Information Geometry

Size: px
Start display at page:

Download "Information Geometry"

Transcription

1 2015 Workshop on High-Dimensional Statistical Analysis Dec.11 (Friday) ~15 (Tuesday) Humanities and Social Sciences Center, Academia Sinica, Taiwan Information Geometry and Spontaneous Data Learning Shinto Shinto Eguchi Institute Institute Statistical Mathematics, Japan This talk is based on a joint work with Osamu Komori and Atsumi Ohara, University of Fukui

2 Outline Short review for Information geometry Kolmogorov-Nagumo mean -path in a function space Generalized mean and variance divergence geometry U-divergence geometry Minimum U-divergence and density estimation 2

3 A short review of IG Nonparametric space Space of statistics Information geometry is discussed on the product space 3

4 Bartlett s identity Parametric model Bartlett s first identity Bartlett s second identity 4

5 Metric and connections Information metric Mixture connection Exponential connection Rao (1945), Dawid (1975), Amari (1982) 5

6 Geodesic curves and surfaces in IG m-geodesic curve e-geodesic curve m-geodesic surface e-geodesic surface 6

7 Kullback-Leibler K-L divergence 1. KL divergence is the expected log-likelihood ratio 2. Maximum likelihood is minimum KL divergence. Akaike (1974) 3. KL divergence induces to the m-connection and e-connection Eguchi (1983) 7

8 Pythagoras Thm Amari-Nagaoka (2001) Pf 8

9 Exponential model Exponential model Mean parameter For For Amari (1982) Degenerated Bartlett identity 9

10 Exponential model Mean equal space Minimum KL leaf 10

11 Pythagoras foliation 11

12 log + exp log & exp Bartlett identities KL-divergence e-connection m-connection e-geodesic m-geodesic Pythagoras identity exponential model mean equal space Pythagoras foliation 12

13 Path geometry { m-geodesic, e-geodesic, } 13

14 Kolmogorov-Nagumo mean K-N mean is for positive numbers 14

15 K-N mean in Y Def. K-N mean Cf. Naudts (2009) 15

16 -path Def. -path connecting f and g Thm (Pf ) lim c 1 ( c )

17 Examples of -path Exm 0 Exm 1 Exm 2 Exm 3 17

18 Identities of -density Model 1st identity 2nd identity because 18

19 Generalized mean and variance Def Note

20 Generalized mean and variance Exm 20

21 Bartlett Identity Model Bartlett identity Bartlett identities 21

22 Tangent space of Y Tangent space Riemannian metric Expectation gives the tangent space Topological properties of T f depend on If = log, then T f is too large to do statistics on Y Cf. Pistone (1992) 22

23 Def Parallel transport A vector field is parallel along a curve A curve is -geodesic Cf. Amari (1982). 23

24 -geodesic Thm If is the -geodesic curve Proof. 24

25 -divergence -cross entropy -entropy -divergence Note: -divergence is KL-divergence if = log 25

26 Divergence geometry Def. Let be a statistical model. with the Riemannian metric on M : the pair of affine connections on M: 26

27 -divergence geometry The metric Affine connection pair 27

28 Pythagorean theorem Thm -geodesic -geodesic h Pf f g 28

29 -Pythagorean foliation -mean equal space 29

30 -mean -Bartlett identities - divergence - connection - connection - geodesic - geodesic - Pythagoras identity - model - Pythagoras foliation - mean equal space What is a statistical meaning of -mean and -variance? 30

31 U-divergence U-cross-entropy U-entropy U-divergence Note Exm 31

32 U-divergence geometry The metric associated with U-divergence: Affine connections associated with U-divergence: Thm (i) U-geodesic is mixture geodesic. (ii) U*-geodesic is geodesic 32

33 U-geometry = -geometry / -metric on a model M U-metric on a model M -connection U*-connection 33

34 Triangle with D U Thm mixture geodesic -geodesic h Pf f g 34

35 U-loss function U-estimation Let g(x) be a data density function with statistical model U-empirical loss function U-estimator for 35

36 U-estimator under -model -model U-empirical loss function U-estimator for U-estimator under -model has analogy with MLE under exponential model 36

