Structure of Mass-Flux Convection Paprameterization. by Jun-Ichi Yano Meteo France Toulouse

Size: px
Start display at page:

Download "Structure of Mass-Flux Convection Paprameterization. by Jun-Ichi Yano Meteo France Toulouse"

Transcription

1 Structure of Mass-Flux Convection Paprameterization by Jun-Ichi Yano Meteo France Toulouse

2 One cannot be a successful scientist without realizing that, in contrast to the popular conception supported by newspapers and mothers of scientists, a goody number of scientists are not only narrow-minded and dull, but also just stupid." ("Double Helix", James Watson)

3 Basic Reference: J.-I. Yano, J.-L. Redelsperger, F. Guichard, and P. Bechtold, 2005: Mode Decomposition As a Methodology For Developing Convective-Scale Representations in Global Models. Quator. J. Roy. Meteor. Soc, 131,

4

5 Structure of Mass-Flux Convection Paprameterization: Outline (Ingredients): Introduction: why we need this? Riehl & Malkus Hot Tower Hypothesis SCA entrainment-detrainment environmnet Asymptotic limit: s c -> 0 Closure

6 What should be parameterized: A Typical Atmospheric Convective System?: ~200km cumulus convection (convective towers) ~20km stratiform clouds (mesoscale)

7 Parameterization Problem: Full System (CRM)? Parameterization (caricature)

8 Q: the subgrid-scale physiccal represnetations (parameterizations)? full physical system: average over the grid-box parameterization? =? (Downscaling)

9 Examples: Heat Equation: Temporal Tendency + Large-Scale Advection = Diabatic Heating + Subgrid-Scale Transport = Q1: Apparent Heat Source? Moisture Equation: Temporal Tendency + Large-Scale Advection = -Condensation + Evaporation +Subgrid-Scale Transport =- Q2: Apparent Moisture Sink?

10 Observational Estimates of Q1and Q2: Deep convection Tropical Pacific Tropical Atlantic Yanai et al., 1973, JAS Yanai and Johnson, 1993 Note the typical tropical maximum of Q1 at 500 hpa, Q2 maximum is lower and typically at 800 hpa

11 Why It Is Important? Because of Its Global Role: Especially over the Tropics (Riehl and Malkus 1958): Hot-Tower Hypothesis (for the Hadley Circulation)

12 Hot-Tower Hypothesis (Riehl and Malkus 1958): Classcial View on Hadley Circulation: Modern View: Eq. lat. Eq. Hot Towers (~5km) lat.

13 Hot-Tower Hypothesis (Riehl and Malkus 1958): arge-scale Upward otion dry entropy Radiative Cooling Entropy Transfer moist entropy

14 Hot-Tower Hypothesis (Riehl and Malkus 1958): Radiative Cooling dry entropy Hot Tower moist entropy

15 Hot-Tower Hypothesis (Riehl and Malkus 1958): Implications: Hot Towers << Large-Scale Cirulation (Hadley-Walker) Parameterization (Convective Parameterization Problem) cf., Scale-Separation Principle

16 Hot towers within a gird box: Basic idea of convection parametrization

17 Hot towers within a Gird Box: Basic idea of Convection Parametrization (Fig. 1, Arakawa and Schubert 1974)

18 Structure of Mass-Flux Convection Paprameterization: Outline (Ingredients): Introduction: why we need this? Riehl & Malkus Hot Tower Hypothesis SCA entrainment-detrainment environmnet Asymptotic limit: s c -> 0 Closure

19 Why It Is Important?: Historical Perspectives Role in Tropical Large-Scale Circulation (Riehl and Markus 1958): Convective Parameterization (Arakawa &Schubert 1974, Kuo 1974, etc) Weather Modification Programme (1960th): Vertification? One-Dimensional Plume Model Natural Laboratory Fluid Laboratory Experiments (ca., ):

20 Historical Evolution of the Study Laboratory Experiments (50-60) 1D Entraining-Plume Model (EPM) (explicit studies) (steady, 60th) (parameterization) Time-depdent 1D EPM (Asai &Kasahara MassFlux ) + Mircophysics (Ogura&Takahashi 1971) Ensemble of Plumes (Arakawa & 2D CRM (70-80) Schubert 1974, etc) 3D CRM (80-90) Cloud Resolving Model (CRM) Comparisons? MassFlux Convective Parameterization

21 Basic Questions Physics: Conditional Instability, CAPE Hot Tower: Plume Model?: Entrainment-Detrainment Convective Parameterization (MassFlux): Convective-Radiative Equilibrium Quasi-Equilibrium Q1, Q2, MassFlux

22 Basic Physics: Complex: Dynamics : Buoyancy-Driven Thermodynamics : Transport=Diffusion +Latent Heating Cloud Microphysics : Rain Formation Chemistry (Aerosoles) : CCN Radiation : Electricity : Solar and Infrared Lightning: Electro-Mgnetic

23 Hot-Tower Hypothesis (Riehl and Malkus 1958): Implications: Hot Towers << Large-Scale Cirulation (Hadley-Walker) Parameterization (Convective Parameterization Problem) cf., Scale-Separation Principle

