Taylor Series and Numerical Approximations

Size: px
Start display at page:

Download "Taylor Series and Numerical Approximations"

Transcription

1 Taylor Series and Numerical Approximations Hilary Weller August 7, 05 An introduction to the concept of a Taylor series and how these are used in numerical analysis to find numerical approximations and estimate their accuracy. This is a series of four short videos to accompany the printed notes. You can download the printed notes and fill parts in as we go along. Alternatively, you can work through the notes without the videos. Taylor Series Many functions can be expressed as Taylor series Taylor series are infinite polynomials For example an exponential: e x +x +x + x! +x + x +x + x! + x!! + x! + x4 4!

2 For example a sine wave: sinx x sinx x sinx sinx x x x x x x x x!!! x x x + x x5 + x5!! 5! 5! x x! + x5 x7 5! 7! The more terms you include, the more accurate it should get. Functions with discontinuities cannot be expressed as Taylor series:.5 square wave A polynomial cannot jump between and - 4

3 Functions with discontinuities in some of their derivatives cannot be expressed as Taylor series: { / ( + cosx) x < π Eg. cosine bell, f (x) = 0 otherwise.5.0 cosine bell x! x! x! + + x 4 4! x 4 4! x 6 6! A polynomial cannot be uniform in one place and non-uniform in another 5 The Taylor Series: A function, f, can be represented as a Taylor series about position a if: is continuous near a and all of its derivatives are continuous near a Using the notation x = x a: f (x) = f (a) + x f (a) + x! f (a) + x! f (a) + + x j j! f ( j) (a) + where f (x) = d f dx (x), f (x) = d f (x),... dx If infinitely many terms are used then this approximation is exact near a. If all terms of order n and above are discarded then the error is approximately proportional to x n (assuming that x is small). Then the approximation is said to be n th order accurate A third order accurate approximation for f (x) has error proportional to x : f (x) = f (a) + x f (a) + x! f (a) + O ( x ). We say that the error is of order x or O ( x ). If x is small, then higher order accuracy generally means higher accuracy 6

4 . Exercises (answers at end). Write down the infinite Taylor series for function f at position x + x about x. Write the third order approximation for f (x x) in terms of f (x), f (x) and f (x). Write the error term using the O( x n ) notation.. Write the third order approximation for f (x + x) in terms of f (x x), f (x x) and f (x x). 7 Numerical Differentiation Consider a set of points, x 0,x, x j, x n where x j = j x (the points are distance x apart). Assume that we know the value of the function f (x) at these points, as shown in figure. f f j f j fj+ x 0 x x x x j x j x j+ x Figure : Values of a function f at points x 0, x,,x j,. Some possible estimate of f j = f (x j ) are: forward difference backward difference centred difference f j f j+ f j x f j f j f j x f j f j+ f j x Taylor series can be used to derive estimates of derivatives and to find their order of accuracy. 8

5 Taylor Series to find Finite Difference Gradients In order to use a Taylor series (below) to find an approximation for f f (x + x) = f (x) + x f (x) + x! f (x) + x! f (x) + + x j j! f ( j) (x) +. write down the knowns. consider where we want to find f. consider what order of accuracy we want 4. write down Taylor series for some of the knowns 5. eliminate the additional unknowns to find f. Example. Assume that we know f j = f (x j ) f j = f (x j ) = f (x x) f j+ = f (x j+ ) = f (x + x). and we want to find f j.. For knowns we wonder if we can get second order accuracy 4. We do not want to generate too many unknowns. We don t know f j or f j+ so no Taylor series about x j or x j+. So let s try Taylor series for f j+ and f j about x j f j+ = f j + x f j + x! f j + x! f + O( x 4 ) f j = f j x f j + x! f j x! f + O( x 4 ) 9 5. Eliminate f j by taking the difference of the two equations Rearrange to get f j f j+ f j = x f j + x f j + O( x 4 ) We cannot eliminate f j f j = f j+ f j x so this is part of the error: f j = f j+ f j x x! f j + O( x ) + O( x ) The error, ε, is proportional to x (ε x ) so this approximation is second order accurate. This is a worked example on my YouTube page: called TaylorSeries 0