37 Potential function Def We call the potential function on -model Note We define the mean parameter by Cf. mean parameter Thm U-estimator for is given by the sample mean 37

38 Pythagoras foliation Thm Pf 38

39 Pythagoras foliation 39

40 U-Boost learning for density estimation U-loss function L U n 1 ( f ) ( f ( xi )) U( ( f ( x)))dx n p i 1 Dictionary of density functions RI W { g ( x) : g ( x) 0, g ( x)dx 1, } Learning space = -model W * 1 ( co( ( W ))) { 1 ( ( g ( x)))} Let f ( x, π) W * W ( ( g ( x)). Then f ( x,(0,,1, 0)) g ( x) 1 ) ( ) Goal : find f * argmin f W * U L U ( f )

41 U-Boost algorithm ( A) Find f1 arg min L ( g) g W U (B) Update f k f k 1 1 ((1 k 1 ) ( f k ) k 1 ( g k 1 )) st ( k 1, g k 1 ) arg min, g) (0,1) ( W L U ( 1 ((1 ) ( f k ) ( g))) ˆ 1 ( C) Select K, and f ((1 K ) ( fk 1) K ( g K )) Example 2. Power entropy ( f 1 * ) ( x) ( k gk ( x) k k log gk ( x) k k * If 0, f ( x) exp ) g ( x) If * 1, f ( x) ( x) Klemela (2007) k k g k k k Friedman et al (1984)

42 Inner step in the convex hull W { t( x, ) : } W * U 1 (co ( W )) * * 1 Goal : f argmin L ( f ) f ( x) ( ˆ ( fˆ ( x)) ˆ ( ˆ ˆ f ˆ( x))) f W * U U 1 1 k k W g 7 g 5 * W U f (x) g 4 g 6 g 3 g 2 f (x) g 1

43 Non-asymptotic bound Theorem. Assume that a data distribution has a density g(x) and that ( A) sup U''( ){ ( ) ( )} Then we have where FA( g, W EE( g, W IE( K, W ) (,, ) co( ( W )) W W EI D ( g, fˆ ) FA( g, W * ) EE( g, W ) IE( K, W g U = U K ) inf f WU= D U n ( g, f ) ) 2 EI { sup f g f W 2 2 U c b K c 1 1 ( f ( x )) EI ( ) } n i 1 U i ( c:step- lengthconstant) p 2 b U ), (Functional approximation) (Estimation error) (Iteration effect) Remark. Trade between FA( p, W * U ) and EE( p, W ) 43

44 -Boost -Boost KDE RSDE (Girolami-He, 2004) C (skewed-unimodal) H (bimodal) L (quadrimodal) 44

45 Conclusion K-N mean E ( ), Cov ( ) -path = -geodesic -divergence (G ( ),* ( ), ( ) ) -geodesic, -geodesic ) U U-divergence (G (U),* (U), (U) ) -geodesic, m-geodesic ) -path W * U 1 (co ( W )) 45

46 Future problems Tangent space Path space 46

47 Future problems -mean, -variance, -divergence These are natural ideas from IG view point We can build -efficiency in estimation theory, but What is a statistical meaning of -mean and -variance? Can we define a random sample of -version? 47

48 Thank you 48

Information Geometric Structure on Positive Definite Matrices and its Applications

Information Geometric Structure on Positive Definite Matrices and its Applications Information Geometric Structure on Positive Definite Matrices and its Applications Atsumi Ohara Osaka University 2010 Feb. 21 at Osaka City University 大阪市立大学数学研究所情報幾何関連分野研究会 2010 情報工学への幾何学的アプローチ 1 Outline

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Information Geometric view of Belief Propagation

Information Geometric view of Belief Propagation Information Geometric view of Belief Propagation Yunshu Liu 2013-10-17 References: [1]. Shiro Ikeda, Toshiyuki Tanaka and Shun-ichi Amari, Stochastic reasoning, Free energy and Information Geometry, Neural

More information

Information geometry of Bayesian statistics

Information geometry of Bayesian statistics Information geometry of Bayesian statistics Hiroshi Matsuzoe Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan Abstract.