24 Hot towers within a Gird Box: Basic idea of Convection Parametrization Hot Towers (Convection) Grid Box = Convection+Environment Environment

25 Geometrical Constraint (on CRM): SCA (Segmentally-Constant Approximation) Hot Towers (Convection) :homogeneous inside Environment :homogeneous Grid Box = Convection+Environment

26 SCA: Segmentally-Constant Approximation: Side View w c, q c,.j c w e, q e,.j e x Environment Convective Updarft (Hot Tower)

27 Segmentally-Constant Approximation (SCA) Into Cloud-Resolving Model (CRM) or Nonhydrostatic Anelastic Model (NAM)? : NAM-SCA

28 A Hot Tower (Plume): Segmentally-Constant Approximation (SCA) Into CRM (NAM)? Finite Volume Method Temperature Anomaly (K)

29

30

31 A Hot Tower (Plume): Segmentally-Constant Approximation (SCA) Into CRM (NAM) Temperature Anomaly (K)

32 Generalization of Concept: Hot Towers < Plumes < Convection

33 NAM-SCA: Basic Formulation: mass continuity

34 Simplification of the Horizontal Velocity Calculation: Entrainment-Detrainment Hypothesis

35 Mass Continuity: Vertical Velocity Divergence NAM-SCA: Vertical Velocity Divergence Entrainment-Detrainmnet hypothesis: Prescribed Entrainment-Detrainment Vertical Velocity (MassFlux)

36 Entrainment-Detrainmnet hypothesis: Prescribed Entrainment-Detrainment Vertical Velocity (MassFlux) Mass flux

37 Historical Note: Extensive Laboratory Experiments during 1940s-1950s in order to understand Atmospheric Convection

38 Entraining Plume Hypothesis: Laboratory Experiments (Morton et al., 1956)

39 Entraining Plume Model : Laboratory Experiments (Morton et al 1956) (Turner 1962)

40

41 Further Historical Notes: Role in Tropical Large-Scale Circulation (Riehl and Markus 1958): Natural Laboratory Fluid Laboratory Experiments (ca., , Morton,et al) Weather Modification Programme (1960th, Markus-Simpson): Vertification? One-Dimensional Plume Model Convective Parameterization (Arakawa &Schubert 1974, Kuo 1974, etc)

42

43 Varioius Possibilities for Entrainmnet- Detrainment Hypotheses (cf., de Rooy et al, 2013, QJ): after Raymond,1993 undiluted entraining plume cloud top entrainment stochastic mixing Hot tower Stommel (1951) Paluch (1979) Raymond & Blyth (1986)

44 Environement-Convection Separation (a hidden assumpotion) convective Environment elements NB: Additional Constraint that can be removed

45 Environement-Convection separation D D E E convective element (a) Environment convective element (b)

46

47 MassFlux Parameterization Last Steps: Fractaional area : s c -> 0 Plumes are at steady state: d/dt = 0 NB: the Formulation is timedependent Before taking this Limit

48 Standard Mass-Flux Formulation: M = h(z)m B (t) h(z) : cloud model : steady (no trigger, etc) M B (t) : closure condition: large-scale control NB: if a life-cycle (e.g., trigger) of individual convection is to be consiered, the above formulation is no longer valid (cf., NAM-SCA formulation)?

49 Closure Problem (cf., Yano et al., 2013, ACP): Two Major Possibilities based on conservation laws: Moisture (Kuo 1974) Energy Cycle: CAPE, Cloud Work Function (Arakawa and Schubert, 1974, Yano and Plant 2012a, b, Plant and Yano 2013) NB: Trigger and Suppression are NOT a Formal Part of Clousre (cf., Yano et al., 2013, ACP)

50 Structure of Mass-Flux Convection Paprameterization: Ingredients (Summary): Hot Towers: SCA entrainment-detrainment environmnet Asymptotic limit: s c -> 0 Closure :? :NAM-SCA :? Prognostic? :Quasi-Equilirium (Yano and Plant, 2013, RG) High-Resolution Limit?

51 Further Discussions?: Removal of the Environment Hypothesis : Truncated NAM-SCA

52 A Hot Tower (Plume): Segmentally-Constant Approximation (SCA) Into CRM (NAM) Temperature Anomaly (K)

53 Updraft + Downdraft: A simple demonstration Without environment Hypothesis with w(m/s) NAM-SCA: q(k)

54 Truncated NAM-SCA: More Physical Processes:

55 Truncated NAM-SCA: W (m/s) q (K) qv (g/kg) qc (g/kg) qp (g/kg)

56 Final SCA-Archtype Model? 2D 4-segment model: Axisymmetric 3-segment model:

57 Numerical Archetype: Fixed Distribution of Finite-Volume Elements Cloud Water (g/kg)

58 Tropical Squall-line (GATE Phase III) W (m/s) q (K) qv (g/kg) qc (g/kg) qp (g/kg)

59 When the Entrainment-Detrainment Hypothesis is reintroduced:

60 SCA-Plume Experiments (NAM-SCA, Yano and Baizig 2012) Fixed interface: Lagrangian:

61 Fixed interface Fractional Entrainment- Detrainment Rate Lagrangian K

62 Dependence on Aspect Ratio: Fractional Entrainment- Detrainment Rate K

63 Experiment with Entraining-Plume Hypothesis:

64 In General:?

65 A General SCA-based Approach+Entrainment-Detrainment (Yano, 2012 GMD): Multi-Component Flow Analogy :Primitive Eq. System