6 . Exercises (answers at the end). Use the Taylor series to find an approximation for f j in terms of f j and f j. What order accuracy is it?. Derive an uncentred, second order difference formula for f j that uses f j, f j+ and f j+. (And show that it is second order accurate). Find an uncentred approximation for f j using f j, f j+ and f j+. What order accurate is it? 4. Derive a second order approximation for f b from f a, f b and f c at x locations a < b < c when the grid spacing is not regular. (And show that it is second order accurate) 4 Order of Accuracy of Numerical Solutions In order to demonstrate the order of accuracy (or order of convergence) of a numerical method, we can calculate the error of solving a problem that has an analytic solution. For example our numerical method calculates the gradient of sinx and gives these results: x numerical gradient of sinx at x = 0 Error, ε (Difference from cos(0)) Assume that ε = A x n where n is the order of accuracy and A is unknown. From the data, eliminate A and find two possible values for n. 0 - error x Plot ε as a function of x on log paper. Then the order of accuracy is the gradient. Does this value agree with the values found from calculating n directly from the data above? (both should give about n =. See YouTube video for a worked example.

7 5 Interpolation f An Example: Function f is known at points x and x (values f and f ) We want to estimate the value of f at point x i in between x and x x x i x β x ( β) x x Exercise: Use linear interpolation (ie assume that f i lies on a straight line between f and f ): to find f at x i Hint: First write down expressions for x, β and the gradient, f between x and x. Then find an expression for f at x i along the straight line between x and x. x = x x β = x i x x x f = f f x x = f i = ( β) f + β f If f is known at n points then a polynomial of degree n can be fit to estimate f Eg. Cubic Lagrange interpolation for constant grid spacing, x: ˆf (x) = 6 β( β)( β) f k + ( + β)( β)( β) f k f i f x + ( + β)β( β) f k+ 6 ( + β)β( β) f k+ 5. Finding Finite Difference Formulae for Interpolation using Taylor Series An Example: Assume that we know f j = f (x j ) and f j+ = f (x j+ ) and we want to find the interpolated value, f, mid-way between x j and x j+. Start by writing down Taylor series for f j and f j+ about f f j+ = f + x f + ( ) x f! + ( x! f j = f x f + ( ) x f! ( x! ) f + O( x) 4 ) f + O( x) 4 Eliminate the largest unknown, f by adding the two equations f j + f j+ = f + x 4 f + O( x) 4 Rearrange to find f and express the error based on the largest unknown f = ( f j + f j+ )/ + O( x) So this is a second-order accurate approximation 4

8 5. Exercises (answers at the end). Derive a centred, second order difference interpolation formula for f j that uses f j and f j+. (And show that it is second order accurate). Derive a centred fourth order difference formula for f that uses f j, f j, f j+ and f j+. (And show that it is fourth order accurate). Show that the first order forward difference formula for f j is exact for linear functions, f (x) = ax + b. 4. Show that the centred second order difference formula for f j is exact for quadratic functions f (x) = ax + bx + c. 5 Solutions Solutions to Exercises.. Write down the infinite Taylor series for function f at position x + x about x f (x + x) = f (x) + x f (x) + x! f (x) + x! f (x) + + x j j! f ( j) (x) +. Write the third order approximation for f (x x) in terms of f (x), f (x) and f (x). Write the error term using the O( x n ) notation. f (x x) = f (x) x f (x) + x! f (x) + O ( x ). Write the third order approximation for f (x + x) in terms of f (x x), f (x x) and f (x x). f (x + x) = f (x x) + x f (x x) + x f (x x) + 4 x f (x x) + O ( x ) Solutions to Exercises.. Use the Taylor series to find an approximation for f j in terms of f j and f j. What order accuracy is it? Write the Taylor series for f j in terms of f j : f j = f j x f j + O( x ) Rearrange to find f j: f j = ( f j f j )/ x + O( x) Note dividing O( x ) by x gives O( x) so the approximation is first order accurate. Derive an uncentred, second order difference formula for f j that uses f j, f j+ and f j+. (And show that it is second order accurate) 6

