Statistical Estimation: Data & Non-data Information

Size: px
Start display at page:

Download "Statistical Estimation: Data & Non-data Information"

Transcription

1 Statistical Estimation: Data & Non-data Information Roger J-B Wets University of California, Davis & Raytheon U. Vienna, X. EpiRisk, G-M EpiRisk.

2 a little background Decision making under uncertainty: min f 01 (x)+ E{Q(!, x)} so that x "C 1 #! n Q(!, x) = inf $% f 02 (!, y) y "C 2 (!, x) & ' C 2 (!, x) = { y "! d + W! y = d! ( T! x} = stochastic programming problems. Issue: realizations of data: 43 samples, never reaches the asymptotic range ( d!,t!,w! ) =! "! N, N " 2!

3 Formulation Find F est, an estimate of the distribution of a random (phenomena) variable X given all the information available about this random phenomena, i.e. such that est true! x : F ( x)! F ( x) = prob.[ X " x].

4 Information Observations (data): x1, x2,, x! Non-data facts: density or discrete distribution, bounds on expectation, moments, shape: unimodal, decreasing, parametric class Non-data modeling assumptions: see above + density is smooth, (un)bounded support,..

5 Applications: Estimating (cum.) distribution functions Estimating coefficient of time series Estimating coefficients of stochastic differential equation (SDE) Estimating financial curves (zero-curves) Dealing with lack of data: few observations Estimating density functions: h est

6 Kernel-choice Information = Observations: 1 2 x, x,, x! Optimal bandwidth = kernel support?

7 Kernel estimates

8 Statistical Estimation from an optimization viewpoint

9 Criterion: Maximum Likelihood Find h H=class-fcns(R) that maximizes the probability of observing,,, equivalently: "! l = 1 max h ( x ) 1! max ln h( x ) " l= 1!! max E ln h( x) { } = l l x1 x2 x! =! max ln h( x) P ( dx) #

10 leads to: dim. optimization problem max E! { ln h(x) } = 1 "! l =1! ln h(x l ) so that h(x)dx # = 1, h(x) $ 0, %x &! h & A! ' H A ν : non-data information constraints H= C 2 (R), L p (S), H 1 (S), S R

11 Non-data information constraints [! "] S [! ) support: S =,, =,#,... bounds on moments: a! " xh( x) dx! b! Q( x) unimodal: h( x) = e, Q : convex decreasing: h '( x)! 0, " x # S 2 1 h'( x) 'smoothness': h " H0, $ dx #! (Fisher info.) h( x) h! h a " # or $ ( h! h a ), `Bayesian : Total variation,

12 Questions (M -estimators) + Consistency: as ν does h est h true? hypo-convergence: a law of large numbers Convergence rate: how large does ν have to be so that h est ~ h true? quantitative hypo-convergence: dist(h est,h true ) Solving the -dimensional optimization problem? finite dimensional approximations + again convergence issues.

13 When is (P) near (P a ) ( ) max ( ) a P f0 x 0 s.t. f ( x)! 0, i " I i x " X # E f f ( P ) max g ( x) s.t. g ( x)! 0, i " I i x " X # E g g Example: ( P) max f ( x) s.t. f ( x)! 0, i = 1,, m i 0 a ( P ) m max f0( x) +!" max[0, fi ( x)] i= 1 2

14 From: when is (P) near (P a ) ( P) max f ( x) where f ( x) = f ( x) when f ( x)! 0, i " I, x " X # E 0 $ % otherwise i f f a ( P ) max g( x) where g( x) = g ( x) when g ( x)! 0, i " I, x " X # E 0 $ % otherwise i g g To: when is f near g

15 Example (with penalty)

16 Hypographs of f & f a

17 hypo f a near hypo f argmax (P a ) ~ argmax (P)

18 f = h-lim ν f ν, f ν f h x! " arg max f!, x! # x $ x " arg max f cluster aw-topology for usc functions (Attouch-Wets, 1992)!dl such that dl( f ", f ) # 0 $ f " # f h dl( f!, f ) " # $ dist(arg max f!, arg max f )" %& '1 (#)!! F x = f x P d F x = f x P d ( ) (", ) ( " ) & ( ) (", ) ( " ) # # P! " P & f -tight # F! " F n h