66 Robust Basis for Parameterization Closure: Convective Energy Cycle (Yano and Plant 2012a, b, QJ, JAS, Plant and Yano 2013 DAO)

67 Closure Problem in Mass-Flux Formulation (Arakawa and Schubert 1974): Convective Energy-Cycle System: Kinetic Energy Equation (Eq. 132, AS74) Clolud-Work Function Equation (Eq. 142, AS74) Three unkowns: K, M, A A Functional Constraint: K ~ M p (p=2: Pan and Randall, p=1: Yano and Plant) Prognostic Closure based on Energy Cycle NB: Key is to couple the shallow and deep modes under this Formulation in order to properly describe Shallow-to- Deep Transformation (Yano and Plant, accepted to JAS)

68

69 Furhter Extension of NAM-SCA: Put More Plumes + Time-Dependent Activation- Deactivation of Plumes (Segments) Highly-Flexible Adaptive Mesh- Refinement: NAM-SCA

70 Activation: interface jump > fac x variance (z)

71 Deactivation: interface jump < facd x variance (z) fac = facd = 1

72 Dry Convective Boundary Layer W (m/s) q (K)

73 Dry Convective Boundary Layer W (m/s) q (K)

74

75 More Applications: Archetype Convection Representation

76 Application I: Moncrieff s Archetype Convection Representation (1992)? NAM-SCA Framework can numerically generate an archetype for a given environmental state (Cubism Version)

77 1 1 1 Cloud Water (g/kg) 1 Original NAM-SCA Run

78 1 1 1 Cloud Water (g/kg) 1 NAM-SCA Run in Moving Coordinate

79 1 1 1 Cloud Water (g/kg) 1 NAM-SCA Run in Moving Coordinate: Initial Condition For Archetype

80 Finite-Volume Element Distribution (original) NAM-SCA Run in Moving Coordinate: Initial Condition For Archetype

81 Finite-Volume Element Distribution (smoothed) Numerical Archetype: Fixed Distribution of Finite-Volume Elements

82 1 1 1 Cloud Water (g/kg) 1 NAM-SCA Run in Moving Coordinate: Initial Condition For Archetype

83 Numerical Archetype: Fixed Distribution of Finite-Volume Elements Cloud Water (g/kg)

84 Numerical Archetype: Fixed Distribution of Finite-Volume Elements Cloud Water (g/kg)

? entrainment-detrainment environmnet Asymptotic limit: s c -> 0

? entrainment-detrainment environmnet Asymptotic limit: s c -> 0 Structure of Mass-Flux Convection Paprameterization: Ingredients (Summary): Hot Towers: SCA :NAM-SCA? entrainment-detrainment environmnet Asymptotic limit: s c -> 0 :? Prognostic :Quasi-Equilirium Closure

More information

WaVaCS summerschool Autumn 2009 Cargese, Corsica

WaVaCS summerschool Autumn 2009 Cargese, Corsica Introduction Part I WaVaCS summerschool Autumn 2009 Cargese, Corsica Holger Tost Max Planck Institute for Chemistry, Mainz, Germany Introduction Overview What is a parameterisation and why using it? Fundamentals

More information

Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905. Jun-Ichi Yano Meteo France

Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905. Jun-Ichi Yano Meteo France Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Jun-Ichi Yano Meteo France COST Action (European Cooperation in Science and Technology): European

More information

Bells and whistles of convection parameterization

Bells and whistles of convection parameterization Bells and whistles of convection parameterization Article Accepted Version Yano, J. I., Machulskaya, E., Bechtold, P. and Plant, R. S. (2013) Bells and whistles of convection parameterization. Bulletin

More information

Climate Modeling Issues at GFDL on the Eve of AR5

Climate Modeling Issues at GFDL on the Eve of AR5 Climate Modeling Issues at GFDL on the Eve of AR5 Leo Donner, Chris Golaz, Yi Ming, Andrew Wittenberg, Bill Stern, Ming Zhao, Paul Ginoux, Jeff Ploshay, S.J. Lin, Charles Seman CPPA PI Meeting, 29 September

More information

MEA 716 Exercise, BMJ CP Scheme With acknowledgements to B. Rozumalski, M. Baldwin, and J. Kain Optional Review Assignment, distributed Th 2/18/2016

MEA 716 Exercise, BMJ CP Scheme With acknowledgements to B. Rozumalski, M. Baldwin, and J. Kain Optional Review Assignment, distributed Th 2/18/2016 MEA 716 Exercise, BMJ CP Scheme With acknowledgements to B. Rozumalski, M. Baldwin, and J. Kain Optional Review Assignment, distributed Th 2/18/2016 We have reviewed the reasons why NWP models need to