9 Taylor approximations for f j+ and f j+ about f j : f j+ = f j + x f j + x! f j + x! f j f j+ = f j + x f j + x f j + 4 x Eliminate the largest unknown, f + x4 4! f j + O( x 5 ) f j + x4 f j + O( x 5 ) j by calculating f j+ 4 f j+ : f j+ 4 f j+ = f j x f j + O( x ) Rearrange to find f j: f j = ( f j+ + 4 f j+ f j ) /( x) + O( x ). Find an uncentred approximation for f j using f j, f j+ and f j+. What order accurate is it? Taylor approximations for f j+ and f j+ about f j : f j+ = f j + x f j + x! f j + x! f j f j+ = f j + x f j + x f j + 4 x + x4 4! f j + O( x 5 ) f j + O( x 5 ) Eliminate the largest unknown, f j by calculating f j+ f j+ : f j+ f j+ = f j x f j + O( x ) Rearrange to find f j : f j = ( ) f j+ + f j+ f j / x + O( x) 4. Derive a second order approximation for f b from f a, f b and f c at x locations a < b < c when the grid spacing is not regular. (And show that it is second order accurate) Define x = b a and x = c b and x = max( x, x ) Taylor approximations for f a and f c about f b : f j + x4 f a = f b x f b + x! f b x! f b + x4 4! f b + O( x 5 ) 7 f c = f b + x f b + x! f b + x! f b + x4 4! f b + O( x 5 ) Eliminate the largest unknown, f b : x f c x f a = x { fb + x f b + O( x )} x { fb x f b + O( x )} Rearrange to find f b : x f c x f a = x f b + x x f b + O( x x ) x f b + x x f b + O( x x ) = x f c x f a = ( x x) fb + x x ( x + x ) f b + O( x5 ) = f b = x f c x f a ( x x x x ( x + x ) ) fb + O( x ) Solutions to Exercises 5.. Use Taylor series about f j so that they both contain f j so that we can eliminate it: f j = f j x f j +! x f j + O( x ) f j+ = f j + x f j +! x f j + O( x ) Eliminate f j by adding the two equations: f j + f j+ = f j + x f j + O( x ) Rearrange for f j and express the unknowns as the order of accuracy: f j = ( f j + f j+ )/ + O( x ). Taylor series about f : f j = f x f + 9! 4 x f 7! 8 x f + 8 4! 6 x4 f + O( x 5 ) f j = f x f +! 4 x f! 8 x f + 4! 6 x4 f + O( x 5 ) f j+ = f + x f +! 4 x f +! 8 8 x f + 4! 6 x4 f + O( x 5 )

10 f j+ = f + x f + 9! 4 x f + 7! 8 x f + 8 4! 6 x4 f + O( x 5 ) First eliminate f j, the biggest unknown (we only need to leave two equations): f j+ f j = x f x f j + O( x 5 ) f j+ f j = x f + 8 x f j + O( x 5 ) Next eliminate f j leaving one equation for f j: f j+ f j 7 f j+ + 7 f j = 4 x f + O( x 5 ) = f = f j 7 f j + 7 f j+ f j+ 4 x + O( x 4 ). If f (x) = ax+b and we use the approximation f j = f j+ f j between any two points x j+ x and x j then we get: f j = (ax j+ + b) (ax j + b) = a which is the exact solution. x j+ x j 4. If f (x) = ax +bx+c and we use the approximation f j = f j+ f j for f j at x j between x two points x j+ and x j then we get: f j = (ax j+ + bx j+ + c) (ax j + bx j + c) = a(x j + x) a(x j x) + b x x j+ x j x = ax j + b which is the exact solution. 9

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

November 20, Interpolation, Extrapolation & Polynomial Approximation

November 20, Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 20, 2016 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Increasing and decreasing intervals *

Increasing and decreasing intervals * OpenStax-CNX module: m15474 1 Increasing and decreasing intervals * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 A function is

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Introduction Linear system Nonlinear equation Interpolation