More information

Information geometry of mirror descent

Information geometry of mirror descent Information geometry of mirror descent Geometric Science of Information Anthea Monod Department of Statistical Science Duke University Information Initiative at Duke G. Raskutti (UW Madison) and S. Mukherjee

More information

Entropy and Divergence Associated with Power Function and the Statistical Application

Entropy and Divergence Associated with Power Function and the Statistical Application Entropy 200, 2, 262-274; doi:0.3390/e2020262 Article OPEN ACCESS entropy ISSN 099-4300 www.mdpi.com/journal/entropy Entropy and Divergence Associated with Power Function and the Statistical Application

More information

Chapter 2 Exponential Families and Mixture Families of Probability Distributions

Chapter 2 Exponential Families and Mixture Families of Probability Distributions Chapter 2 Exponential Families and Mixture Families of Probability Distributions The present chapter studies the geometry of the exponential family of probability distributions. It is not only a typical

More information

Geometry of U-Boost Algorithms

Geometry of U-Boost Algorithms Geometry of U-Boost Algorithms Noboru Murata 1, Takashi Takenouchi 2, Takafumi Kanamori 3, Shinto Eguchi 2,4 1 School of Science and Engineering, Waseda University 2 Department of Statistical Science,

More information

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Surrogate loss functions, divergences and decentralized detection

Surrogate loss functions, divergences and decentralized detection Surrogate loss functions, divergences and decentralized detection XuanLong Nguyen Department of Electrical Engineering and Computer Science U.C. Berkeley Advisors: Michael Jordan & Martin Wainwright 1

More information

Bootstrap prediction and Bayesian prediction under misspecified models

Bootstrap prediction and Bayesian prediction under misspecified models Bernoulli 11(4), 2005, 747 758 Bootstrap prediction and Bayesian prediction under misspecified models TADAYOSHI FUSHIKI Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569,

More information

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian estimation of the discrepancy with misspecified parametric models Bayesian estimation of the discrepancy with misspecified parametric models Pierpaolo De Blasi University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics workshop ICERM, 17-21 September 2012

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

Bregman divergence and density integration Noboru Murata and Yu Fujimoto

Bregman divergence and density integration Noboru Murata and Yu Fujimoto Journal of Math-for-industry, Vol.1(2009B-3), pp.97 104 Bregman divergence and density integration Noboru Murata and Yu Fujimoto Received on August 29, 2009 / Revised on October 4, 2009 Abstract. In this

More information

AN AFFINE EMBEDDING OF THE GAMMA MANIFOLD

AN AFFINE EMBEDDING OF THE GAMMA MANIFOLD AN AFFINE EMBEDDING OF THE GAMMA MANIFOLD C.T.J. DODSON AND HIROSHI MATSUZOE Abstract. For the space of gamma distributions with Fisher metric and exponential connections, natural coordinate systems, potential

More information

STATISTICAL CURVATURE AND STOCHASTIC COMPLEXITY

STATISTICAL CURVATURE AND STOCHASTIC COMPLEXITY 2nd International Symposium on Information Geometry and its Applications December 2-6, 2005, Tokyo Pages 000 000 STATISTICAL CURVATURE AND STOCHASTIC COMPLEXITY JUN-ICHI TAKEUCHI, ANDREW R. BARRON, AND

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Information Geometry on Hierarchy of Probability Distributions

Information Geometry on Hierarchy of Probability Distributions IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001 1701 Information Geometry on Hierarchy of Probability Distributions Shun-ichi Amari, Fellow, IEEE Abstract An exponential family or mixture

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions - Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions Simon Luo The University of Sydney Data61, CSIRO simon.luo@data61.csiro.au Mahito Sugiyama National Institute of

More information

Quantifying Stochastic Model Errors via Robust Optimization

Quantifying Stochastic Model Errors via Robust Optimization Quantifying Stochastic Model Errors via Robust Optimization IPAM Workshop on Uncertainty Quantification for Multiscale Stochastic Systems and Applications Jan 19, 2016 Henry Lam Industrial & Operations