More information

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Atmospheric Sciences 6150 Cloud System Modeling 2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Arakawa (1969, 1972), W. Gray

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

Spectral and Bulk Mass-Flux Convective Parameterizations

Spectral and Bulk Mass-Flux Convective Parameterizations Spectral and Bulk Mass-Flux Convective Parameterizations Bob Plant Department of Meteorology, University of Reading COST ES0905 workshop on Concepts for Convective Parameterizations in Large-Scale Models:

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Radiative Convective Equilibrium in Single Column CAM I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Motivation The Earth s atmosphere is an extremely thin sheet of air

More information

meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu

meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu Problem with the conventional mass flux schemes Most of the mass-flux schemes are based on the original Arakawa-Schubert

More information

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Xiaoqing Wu, Liping Deng and Sunwook Park Iowa State University 2009 DYNAMO Workshop Boulder, CO April 13-14,

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

Moist convec+on in models (and observa+ons)

Moist convec+on in models (and observa+ons) Moist convec+on in models (and observa+ons) Cathy Hohenegger Moist convec+on in models (and observa+ons) Cathy Hohenegger How do we parameterize convec+on? Precipita)on response to soil moisture Increase

More information

Errors caused by draft fraction in cumulus parameterization

Errors caused by draft fraction in cumulus parameterization GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L17802, doi:10.1029/2009gl039100, 2009 Errors caused by draft fraction in cumulus parameterization Akihiko Murata 1 Received 24 May 2009; revised 16 July 2009; accepted

More information

Parametrizing Cloud Cover in Large-scale Models

Parametrizing Cloud Cover in Large-scale Models Parametrizing Cloud Cover in Large-scale Models Stephen A. Klein Lawrence Livermore National Laboratory Ming Zhao Princeton University Robert Pincus Earth System Research Laboratory November 14, 006 European

More information

Parameterizing large-scale dynamics using the weak temperature gradient approximation

Parameterizing large-scale dynamics using the weak temperature gradient approximation Parameterizing large-scale dynamics using the weak temperature gradient approximation Adam Sobel Columbia University NCAR IMAGe Workshop, Nov. 3 2005 In the tropics, our picture of the dynamics should

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Influence of Large-Scale Advective Cooling and Moistening Effects on the Quasi-Equilibrium Behavior of Explicitly Simulated Cumulus Ensembles

Influence of Large-Scale Advective Cooling and Moistening Effects on the Quasi-Equilibrium Behavior of Explicitly Simulated Cumulus Ensembles 896 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 55 Influence of Large-Scale Advective Cooling and Moistening Effects on the Quasi-Equilibrium Behavior of Explicitly Simulated Cumulus

More information

Finite departure from convective quasiequilibrium:

Finite departure from convective quasiequilibrium: Finite departure from convective quasiequilibrium: periodic cycle and dischargerecharge mechanism A BC DEF B E E DE E E E ED E E E B A E D E E DE D B C C E C B E E E E C E E E E E E E E E ED E EE A E E

More information

Parameterization of effects of unresolved clouds and precipitation

Parameterization of effects of unresolved clouds and precipitation Parameterization of effects of unresolved clouds and precipitation eas471_cumparam.odp JDW, EAS, U. Alberta Last modified: 29 Mar. 2016 (from Physical Parameterizations in Canadian Operational Models,

More information

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization Kay Sušelj 1, Joao Teixeira 1 and Marcin Kurowski 1,2 1 JET PROPULSION LABORATORY/CALIFORNIA INSTITUTE

More information

Multiple equilibria in a cloud resolving model using the weak temperature gradient approximation

Multiple equilibria in a cloud resolving model using the weak temperature gradient approximation Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013376, 2010 Multiple equilibria in a cloud resolving model using the weak temperature gradient approximation Sharon

More information

MODEL UNIFICATION my latest research excitement Akio Arakawa

MODEL UNIFICATION my latest research excitement Akio Arakawa MODEL UNIFICATION my latest research excitement Akio Arakawa Department of Atmospheric and Oceanic Sciences, UCLA CMMAP, January 7, 24 Wayne Schubert ` 7 Cumulus/ L-S interaction David Randall Wayne Schubert

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches LONG-TERM

More information

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS)

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS) Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment Liu and Moncrieff (2017 JAS) Introduction Balance of lower-tropospheric wind shear and strength of evaporation-generated

More information

Cumulus parameterization in non-convection-resolving models

Cumulus parameterization in non-convection-resolving models Cumulus parameterization in non-convection-resolving models Given a column profile of model variables*, what convective tendencies will* occur? Hard questions: *1 is mean thermo. sounding enough information?»if

More information

Subgrid-Scale Effects on Climate and Weather. Blackbird:Users:randall:UCLA_IPAM:UCLA_IPAM.frame