Introduction Linear system Nonlinear equation Interpolation Interpolation Interpolation is the process of estimating an intermediate value from a set of discrete or tabulated values. Suppose we have the following tabulated values: y y 0 y 1 y 2?? y 3 y 4 y 5 x

More information

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx Lecture 3 We give a couple examples of using L Hospital s Rule: Example 3.. [ (a) Compute x 0 sin(x) x. To put this into a form for L Hospital s Rule we first put it over a common denominator [ x 0 sin(x)

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Interpolating Accuracy without underlying f (x)

Interpolating Accuracy without underlying f (x) Example: Tabulated Data The following table x 1.0 1.3 1.6 1.9 2.2 f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623 lists values of a function f at various points. The approximations to f (1.5) obtained

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

UNIT-II INTERPOLATION & APPROXIMATION

UNIT-II INTERPOLATION & APPROXIMATION UNIT-II INTERPOLATION & APPROXIMATION LAGRANGE POLYNAMIAL 1. Find the polynomial by using Lagrange s formula and hence find for : 0 1 2 5 : 2 3 12 147 : 0 1 2 5 : 0 3 12 147 Lagrange s interpolation formula,

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

SYDE 112, LECTURE 7: Integration by Parts

SYDE 112, LECTURE 7: Integration by Parts SYDE 112, LECTURE 7: Integration by Parts 1 Integration By Parts Consider trying to take the integral of xe x dx. We could try to find a substitution but would quickly grow frustrated there is no substitution

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Lecture 5: Function Approximation: Taylor Series

Lecture 5: Function Approximation: Taylor Series 1 / 10 Lecture 5: Function Approximation: Taylor Series MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Better

More information

Mathematics Revision Guide. Algebra. Grade C B

Mathematics Revision Guide. Algebra. Grade C B Mathematics Revision Guide Algebra Grade C B 1 y 5 x y 4 = y 9 Add powers a 3 a 4.. (1) y 10 y 7 = y 3 (y 5 ) 3 = y 15 Subtract powers Multiply powers x 4 x 9...(1) (q 3 ) 4...(1) Keep numbers without

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Quartic Equation. By CH vd Westhuizen A unique Solution assuming Complex roots. Ax^4 + Bx^3 + Cx^2 + Dx + E = 0

Quartic Equation. By CH vd Westhuizen A unique Solution assuming Complex roots. Ax^4 + Bx^3 + Cx^2 + Dx + E = 0 Quartic Equation By CH vd Westhuizen A unique Solution assuming Complex roots The general Quartic is given by Ax^4 + Bx^3 + Cx^ + Dx + E = 0 As in the third order polynomial we are first going to reduce

More information

i x i y i

i x i y i Department of Mathematics MTL107: Numerical Methods and Computations Exercise Set 8: Approximation-Linear Least Squares Polynomial approximation, Chebyshev Polynomial approximation. 1. Compute the linear

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Properties of a Taylor Polynomial

Properties of a Taylor Polynomial 3.4.4: Still Better Approximations: Taylor Polynomials Properties of a Taylor Polynomial Constant: f (x) f (a) Linear: f (x) f (a) + f (a)(x a) Quadratic: f (x) f (a) + f (a)(x a) + 1 2 f (a)(x a) 2 3.4.4:

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5 Differentiation Table of contents. Derivatives................................................. 2.. Definition................................................ 2.2. Arithmetics...............................................

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Limit. Chapter Introduction

Limit. Chapter Introduction Chapter 9 Limit Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus. Besides, Mathematics has black hole scenarios (dividing by zero, going to

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

Common Core Algebra 2 Review Session 1

Common Core Algebra 2 Review Session 1 Common Core Algebra 2 Review Session 1 NAME Date 1. Which of the following is algebraically equivalent to the sum of 4x 2 8x + 7 and 3x 2 2x 5? (1) 7x 2 10x + 2 (2) 7x 2 6x 12 (3) 7x 4 10x 2 + 2 (4) 12x

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015 Math 2Z03 - Tutorial # 6 Oct. 26th, 27th, 28th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #6: 3.4

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Taylor polynomials. 1. Introduction. 2. Linear approximation.