More information

l 1 -Regularized Linear Regression: Persistence and Oracle Inequalities

l 1 -Regularized Linear Regression: Persistence and Oracle Inequalities l -Regularized Linear Regression: Persistence and Oracle Inequalities Peter Bartlett EECS and Statistics UC Berkeley slides at http://www.stat.berkeley.edu/ bartlett Joint work with Shahar Mendelson and

More information

Introduction to Information Geometry

Introduction to Information Geometry Introduction to Information Geometry based on the book Methods of Information Geometry written by Shun-Ichi Amari and Hiroshi Nagaoka Yunshu Liu 2012-02-17 Outline 1 Introduction to differential geometry

More information

Uncertainty. Jayakrishnan Unnikrishnan. CSL June PhD Defense ECE Department

Uncertainty. Jayakrishnan Unnikrishnan. CSL June PhD Defense ECE Department Decision-Making under Statistical Uncertainty Jayakrishnan Unnikrishnan PhD Defense ECE Department University of Illinois at Urbana-Champaign CSL 141 12 June 2010 Statistical Decision-Making Relevant in

More information

Learning Binary Classifiers for Multi-Class Problem

Learning Binary Classifiers for Multi-Class Problem Research Memorandum No. 1010 September 28, 2006 Learning Binary Classifiers for Multi-Class Problem Shiro Ikeda The Institute of Statistical Mathematics 4-6-7 Minami-Azabu, Minato-ku, Tokyo, 106-8569,

More information

Information Projection Algorithms and Belief Propagation

Information Projection Algorithms and Belief Propagation χ 1 π(χ 1 ) Information Projection Algorithms and Belief Propagation Phil Regalia Department of Electrical Engineering and Computer Science Catholic University of America Washington, DC 20064 with J. M.

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n

Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n Jiantao Jiao (Stanford EE) Joint work with: Kartik Venkat Yanjun Han Tsachy Weissman Stanford EE Tsinghua

More information

A minimalist s exposition of EM

A minimalist s exposition of EM A minimalist s exposition of EM Karl Stratos 1 What EM optimizes Let O, H be a random variables representing the space of samples. Let be the parameter of a generative model with an associated probability

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

An Information Geometry Perspective on Estimation of Distribution Algorithms: Boundary Analysis

An Information Geometry Perspective on Estimation of Distribution Algorithms: Boundary Analysis An Information Geometry Perspective on Estimation of Distribution Algorithms: Boundary Analysis Luigi Malagò Department of Electronics and Information Politecnico di Milano Via Ponzio, 34/5 20133 Milan,

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Characterizing the Region of Entropic Vectors via Information Geometry

Characterizing the Region of Entropic Vectors via Information Geometry Characterizing the Region of Entropic Vectors via Information Geometry John MacLaren Walsh Department of Electrical and Computer Engineering Drexel University Philadelphia, PA jwalsh@ece.drexel.edu Thanks

More information

Bayes spaces: use of improper priors and distances between densities

Bayes spaces: use of improper priors and distances between densities Bayes spaces: use of improper priors and distances between densities J. J. Egozcue 1, V. Pawlowsky-Glahn 2, R. Tolosana-Delgado 1, M. I. Ortego 1 and G. van den Boogaart 3 1 Universidad Politécnica de

More information

2.1 Optimization formulation of k-means

2.1 Optimization formulation of k-means MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 2: k-means Clustering Lecturer: Jiaming Xu Scribe: Jiaming Xu, September 2, 2016 Outline Optimization formulation of k-means Convergence

More information

Methods of Estimation

Methods of Estimation Methods of Estimation MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Methods of Estimation I 1 Methods of Estimation I 2 X X, X P P = {P θ, θ Θ}. Problem: Finding a function θˆ(x ) which is close to θ.