Subgrid-Scale Effects on Climate and Weather. Blackbird:Users:randall:UCLA_IPAM:UCLA_IPAM.frame Subgrid-Scale Effects on Climate and Weather The problem that will not die Deficiencies in the representation of cloud-dynamical processes in climate models drive much of the uncertainty surrounding predictions

More information

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km Martina Tudor, Stjepan Ivatek-Šahdan and Antonio Stanešić tudor@cirus.dhz.hr Croatian

More information

Parameterizing large-scale circulations based on the weak temperature gradient approximation

Parameterizing large-scale circulations based on the weak temperature gradient approximation Parameterizing large-scale circulations based on the weak temperature gradient approximation Bob Plant, Chimene Daleu, Steve Woolnough and thanks to GASS WTG project participants Department of Meteorology,

More information

Toward unification of the multiscale modeling of the atmosphere

Toward unification of the multiscale modeling of the atmosphere Atmos. Chem. Phys., 11, 3731 3742, 2011 doi:10.5194/acp-11-3731-2011 Author(s) 2011. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Toward unification of the multiscale modeling of the atmosphere

More information

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015 PALM - Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: Monday 21 st September, 2015 PALM group PALM Seminar 1 / 16 Contents Motivation Approach

More information

Why do GCMs have trouble with the MJO?

Why do GCMs have trouble with the MJO? Why do GCMs have trouble with the MJO? The Madden-Julian Oscillation West East 200 [hpa] 500 Cool & dry Cool & dry p 700 850 SST Lag Day +20 +15 +10 +5 0-5 -10-15 -20 ~20 days ~10 days ~10-15 days

More information

The Parameterization of Deep Convection and the Betts-Miller scheme

The Parameterization of Deep Convection and the Betts-Miller scheme The Parameterization of Deep Convection and the Betts-Miller scheme Alan K. Betts [CPTEC, May, 2004] akbetts@aol.com References Some history of two decades of diagnostic studies Convective mesosystem mass

More information

Mode decomposition as a methodology for developing convective-scale representations in global models

Mode decomposition as a methodology for developing convective-scale representations in global models Q. J. R. Meteorol. Soc. (2005), 131, pp. 2313 2336 doi: 10.1256/qj.04.44 Mode decomposition as a methodology for developing convective-scale representations in global models By JUN-ICHI YANO 1, JEAN-LUC

More information

Using Cloud-Resolving Models for Parameterization Development

Using Cloud-Resolving Models for Parameterization Development Using Cloud-Resolving Models for Parameterization Development Steven K. Krueger University of Utah! 16th CMMAP Team Meeting January 7-9, 2014 What is are CRMs and why do we need them? Range of scales diagram

More information

Convection in the Unified Model

Convection in the Unified Model Convection in the Unified Model Martin S. Singh Honours Thesis submitted as part of the B.Sc. (Honours) degree in the School of Mathematical Sciences, Monash University. Supervisor: Prof. Christian Jakob

More information

Scale aware deep convection parameterization

Scale aware deep convection parameterization Scale aware deep convection parameterization Luc Gerard Royal Meteorological Institute of Belgium 3 September 26 Convective clouds in a model grid box Quasi-Equilibrium hypothesis: Large subgrid population,

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

A. Parodi 1, (1) CIMA Research Foundation, Italy. in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou 3 (2) EAPS, MIT, USA

A. Parodi 1, (1) CIMA Research Foundation, Italy. in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou 3 (2) EAPS, MIT, USA Spatial and temporal evolution of deep moist convective processes: the role of microphysics A. Parodi 1, (1) CIMA Research Foundation, Italy in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou

More information

Bulk Boundary-Layer Model

Bulk Boundary-Layer Model Bulk Boundary-Layer Model David Randall Ball (1960) was the first to propose a model in which the interior of the planetary boundary layer (PBL) is well-mixed in the conservative variables, while the PBL

More information

A Stochastic Parameterization for Deep Convection

A Stochastic Parameterization for Deep Convection A Stochastic Parameterization for Deep Convection EGU Assembly 7th April 2006 Bob Plant 1, George Craig 2 and Christian Keil 2 1: Department of Meteorology, University of Reading, UK 2: DLR-Institut fuer

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Entrainment and detrainment. Convection parameterization p.39/91

Entrainment and detrainment. Convection parameterization p.39/91 Entrainment and detrainment Convection parameterization p.39/91 Outline Making estimations of entrainment Ouline of some key methods and issues Source of entraining air Buoyancy sorting Relative humidity

More information

Linear Response Functions

Linear Response Functions Linear Response Functions A Tool for Model Analysis and Comparison Michael Herman, 1 working with Zhiming Kuang 2 1 New Mexico Tech, Socorro, NM 2 Harvard University, Cambridge, MA June 11, 2010 Overview

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

3D experiments with a stochastic convective parameterisation scheme

3D experiments with a stochastic convective parameterisation scheme 3D experiments with a stochastic convective parameterisation scheme R. J. Keane and R. S. Plant 3D experiments with a stochastic convective parameterisation scheme p.1/17 Outline Introduction to the Plant-Craig