19 Quantitative hypo-convergence! :! + " #$ 0,1% & continuous, strictly increasing for example: dl C D = " d x C $ " d x D! (, ) sup (, (, ) x #! "! ( a) = (2 /" )arctan a ( ) #! dl C, D = $ e dl ( C, D) d ( ) ( ) 0 metric on space of closed sets:!! dl( f, g) = dl( hypo f, hypo g) metric on space of usc-fcns:! aw -topology! aw -topology

20 Quantitative hypo-convergence II dl( f!, f ) " 0 # f! " f Theorem: aw-hypo f, g : X!!, usc, concave, " 0 : arg max f # " 0 B $ %, sup f < " 0 & for g then &" > " 0, ' > 0 : dl ( " '-arg max f,'-arg max g) ( (1 + 4" ' ) dl f,g " ( )

21 Opt -Formulation max E! { ln h(x) } = 1 "! l =1! ln h(x l ) so that h(x)dx # = 1, h(x) $ 0, %x &! h & A! ' H A ν : non-data information constraints H= C 2 (R), L p (S), H 1 (S), S R

22 ( ) Convergence rate!! L h, x = ln h( x) if h " A # H, h( x) dx = 1, h $ 0 = -% otherwise!! L = L except for A = aw-lim A ( aw = dl) then L! i, x dp! = E! L! " EL = L i, x dp ( ) ( ) # # aw-hypo cont. compact when H Hilbert, H H, H RKHS embedding!!!!!"!!! constraint set: H -bounded, H -closed! H lin. subspace,!x : x " h(x) cont., relies on the Hilbert-Schmidt Embedding Theorem & true

23 Numerical Procedures " q k = 1 h! u! i k k ( ) Fourier coefficients, wavelets, kernels-basis h = exp s( i) ( ) s( ) constrained cubic (or quadratic) spline

24 q 3 k = 1 Basis: Fourier coefficients max 1! % 1 ln! " u + 2 q $ cos( w # x k l ' $ 0 l =1 &' " k =1 " q sin(w so that u k # ) $ u w k # k = ", k =1 )u k q u 0 + 2$ cos( w # x k " ) + 0,,x -%& 0," ( ), k =1 u k -!, k = 0,,q, ( * )* w k -! +, k = 1,,q # % wk! x & % wk! x ' & $ - cos+, ' cos+, uk ( 0, ) 0 * x * x ' * " " ". 1 / 0 / 02 i.e., h is decreasing

25 Test Case: exponential true "! x h x =! e x # = x <! = empirical estimate kernel estimate from R-stat unconstrained with support [0, ) unconstrained with adaptive wave length constrained (h decreasing) parametric, i.e., ( ) if 0; 0 if 0 ( 1) exp- class h!

26 200-observations! exp. empirical param.-class R-stat kernel unconstrained + wave length + decreasing

27 h est : empirical (five observations)

28 h est : kernel

29 h est : unconstrained

30 h est :..with adaptive wave #

31 h est : with decreasing constraint

32 5-observations! empirical R-stat kernel unconstrained decreasing

33 1-observation! R-stat kernel unconstrained parametric decreasing

34 Exponential (quadratic) spline

35 h( x) = e!s x ( ) x r s( x) = s + v x + dr dt z( t), z( t)! z on x, x # # ( ] ( ] 0 0 k k k $ k = s + v x + a z when x " x, x 0 0 j= 1 kj k k k + 1!! 1 max E ln h( x) min s( x ) { } %! l = 1 " s( x) so that e dx # 1, ( h $ 0) &! [ ] z " #!,! 'constrained'-spline k l u unimodal:! l = 0 l

36 Test Case: log-normal, ν= 25 ( ) true (ln x ) / 2 h x x" 2# $ $ $! " e x empirical estimate ( ) = for % 0. kernel estimate from R-stat unconstrained with support [0, ) constrained (h unimodal)