More information

Bregman Divergences for Data Mining Meta-Algorithms

Bregman Divergences for Data Mining Meta-Algorithms p.1/?? Bregman Divergences for Data Mining Meta-Algorithms Joydeep Ghosh University of Texas at Austin ghosh@ece.utexas.edu Reflects joint work with Arindam Banerjee, Srujana Merugu, Inderjit Dhillon,

More information

Hessian Riemannian Gradient Flows in Convex Programming

Hessian Riemannian Gradient Flows in Convex Programming Hessian Riemannian Gradient Flows in Convex Programming Felipe Alvarez, Jérôme Bolte, Olivier Brahic INTERNATIONAL CONFERENCE ON MODELING AND OPTIMIZATION MODOPT 2004 Universidad de La Frontera, Temuco,

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Bounding the Entropic Region via Information Geometry

Bounding the Entropic Region via Information Geometry Bounding the ntropic Region via Information Geometry Yunshu Liu John MacLaren Walsh Dept. of C, Drexel University, Philadelphia, PA 19104, USA yunshu.liu@drexel.edu jwalsh@coe.drexel.edu Abstract This

More information

Statistical physics models belonging to the generalised exponential family

Statistical physics models belonging to the generalised exponential family Statistical physics models belonging to the generalised exponential family Jan Naudts Universiteit Antwerpen 1. The generalized exponential family 6. The porous media equation 2. Theorem 7. The microcanonical

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

A PARAMETRIC MODEL FOR DISCRETE-VALUED TIME SERIES. 1. Introduction

A PARAMETRIC MODEL FOR DISCRETE-VALUED TIME SERIES. 1. Introduction tm Tatra Mt. Math. Publ. 00 (XXXX), 1 10 A PARAMETRIC MODEL FOR DISCRETE-VALUED TIME SERIES Martin Janžura and Lucie Fialová ABSTRACT. A parametric model for statistical analysis of Markov chains type

More information

Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable Dually Flat Structure

Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable Dually Flat Structure Entropy 014, 16, 131-145; doi:10.3390/e1604131 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models David Rosenberg, Brett Bernstein New York University April 26, 2017 David Rosenberg, Brett Bernstein (New York University) DS-GA 1003 April 26, 2017 1 / 42 Intro Question Intro

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Nonparametric estimation: s concave and log-concave densities: alternatives to maximum likelihood

Nonparametric estimation: s concave and log-concave densities: alternatives to maximum likelihood Nonparametric estimation: s concave and log-concave densities: alternatives to maximum likelihood Jon A. Wellner University of Washington, Seattle Statistics Seminar, York October 15, 2015 Statistics Seminar,

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

Journée Interdisciplinaire Mathématiques Musique

Journée Interdisciplinaire Mathématiques Musique Journée Interdisciplinaire Mathématiques Musique Music Information Geometry Arnaud Dessein 1,2 and Arshia Cont 1 1 Institute for Research and Coordination of Acoustics and Music, Paris, France 2 Japanese-French

More information

Relative Loss Bounds for Multidimensional Regression Problems

Relative Loss Bounds for Multidimensional Regression Problems Relative Loss Bounds for Multidimensional Regression Problems Jyrki Kivinen and Manfred Warmuth Presented by: Arindam Banerjee A Single Neuron For a training example (x, y), x R d, y [0, 1] learning solves

More information

Nonparametric estimation of log-concave densities

Nonparametric estimation of log-concave densities Nonparametric estimation of log-concave densities Jon A. Wellner University of Washington, Seattle Northwestern University November 5, 2010 Conference on Shape Restrictions in Non- and Semi-Parametric

More information

Nishant Gurnani. GAN Reading Group. April 14th, / 107

Nishant Gurnani. GAN Reading Group. April 14th, / 107 Nishant Gurnani GAN Reading Group April 14th, 2017 1 / 107 Why are these Papers Important? 2 / 107 Why are these Papers Important? Recently a large number of GAN frameworks have been proposed - BGAN, LSGAN,

More information

Welcome to Copenhagen!