More information

Modeling convective processes during the suppressed phase of a Madden-Julian Oscillation: Comparing single-column models with cloud-resolving models

Modeling convective processes during the suppressed phase of a Madden-Julian Oscillation: Comparing single-column models with cloud-resolving models QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Published online in Wiley InterScience (www.interscience.wiley.com).000 Modeling convective processes during the suppressed phase of a Madden-Julian

More information

Numerical Modeling of Moist Convection in Jupiter's Atmosphere

Numerical Modeling of Moist Convection in Jupiter's Atmosphere Numerical Modeling of Moist Convection in Jupiter's Atmosphere K. Sugiyama 1,4), M. Odaka 1), K. Nakajima 2), K. Kuramoto 1,4), Y. Hayashi 3,4) 1) Hokkaido Univ., JAPAN, 2) Kyushu Univ., JAPAN 3) Kobe

More information

Theories on the Optimal Conditions of Long-Lived Squall Lines

Theories on the Optimal Conditions of Long-Lived Squall Lines Theories on the Optimal Conditions of Long-Lived Squall Lines References: Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two -dimensional convection in nonconstant shear: A model of midlatitude

More information

The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) Mark Decker Feiqin Xie ATMO 595E November 23, 2004 Department of Atmospheric Science

The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) Mark Decker Feiqin Xie ATMO 595E November 23, 2004 Department of Atmospheric Science The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) Mark Decker Feiqin Xie ATMO 595E November 23, 2004 Department of Atmospheric Science Outline Basic Dynamical Equations Numerical Methods Initialization

More information

Convective self-aggregation, cold pools, and domain size

Convective self-aggregation, cold pools, and domain size GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1 5, doi:10.1002/grl.50204, 2013 Convective self-aggregation, cold pools, and domain size Nadir Jeevanjee, 1,2 and David M. Romps, 1,3 Received 14 December 2012;

More information

October 1986 R. H. Johnson 721. Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems:

October 1986 R. H. Johnson 721. Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems: October 1986 R. H. Johnson 721 Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems: Implications for the Problem of Cumulus Parameterization By Richard H. Johnson Department

More information

Theories on the Optimal Conditions of Long-Lived Squall Lines

Theories on the Optimal Conditions of Long-Lived Squall Lines Theories on the Optimal Conditions of Long-Lived Squall Lines References: Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in nonconstant shear: A model of midlatitude

More information

The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015

The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015 The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015 The effects of moisture conditions on the organization and intensity

More information

MUTUAL ADJUSTMENT OF MASS FLUX AND STRATIFICATION PROFILES. BRIAN E. MAPES CIRES, University of Colorado Boulder, Colorado, USA

MUTUAL ADJUSTMENT OF MASS FLUX AND STRATIFICATION PROFILES. BRIAN E. MAPES CIRES, University of Colorado Boulder, Colorado, USA MUTUAL ADJUSTMENT OF MASS FLUX AND STRATIFICATION PROFILES Abstract BRIAN E. MAPES CIRES, University of Colorado Boulder, Colorado, 80309-0449 USA Observations indicate that deep convective heating profiles

More information

A Theory for Buoyancy and Velocity Scales in Deep Moist Convection

A Theory for Buoyancy and Velocity Scales in Deep Moist Convection NOVEMBER 2009 P A R O D I A N D E M A N U E L 3449 A Theory for Buoyancy and Velocity Scales in Deep Moist Convection ANTONIO PARODI CIMA Research Foundation, Savona, Italy KERRY EMANUEL Program in Atmospheres,

More information

Self-organized criticality in tropical convection? Bob Plant

Self-organized criticality in tropical convection? Bob Plant Self-organized criticality in tropical convection? Bob Plant Climate Thermodynamics Workshop 22nd April 2010 With thanks to: Tom Jordan, Chris Holloway, Jun-Ichi Yano, Ole Peters Outline Traditional picture

More information

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Wei-Kuo Tao,1 Xiaowen Li,1,2 Alexander Khain,3 Toshihisa Matsui,1,2 Stephen Lang,4 and Joanne

More information

Towards Stochastic Deep Convective Parameterization

Towards Stochastic Deep Convective Parameterization Towards Stochastic Deep Convective Parameterization Johnny Wei-Bing Lin and J. David Neelin University of Chicago, Department of the Geophysical Sciences 5734 S. Ellis Ave., Chicago, IL 60637, USA jlin@geosci.uchicago.edu

More information

Fluctuations in an Equilibrium Convective Ensemble. Part II: Numerical Experiments

Fluctuations in an Equilibrium Convective Ensemble. Part II: Numerical Experiments AUGUST 2006 C O H E N A N D C R A I G 2005 Fluctuations in an Equilibrium Convective Ensemble. Part II: Numerical Experiments BRENDA G. COHEN Department of Meteorology, University of Reading, Reading,

More information

The history of Convection According to Betts and Miller

The history of Convection According to Betts and Miller The history of Convection According to Betts and Miller A.K. Betts http://alanbetts.com Martin Miller Symposium Convection in the Earth System ECMWF 6 January, 2011 Early Years July 1969: Martin & Alan

