for Preons and the Standard Model Particles. Abstract March 5, 013 A String Model for Preons and the Standard Model Particles Risto Raitio 1 030 Espoo, Finland Abstract A preon model for standard model particles is proposed based on spin 1 fermion and spin

More information

Probing Seesaw and Leptonic CPV

Probing Seesaw and Leptonic CPV Probing Seesaw and Leptonic CPV Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Based on works: BB, Senjanović, 06 BB, Nemevšek, Senjanović, 07 Arhrib, BB, Ghosh, Han, Huang, Puljak, Senjanović, 09

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Grand Unified Theory based on the SU(6) symmetry

Grand Unified Theory based on the SU(6) symmetry Grand Unified Theory based on the SU(6) symmetry A. Hartanto a and L.T. Handoko a,b FISIKALIPI-04007 FIS-UI-TH-05-02 arxiv:hep-ph/0504280v1 29 Apr 2005 a) Department of Physics, University of Indonesia

More information

Supersymmetric Seesaws

Supersymmetric Seesaws Supersymmetric Seesaws M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain Thanks to: J. Esteves, S.

More information

Neutrinos, GUTs, and the Early Universe

Neutrinos, GUTs, and the Early Universe Neutrinos, GUTs, and the Early Universe Department of Physics Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) What is nu...?, Invisibles 12, Smirnov Fest GGI, Florence June 26, 2012 Three challenges

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

arxiv:hep-ph/ v1 24 Feb 2003

arxiv:hep-ph/ v1 24 Feb 2003 Minimal Supersymmetric Pati-Salam Theory: Determination of Physical Scales. Alejandra Melfo (1,2) and Goran Senjanović (1) (1) International Centre for Theoretical Physics, 34100 Trieste, Italy and (2)

More information

A NOTE ON R-PARITY VIOLATION AND FERMION MASSES. GÓMEZ and K. TAMVAKIS. Division of Theoretical Physics, University of Ioannina, GR-45110, Greece

A NOTE ON R-PARITY VIOLATION AND FERMION MASSES. GÓMEZ and K. TAMVAKIS. Division of Theoretical Physics, University of Ioannina, GR-45110, Greece hep-ph/9801348 A NOTE ON R-PARITY VIOLATION AND FERMION MASSES M.E. GÓMEZ and K. TAMVAKIS Division of Theoretical Physics, University of Ioannina, GR-45110, Greece Abstract We consider a class of supersymmetric

More information

arxiv:hep-ph/ v2 19 Sep 2005

arxiv:hep-ph/ v2 19 Sep 2005 BNL-HET-04/10 Seesaw induced electroweak scale, the hierarchy problem and sub-ev neutrino masses arxiv:hep-ph/0408191v2 19 Sep 2005 David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames,IA

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information