Welcome to Copenhagen! Welcome to Copenhagen! Schedule: Monday Tuesday Wednesday Thursday Friday 8 Registration and welcome 9 Crash course on Crash course on Introduction to Differential and Differential and Information Geometry

More information

Information Geometry: Background and Applications in Machine Learning

Information Geometry: Background and Applications in Machine Learning Geometry and Computer Science Information Geometry: Background and Applications in Machine Learning Giovanni Pistone www.giannidiorestino.it Pescara IT), February 8 10, 2017 Abstract Information Geometry

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1]

Lecture 17: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 31, 2016 [Ed. Apr 1] ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Density Estimation Lecturer: Yihong Wu Scribe: Jiaqi Mu, Mar 3, 06 [Ed. Apr ] In last lecture, we studied the minimax

More information

Nonparametric estimation of log-concave densities

Nonparametric estimation of log-concave densities Nonparametric estimation of log-concave densities Jon A. Wellner University of Washington, Seattle Seminaire, Institut de Mathématiques de Toulouse 5 March 2012 Seminaire, Toulouse Based on joint work

More information

F -Geometry and Amari s α Geometry on a Statistical Manifold

F -Geometry and Amari s α Geometry on a Statistical Manifold Entropy 014, 16, 47-487; doi:10.3390/e160547 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article F -Geometry and Amari s α Geometry on a Statistical Manifold Harsha K. V. * and Subrahamanian

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be Chapter 3: Parametric families of univariate distributions CHAPTER 3: PARAMETRIC

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models

f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models IEEE Transactions on Information Theory, vol.58, no.2, pp.708 720, 2012. 1 f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models Takafumi Kanamori Nagoya University,

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation Statistics 62: L p spaces, metrics on spaces of probabilites, and connections to estimation Moulinath Banerjee December 6, 2006 L p spaces and Hilbert spaces We first formally define L p spaces. Consider

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Workshop on Limit Theorems, University Paris 1 Paris, January

More information

Persistent homology and nonparametric regression

Persistent homology and nonparametric regression Cleveland State University March 10, 2009, BIRS: Data Analysis using Computational Topology and Geometric Statistics joint work with Gunnar Carlsson (Stanford), Moo Chung (Wisconsin Madison), Peter Kim

More information

Nonparametric estimation under Shape Restrictions

Nonparametric estimation under Shape Restrictions Nonparametric estimation under Shape Restrictions Jon A. Wellner University of Washington, Seattle Statistical Seminar, Frejus, France August 30 - September 3, 2010 Outline: Five Lectures on Shape Restrictions

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Statistical Estimation: Data & Non-data Information

Statistical Estimation: Data & Non-data Information Statistical Estimation: Data & Non-data Information Roger J-B Wets University of California, Davis & M.Casey @ Raytheon G.Pflug @ U. Vienna, X. Dong @ EpiRisk, G-M You @ EpiRisk. a little background Decision

More information

An Introduction to Expectation-Maximization

An Introduction to Expectation-Maximization An Introduction to Expectation-Maximization Dahua Lin Abstract This notes reviews the basics about the Expectation-Maximization EM) algorithm, a popular approach to perform model estimation of the generative

More information

Lecture 1: Derivatives

Lecture 1: Derivatives Lecture 1: Derivatives Steven Hurder University of Illinois at Chicago www.math.uic.edu/ hurder/talks/ Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 1 / 19 Some basic examples Many talks on with

More information

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18 Information Theory David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 18 A Measure of Information? Consider a discrete random variable

More information

G8325: Variational Bayes

G8325: Variational Bayes G8325: Variational Bayes Vincent Dorie Columbia University Wednesday, November 2nd, 2011 bridge Variational University Bayes Press 2003. On-screen viewing permitted. Printing not permitted. http://www.c

More information

Nonparametric estimation of. s concave and log-concave densities: alternatives to maximum likelihood

Nonparametric estimation of. s concave and log-concave densities: alternatives to maximum likelihood Nonparametric estimation of s concave and log-concave densities: alternatives to maximum likelihood Jon A. Wellner University of Washington, Seattle Cowles Foundation Seminar, Yale University November

More information

Lecture 1: Derivatives

Lecture 1: Derivatives Lecture 1: Derivatives Steven Hurder University of Illinois at Chicago www.math.uic.edu/ hurder/talks/ Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 1 / 19 Some basic examples Many talks on with