More information

A Minimal Three-Dimensional Tropical Cyclone Model

A Minimal Three-Dimensional Tropical Cyclone Model 924 JOURNAL OF THE ATMOSPHERIC SCIENCES A Minimal Three-Dimensional Tropical Cyclone Model HONGYAN ZHU, ROGER K. SMITH, AND WOLFGANG ULRICH Meteorological Institute, University of Munich, Munich, Germany

More information

Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report

Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report Atmosphere 2015, 6, 88-147; doi:10.3390/atmos6010088 OPEN ACCESS atmosphere ISSN 2073-4433 www.mdpi.com/journal/atmosphere Project Report Basic Concepts for Convection Parameterization in Weather Forecast

More information

The Relationship Between Cloud And Rain Cells And The Role Of The Environment In Convective Processes During CHUVA-GoAmazon2014/5

The Relationship Between Cloud And Rain Cells And The Role Of The Environment In Convective Processes During CHUVA-GoAmazon2014/5 The Relationship Between Cloud And Rain Cells And The Role Of The Environment In Convective Processes During CHUVA-GoAmazon2014/5 Cristiano W. Eichholz 1, Courtney Schumacher 2, Luiz A. T. Machado 1 1.

More information

Towards a new hybrid cumulus parametrization scheme for use in non-hydrostatic weather prediction models

Towards a new hybrid cumulus parametrization scheme for use in non-hydrostatic weather prediction models QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 133: 479 49 (27) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 1.12/qj.28 Towards a new hybrid cumulus

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM

Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, VOL. 7, NO. 1, 1 6 Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM YU Hai-Yang 1,2, BAO Qing 1, ZHOU Lin-Jiong 1,2, WANG Xiao-Cong 1,

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff Dynamical System Approach to Organized Convection Parameterization for GCMs Mitchell W. Moncrieff Atmospheric Modeling & Predictability Section Climate & Global Dynamics Laboratory NCAR Year of Tropical

More information

High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land

High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land DECEMBER 2006 K H A I R O U T D I N O V A N D R A N D A L L 3421 High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land MARAT KHAIROUTDINOV AND DAVID RANDALL Department of Atmospheric

More information

ScienceDirect. Numerical modeling of atmospheric water content and probability evaluation. Part I

ScienceDirect. Numerical modeling of atmospheric water content and probability evaluation. Part I Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 70 ( 2014 ) 321 329 12th International Conference on Computing and Control for the Water Industry, CCWI2013 Numerical modeling

More information

PUBLICATIONS. Journal of Advances in Modeling Earth Systems

PUBLICATIONS. Journal of Advances in Modeling Earth Systems PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE./7MS9 Key Points: The changes in surface forcing induce a weakening of the largescale circulation which systematically modulates

More information

Tue 3/1/2016. Arakawa-Schubert, Grell, Tiedtke, Zhang-McFarlane Explicit convection Review for MT exam

Tue 3/1/2016. Arakawa-Schubert, Grell, Tiedtke, Zhang-McFarlane Explicit convection Review for MT exam Tue 3/1/2016 Convective parameterization: Arakawa-Schubert, Grell, Tiedtke, Zhang-McFarlane Explicit convection Review for MT exam Reminders/announcements: - Midterm Thu 3/3 (2014 exam posted on www page)

More information

A new theory for moist convection in statistical equilibrium

A new theory for moist convection in statistical equilibrium A new theory for moist convection in statistical equilibrium A. Parodi(1), K. Emanuel(2) (2) CIMA Research Foundation,Savona, Italy (3) EAPS, MIT, Boston, USA True dynamics: turbulent, moist, non-boussinesq,

More information

Neva Pristov. LACE area leader for physics

Neva Pristov. LACE area leader for physics ALARO Physics Developments Neva Pristov LACE area leader for physics Main developments TOUCANS turbulence scheme Radiation Convection Ivan Baštak Duran, Jean-Francois Geleyn, Filip Vana Jan Mašek, Radmila

More information

Atmospheric modeling in the Climate System. Joe Tribbia NCAR.ESSL.CGD.AMP

Atmospheric modeling in the Climate System. Joe Tribbia NCAR.ESSL.CGD.AMP Atmospheric modeling in the Climate System Joe Tribbia NCAR.ESSL.CGD.AMP The climate represents a coupled system consisting of an atmosphere, hydrosphere, biosphere, and cryosphere What is CCSM? Bio Geochemistry

More information

Weak Temperature Gradient Simulations For Different Convective Environments

Weak Temperature Gradient Simulations For Different Convective Environments Weak Temperature Gradient Simulations For Different Convective Environments 1 Benjamin Hatchett and Sharon Sessions 1 2 Division of Atmospheric Science, Desert Research Institute, Reno, Nevada 2 Department

More information

A brief overview of the scheme is given below, taken from the whole description available in Lopez (2002).

A brief overview of the scheme is given below, taken from the whole description available in Lopez (2002). Towards an operational implementation of Lopez s prognostic large scale cloud and precipitation scheme in ARPEGE/ALADIN NWP models F.Bouyssel, Y.Bouteloup, P. Marquet Météo-France, CNRM/GMAP, 42 av. G.