37 25 observations! msqe = mean square error empirical R-stat kernel msqe > unconstrained msqe= unimodal constraint msqe =

38 Test Case: N (10,1), ν= 5 h true (x) = (1/ 2! )e "( x"10)2 / 2, x #! kernel estimate from R-stat unconstrained with support (-, ) light-unimodality constraint on h stricter-unimodality constraint on h h: unimodal

39 5-observations: N (10,1) R-stat kernel without unimodal unimodal

40 Higher Dimensions 2-dim. (& dim. >2) h(x, y) = exp(z(x, y))! " 0 z(x, y) = z 0 + v x 0 x + " d! ds a x (s) 0 x! " 0 + " d! dr a y (r) 0 y + " ds" dr a x,y (s,r). 0 x 0 y Set a x (t) = a k on (s k!1,s k ), a y (t) = a l on (r l!1,r l ) a x,y (t) = a k,l on (s k!1,s k ) " (r l!1,r l )

41 20 samples & unimodal

42 15 samples

43

How to Make the Most Out of Evolving Information: Function Identification Using Epi-Splines

How to Make the Most Out of Evolving Information: Function Identification Using Epi-Splines How to Make the Most Out of Evolving Information: Function Identification Using Epi-Splines Johannes O. Royset Operations Research, NPS in collaboration with L. Bonfiglio, S. Buttrey, S. Brizzolara, J.

More information

STATISTICAL ESTIMATION FROM AN OPTIMIZATION VIEWPOINT

STATISTICAL ESTIMATION FROM AN OPTIMIZATION VIEWPOINT STATISTICAL ESTIMATION FROM AN OPTIMIZATION VIEWPOINT Roger J-B Wets Department of Mathematics University of California, Davis Abstract. Statistics and Optimization have been closely linked from the very

More information

1 1. Introduction From their inception Statistics and Optimization have been tightly linked. Finding the `best' estimate of a statistical parameter is

1 1. Introduction From their inception Statistics and Optimization have been tightly linked. Finding the `best' estimate of a statistical parameter is STATISTICAL ESTIMATION FROM AN OPTIMIZATION VIEWPOINT y Roger J-B Wets Department of Mathematics University of California, Davis Abstract. Statistics and Optimization have been closely linked from the

More information

Lopsided Convergence: an Extension and its Quantification

Lopsided Convergence: an Extension and its Quantification Lopsided Convergence: an Extension and its Quantification Johannes O. Royset Operations Research Department Naval Postgraduate School Monterey, California, USA joroyset@nps.edu Roger J-B Wets Department

More information

VARIATIONAL THEORY FOR OPTIMIZATION UNDER STOCHASTIC AMBIGUITY

VARIATIONAL THEORY FOR OPTIMIZATION UNDER STOCHASTIC AMBIGUITY SIAM J. OPTIM. Vol. 27, No. 2, pp. 1118 1149 c 2017 Work carried out by an employee of the US Government VARIATIONAL THEORY FOR OPTIMIZATION UNDER STOCHASTIC AMBIGUITY JOHANNES O. ROYSET AND ROGER J.-B.

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Lopsided Convergence: an Extension and its Quantification

Lopsided Convergence: an Extension and its Quantification Lopsided Convergence: an Extension and its Quantification Johannes O. Royset Operations Research Department Naval Postgraduate School joroyset@nps.edu Roger J-B Wets Department of Mathematics University

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Convex Sets and Functions (part III)

Convex Sets and Functions (part III) Convex Sets and Functions (part III) Prof. Dan A. Simovici UMB 1 / 14 Outline 1 The epigraph and hypograph of functions 2 Constructing Convex Functions 2 / 14 The epigraph and hypograph of functions Definition

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Thomas Knispel Leibniz Universität Hannover

Thomas Knispel Leibniz Universität Hannover Optimal long term investment under model ambiguity Optimal long term investment under model ambiguity homas Knispel Leibniz Universität Hannover knispel@stochastik.uni-hannover.de AnStAp0 Vienna, July