More information

Generative Models and Optimal Transport

Generative Models and Optimal Transport Generative Models and Optimal Transport Marco Cuturi Joint work / work in progress with G. Peyré, A. Genevay (ENS), F. Bach (INRIA), G. Montavon, K-R Müller (TU Berlin) Statistics 0.1 : Density Fitting

More information

Semi-Parametric Importance Sampling for Rare-event probability Estimation

Semi-Parametric Importance Sampling for Rare-event probability Estimation Semi-Parametric Importance Sampling for Rare-event probability Estimation Z. I. Botev and P. L Ecuyer IMACS Seminar 2011 Borovets, Bulgaria Semi-Parametric Importance Sampling for Rare-event probability

More information

Inference. Data. Model. Variates

Inference. Data. Model. Variates Data Inference Variates Model ˆθ (,..., ) mˆθn(d) m θ2 M m θ1 (,, ) (,,, ) (,, ) α = :=: (, ) F( ) = = {(, ),, } F( ) X( ) = Γ( ) = Σ = ( ) = ( ) ( ) = { = } :=: (U, ) , = { = } = { = } x 2 e i, e j

More information

Nonparametric estimation under Shape Restrictions

Nonparametric estimation under Shape Restrictions Nonparametric estimation under Shape Restrictions Jon A. Wellner University of Washington, Seattle Statistical Seminar, Frejus, France August 30 - September 3, 2010 Outline: Five Lectures on Shape Restrictions

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Pierpaolo De Blasi University of Turin 10th August 2007, BNR Workshop, Isaac Newton Intitute, Cambridge, UK Joint work with Giovanni Peccati (Université Paris VI) and

More information

June 21, Peking University. Dual Connections. Zhengchao Wan. Overview. Duality of connections. Divergence: general contrast functions

June 21, Peking University. Dual Connections. Zhengchao Wan. Overview. Duality of connections. Divergence: general contrast functions Dual Peking University June 21, 2016 Divergences: Riemannian connection Let M be a manifold on which there is given a Riemannian metric g =,. A connection satisfying Z X, Y = Z X, Y + X, Z Y (1) for all

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: October 16, 2014

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

Mean-field equations for higher-order quantum statistical models : an information geometric approach

Mean-field equations for higher-order quantum statistical models : an information geometric approach Mean-field equations for higher-order quantum statistical models : an information geometric approach N Yapage Department of Mathematics University of Ruhuna, Matara Sri Lanka. arxiv:1202.5726v1 [quant-ph]

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: August 14, 2007

More information

SUBTANGENT-LIKE STATISTICAL MANIFOLDS. 1. Introduction

SUBTANGENT-LIKE STATISTICAL MANIFOLDS. 1. Introduction SUBTANGENT-LIKE STATISTICAL MANIFOLDS A. M. BLAGA Abstract. Subtangent-like statistical manifolds are introduced and characterization theorems for them are given. The special case when the conjugate connections

More information

Decentralized decision making with spatially distributed data

Decentralized decision making with spatially distributed data Decentralized decision making with spatially distributed data XuanLong Nguyen Department of Statistics University of Michigan Acknowledgement: Michael Jordan, Martin Wainwright, Ram Rajagopal, Pravin Varaiya

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Geometry and Optimization of Relative Arbitrage

Geometry and Optimization of Relative Arbitrage Geometry and Optimization of Relative Arbitrage Ting-Kam Leonard Wong joint work with Soumik Pal Department of Mathematics, University of Washington Financial/Actuarial Mathematic Seminar, University of

More information

Scalable Hash-Based Estimation of Divergence Measures

Scalable Hash-Based Estimation of Divergence Measures Scalable Hash-Based Estimation of Divergence easures orteza oshad and Alfred O. Hero III Electrical Engineering and Computer Science University of ichigan Ann Arbor, I 4805, USA {noshad,hero} @umich.edu

More information

Robust Independent Component Analysis via Minimum -Divergence Estimation

Robust Independent Component Analysis via Minimum -Divergence Estimation 614 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 4, AUGUST 2013 Robust Independent Component Analysis via Minimum -Divergence Estimation Pengwen Chen, Hung Hung, Osamu Komori, Su-Yun

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information