More information

Phenomenology of convection-parameterization closure. Yano, J. -I.

Phenomenology of convection-parameterization closure. Yano, J. -I. https://helda.helsinki.fi Phenomenology of convection-parameterization closure Yano, J. -I. 2013 Yano, J -I, Bister, M, Fuchs, Z, Gerard, L, Phillips, V T J, Barkidija, S & Piriou, J-M 2013, ' Phenomenology

More information

Basic convective element: bubble or plume? A historical review

Basic convective element: bubble or plume? A historical review Atmos. Chem. Phys., 14, 7019 7030, 2014 doi:10.5194/acp-14-7019-2014 Author(s) 2014. CC Attribution 3.0 License. Basic convective element: bubble or plume? A historical review J.-I. Yano GAME/CNRS, URA1357,

More information

UNIVERSITY OF READING School of Mathematics, Meteorology and Physics

UNIVERSITY OF READING School of Mathematics, Meteorology and Physics UNIVERSITY OF READING School of Mathematics, Meteorology and Physics Convective Clusters and Self-Aggregation in Idealized High-Resolution Models: The role of Interactive Radiation Francis Colledge August

More information

Development of a stochastic convection scheme

Development of a stochastic convection scheme Development of a stochastic convection scheme R. J. Keane, R. S. Plant, N. E. Bowler, W. J. Tennant Development of a stochastic convection scheme p.1/44 Outline Overview of stochastic parameterisation.

More information

Multi-scale interactions in an idealized. Walker cell: Simulations with sparse. space-time superparameterization

Multi-scale interactions in an idealized. Walker cell: Simulations with sparse. space-time superparameterization Generated using version 3.1.1 of the official AMS L A TEX template 1 2 3 Multi-scale interactions in an idealized Walker cell: Simulations with sparse space-time superparameterization 4 Joanna Slawinska

More information

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection A. A. WYSZOGRODZKI 1 W. W. GRABOWSKI 1,, L.-P. WANG 2, AND O. AYALA 2 1 NATIONAL CENTER FOR

More information

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech

More information

NUMERICAL MODELING OF ALTOCUMULUS CLOUD LAYERS

NUMERICAL MODELING OF ALTOCUMULUS CLOUD LAYERS NUMERICAL MODELING OF ALTOCUMULUS CLOUD LAYERS by Shuairen Liu A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Stochastic parameterization: Uncertainties from Convection

Stochastic parameterization: Uncertainties from Convection Stochastic parameterization: Uncertainties from Convection Bob Plant Department of Meteorology, University of Reading ECMWF Workshop Representing model uncertainty and error in numerical weather and climate

More information

2.1 Temporal evolution

2.1 Temporal evolution 15B.3 ROLE OF NOCTURNAL TURBULENCE AND ADVECTION IN THE FORMATION OF SHALLOW CUMULUS Jordi Vilà-Guerau de Arellano Meteorology and Air Quality Section, Wageningen University, The Netherlands 1. MOTIVATION

More information

Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields Supporting Information for Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields Guy Dagan, Ilan Koren*, Orit Altaratz and Reuven H. Heiblum Department of Earth

More information

Radiative-Convective Instability. Kerry Emanuel Massachusetts Institute of Technology

Radiative-Convective Instability. Kerry Emanuel Massachusetts Institute of Technology Radiative-Convective Instability Kerry Emanuel Massachusetts Institute of Technology Program Basic radiative-convective equilibrium Macro-instability of the RC state Some consequences Radiative Equilibrium

More information

Precipitating convection in cold air: Virtual potential temperature structure

Precipitating convection in cold air: Virtual potential temperature structure QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 133: 25 36 (2007) Published online in Wiley InterScience (www.interscience.wiley.com).2 Precipitating convection in cold air:

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine Lecture Ch. 12 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 12 For Wednesday: Read Ch.

More information

Reverse engineering* convection Digesting fast process observations for climate models

Reverse engineering* convection Digesting fast process observations for climate models Reverse engineering* convection Digesting fast process observations for climate models J.David Neelin Fiaz Ahmed, Kathleen Schiro, Yi Hung Kuo Here needed a term for: using large data sets to infer input

More information

Clouds and turbulent moist convection

Clouds and turbulent moist convection Clouds and turbulent moist convection Lecture 2: Cloud formation and Physics Caroline Muller Les Houches summer school Lectures Outline : Cloud fundamentals - global distribution, types, visualization

More information

Modified PM09 parameterizations in the shallow convection grey zone

Modified PM09 parameterizations in the shallow convection grey zone Modified PM09 parameterizations in the shallow convection grey zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 02. February 2015 27. February 2015 Scientific supervisor: Rachel

More information

Modeling Tropical Precipitation in a Single Column

Modeling Tropical Precipitation in a Single Column 4378 JOURNAL OF CLIMATE Modeling Tropical Precipitation in a Single Column ADAM H. SOBEL Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia

More information