More information

Empirical Risk Minimization

Empirical Risk Minimization Empirical Risk Minimization Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Introduction PAC learning ERM in practice 2 General setting Data X the input space and Y the output space

More information

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION Tong Zhang The Annals of Statistics, 2004 Outline Motivation Approximation error under convex risk minimization

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Quantifying Stochastic Model Errors via Robust Optimization

Quantifying Stochastic Model Errors via Robust Optimization Quantifying Stochastic Model Errors via Robust Optimization IPAM Workshop on Uncertainty Quantification for Multiscale Stochastic Systems and Applications Jan 19, 2016 Henry Lam Industrial & Operations

More information

Combining Interval and Probabilistic Uncertainty in Engineering Applications

Combining Interval and Probabilistic Uncertainty in Engineering Applications Combining Interval and Probabilistic Uncertainty in Engineering Applications Andrew Pownuk Computational Science Program University of Texas at El Paso El Paso, Texas 79968, USA ampownuk@utep.edu Page

More information

ORIGINS OF STOCHASTIC PROGRAMMING

ORIGINS OF STOCHASTIC PROGRAMMING ORIGINS OF STOCHASTIC PROGRAMMING Early 1950 s: in applications of Linear Programming unknown values of coefficients: demands, technological coefficients, yields, etc. QUOTATION Dantzig, Interfaces 20,1990

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Pierpaolo De Blasi University of Turin 10th August 2007, BNR Workshop, Isaac Newton Intitute, Cambridge, UK Joint work with Giovanni Peccati (Université Paris VI) and

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Invariance Principle for Variable Speed Random Walks on Trees

Invariance Principle for Variable Speed Random Walks on Trees Invariance Principle for Variable Speed Random Walks on Trees Wolfgang Löhr, University of Duisburg-Essen joint work with Siva Athreya and Anita Winter Stochastic Analysis and Applications Thoku University,

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Bayes spaces: use of improper priors and distances between densities

Bayes spaces: use of improper priors and distances between densities Bayes spaces: use of improper priors and distances between densities J. J. Egozcue 1, V. Pawlowsky-Glahn 2, R. Tolosana-Delgado 1, M. I. Ortego 1 and G. van den Boogaart 3 1 Universidad Politécnica de

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

Maximum likelihood estimation of a log-concave density based on censored data

Maximum likelihood estimation of a log-concave density based on censored data Maximum likelihood estimation of a log-concave density based on censored data Dominic Schuhmacher Institute of Mathematical Statistics and Actuarial Science University of Bern Joint work with Lutz Dümbgen

More information

ROBUST - September 10-14, 2012

ROBUST - September 10-14, 2012 Charles University in Prague ROBUST - September 10-14, 2012 Linear equations We observe couples (y 1, x 1 ), (y 2, x 2 ), (y 3, x 3 ),......, where y t R, x t R d t N. We suppose that members of couples

More information

Sobolev spaces, Trace theorems and Green s functions.

Sobolev spaces, Trace theorems and Green s functions. Sobolev spaces, Trace theorems and Green s functions. Boundary Element Methods for Waves Scattering Numerical Analysis Seminar. Orane Jecker October 21, 2010 Plan Introduction 1 Useful definitions 2 Distributions

More information

A new estimator for quantile-oriented sensitivity indices

A new estimator for quantile-oriented sensitivity indices A new estimator for quantile-oriented sensitivity indices Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) EDF R&D-MRI

More information

arxiv: v2 [math.st] 21 Jan 2018

arxiv: v2 [math.st] 21 Jan 2018 Maximum a Posteriori Estimators as a Limit of Bayes Estimators arxiv:1611.05917v2 [math.st] 21 Jan 2018 Robert Bassett Mathematics Univ. California, Davis rbassett@math.ucdavis.edu Julio Deride Mathematics

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Asymptotic properties of the maximum likelihood estimator for a ballistic random walk in a random environment

Asymptotic properties of the maximum likelihood estimator for a ballistic random walk in a random environment Asymptotic properties of the maximum likelihood estimator for a ballistic random walk in a random environment Catherine Matias Joint works with F. Comets, M. Falconnet, D.& O. Loukianov Currently: Laboratoire

More information

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444 Kernel Methods Jean-Philippe Vert Jean-Philippe.Vert@mines.org Last update: Jan 2015 Jean-Philippe Vert (Mines ParisTech) 1 / 444 What we know how to solve Jean-Philippe Vert (Mines ParisTech) 2 / 444

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Sensitivity analysis of the expected utility maximization problem with respect to model perturbations

Sensitivity analysis of the expected utility maximization problem with respect to model perturbations Sensitivity analysis of the expected utility maximization problem with respect to model perturbations Mihai Sîrbu, The University of Texas at Austin based on joint work with Oleksii Mostovyi University

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 09 SPECIMEN SOLUTIONS Subject CSA Risk Modelling and Survival Analysis Institute and Faculty of Actuaries Sample path A continuous time, discrete state process

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Concentration behavior of the penalized least squares estimator

Concentration behavior of the penalized least squares estimator Concentration behavior of the penalized least squares estimator Penalized least squares behavior arxiv:1511.08698v2 [math.st] 19 Oct 2016 Alan Muro and Sara van de Geer {muro,geer}@stat.math.ethz.ch Seminar

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

Keywords. 1. Introduction.

Keywords. 1. Introduction. Journal of Applied Mathematics and Computation (JAMC), 2018, 2(11), 504-512 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645 ISSN Print:2576-0653 Statistical Hypo-Convergence in Sequences

More information

Optimization Problems with Probabilistic Constraints

Optimization Problems with Probabilistic Constraints Optimization Problems with Probabilistic Constraints R. Henrion Weierstrass Institute Berlin 10 th International Conference on Stochastic Programming University of Arizona, Tucson Recommended Reading A.

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Ambiguity in portfolio optimization

Ambiguity in portfolio optimization May/June 2006 Introduction: Risk and Ambiguity Frank Knight Risk, Uncertainty and Profit (1920) Risk: the decision-maker can assign mathematical probabilities to random phenomena Uncertainty: randomness

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Topics: consistent estimators; sub-σ-fields and partial observations; Doob s theorem about sub-σ-field measurability;

More information

Information Geometry

Information Geometry 2015 Workshop on High-Dimensional Statistical Analysis Dec.11 (Friday) ~15 (Tuesday) Humanities and Social Sciences Center, Academia Sinica, Taiwan Information Geometry and Spontaneous Data Learning Shinto

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Nonparametric estimation under Shape Restrictions

Nonparametric estimation under Shape Restrictions Nonparametric estimation under Shape Restrictions Jon A. Wellner University of Washington, Seattle Statistical Seminar, Frejus, France August 30 - September 3, 2010 Outline: Five Lectures on Shape Restrictions

More information

Testing Algebraic Hypotheses

Testing Algebraic Hypotheses Testing Algebraic Hypotheses Mathias Drton Department of Statistics University of Chicago 1 / 18 Example: Factor analysis Multivariate normal model based on conditional independence given hidden variable:

More information

Divergences, surrogate loss functions and experimental design

Divergences, surrogate loss functions and experimental design Divergences, surrogate loss functions and experimental design XuanLong Nguyen University of California Berkeley, CA 94720 xuanlong@cs.berkeley.edu Martin J. Wainwright University of California Berkeley,

More information

Complexity of two and multi-stage stochastic programming problems

Complexity of two and multi-stage stochastic programming problems Complexity of two and multi-stage stochastic programming problems A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA The concept

More information

Kernels to detect abrupt changes in time series

Kernels to detect abrupt changes in time series 1 UMR 8524 CNRS - Université Lille 1 2 Modal INRIA team-project 3 SSB group Paris joint work with S. Arlot, Z. Harchaoui, G. Rigaill, and G. Marot Computational and statistical trade-offs in learning IHES

More information

Nonparametric estimation of. s concave and log-concave densities: alternatives to maximum likelihood

Nonparametric estimation of. s concave and log-concave densities: alternatives to maximum likelihood Nonparametric estimation of s concave and log-concave densities: alternatives to maximum likelihood Jon A. Wellner University of Washington, Seattle Cowles Foundation Seminar, Yale University November

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Spline Density Estimation and Inference with Model-Based Penalities

Spline Density Estimation and Inference with Model-Based Penalities Spline Density Estimation and Inference with Model-Based Penalities December 7, 016 Abstract In this paper we propose model-based penalties for smoothing spline density estimation and inference. These

More information

Geometry and Optimization of Relative Arbitrage

Geometry and Optimization of Relative Arbitrage Geometry and Optimization of Relative Arbitrage Ting-Kam Leonard Wong joint work with Soumik Pal Department of Mathematics, University of Washington Financial/Actuarial Mathematic Seminar, University of

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 17: Stochastic Optimization Part II: Realizable vs Agnostic Rates Part III: Nearest Neighbor Classification Stochastic

More information

Competitive Equilibria in a Comonotone Market

Competitive Equilibria in a Comonotone Market Competitive Equilibria in a Comonotone Market 1/51 Competitive Equilibria in a Comonotone Market Ruodu Wang http://sas.uwaterloo.ca/ wang Department of Statistics and Actuarial Science University of Waterloo

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Log Concavity and Density Estimation

Log Concavity and Density Estimation Log Concavity and Density Estimation Lutz Dümbgen, Kaspar Rufibach, André Hüsler (Universität Bern) Geurt Jongbloed (Amsterdam) Nicolai Bissantz (Göttingen) I. A Consulting Case II. III. IV. Log Concave

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Igor Prünster University of Turin, Collegio Carlo Alberto and ICER Joint work with P. Di Biasi and G. Peccati Workshop on Limit Theorems and Applications Paris, 16th January

More information

Stability and Sensitivity of the Capacity in Continuous Channels. Malcolm Egan

Stability and Sensitivity of the Capacity in Continuous Channels. Malcolm Egan Stability and Sensitivity of the Capacity in Continuous Channels Malcolm Egan Univ. Lyon, INSA Lyon, INRIA 2019 European School of Information Theory April 18, 2019 1 / 40 Capacity of Additive Noise Models

More information

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance Advances in Decision Sciences Volume, Article ID 893497, 6 pages doi:.55//893497 Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance Junichi Hirukawa and

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

Introduction & Random Variables. John Dodson. September 3, 2008

Introduction & Random Variables. John Dodson. September 3, 2008 & September 3, 2008 Statistics Statistics Statistics Course Fall sequence modules portfolio optimization Bill Barr fixed-income markets Chris Bemis calibration & simulation introductions flashcards how

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

Estimation of Dynamic Regression Models

Estimation of Dynamic Regression Models University of Pavia 2007 Estimation of Dynamic Regression Models Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy.

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 12: Weak Learnability and the l 1 margin Converse to Scale-Sensitive Learning Stability Convex-Lipschitz-Bounded Problems

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

Minimax estimators of the coverage probability of the impermissible error for a location family

Minimax estimators of the coverage probability of the impermissible error for a location family Minimax estimators of the coverage probability of the impermissible error for a location family by Miguel A. Arcones Binghamton University arcones@math.binghamton.edu Talk based on: Arcones, M. A. (2008).

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information

Consistency of Modularity Clustering on Random Geometric Graphs

Consistency of Modularity Clustering on Random Geometric Graphs Consistency of Modularity Clustering on Random Geometric Graphs Erik Davis The University of Arizona May 10, 2016 Outline Introduction to Modularity Clustering Pointwise Convergence Convergence of Optimal

More information

An Adaptive Test of Independence with Analytic Kernel Embeddings

An Adaptive Test of Independence with Analytic Kernel Embeddings An Adaptive Test of Independence with Analytic Kernel Embeddings Wittawat Jitkrittum Gatsby Unit, University College London wittawat@gatsby.ucl.ac.uk Probabilistic Graphical Model Workshop 2017 Institute

More information

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Kernel Methods Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Alexander J. Smola Statistical Machine Learning Program Canberra,

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information