Taylor polynomials. 1. Introduction. 2. Linear approximation. ucsc supplementary notes ams/econ 11a Taylor polynomials c 01 Yonatan Katznelson 1. Introduction The most elementary functions are polynomials because they involve only the most basic arithmetic operations

More information

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that Chapter 2 Limits and continuity 21 The definition of a it Definition 21 (ε-δ definition) Let f be a function and y R a fixed number Take x to be a point which approaches y without being equal to y If there

More information

8.4 Partial Fractions

8.4 Partial Fractions 8.4 1 8.4 Partial Fractions Consider the following integral. (1) 13 2x x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that (2) 13 2x x 2 x 2 = 3 x 2 5 x+1 We could then

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

Section 7.1 Quadratic Equations

Section 7.1 Quadratic Equations Section 7.1 Quadratic Equations INTRODUCTION In Chapter 2 you learned about solving linear equations. In each of those, the highest power of any variable was 1. We will now take a look at solving quadratic

More information

MATHEMATICS LEARNING AREA. Methods Units 1 and 2 Course Outline. Week Content Sadler Reference Trigonometry

MATHEMATICS LEARNING AREA. Methods Units 1 and 2 Course Outline. Week Content Sadler Reference Trigonometry MATHEMATICS LEARNING AREA Methods Units 1 and 2 Course Outline Text: Sadler Methods and 2 Week Content Sadler Reference Trigonometry Cosine and Sine rules Week 1 Trigonometry Week 2 Radian Measure Radian

More information

Fourier Analysis. 19th October 2015

Fourier Analysis. 19th October 2015 Fourier Analysis Hilary Weller 19th October 2015 This is brief introduction to Fourier analysis and how it is used in atmospheric and oceanic science, for: Analysing data (eg climate

More information

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37 Math 1431 Section 14616 Bekki George: bekki@math.uh.edu University of Houston 08/28/18 Bekki George (UH) Math 1431 08/28/18 1 / 37 Office Hours: Tuesdays and Thursdays 12:30-2pm (also available by appointment)

More information

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0)

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0) In the previous lesson we showed how to solve quadratic equations that were not factorable and were not perfect squares by making perfect square trinomials using a process called completing the square.

More information

Newton s Method and Linear Approximations

Newton s Method and Linear Approximations Newton s Method and Linear Approximations Curves are tricky. Lines aren t. Newton s Method and Linear Approximations Newton s Method for finding roots Goal: Where is f (x) = 0? f (x) = x 7 + 3x 3 + 7x

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17)

Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17) Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17) (11) Show that n ( n r=0 r ) = 2n Solution Method 1: Consider (1 + 1) n Method 2: Pascal's triangle The sum of each row is twice the sum of the previous

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module Order of operations 6 Signed Numbers Factorization of Integers 7 Further Signed Numbers 3 Fractions 8 Power Laws 4 Fractions and Decimals 9 Introduction to Algebra 5 Percentages

More information

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces. PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION NOAH WHITE The basic aim of this note is to describe how to break rational functions into pieces. For example 2x + 3 = + x 3 x +. The point is that we don

More information

WebAssign Lesson 6-3 Taylor Series (Homework)

WebAssign Lesson 6-3 Taylor Series (Homework) WebAssign Lesson 6-3 Taylor Series (Homework) Current Score : / 56 Due : Tuesday, August 5 204 0:59 AM MDT Jaimos Skriletz Math 75, section 3, Summer 2 204 Instructor: Jaimos Skriletz. /4 points Consider

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Unit 2 Rational Functionals Exercises MHF 4UI Page 1 Unit 2 Rational Functionals Exercises MHF 4UI Page Exercises 2.: Division of Polynomials. Divide, assuming the divisor is not equal to zero. a) x 3 + 2x 2 7x + 4 ) x + ) b) 3x 4 4x 2 2x + 3 ) x 4) 7. *)

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0.

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

We look forward to working with you this school year!

We look forward to working with you this school year! Name: Summer Review Packet for Students Entering IB MATH SL Year 2 Directions: Complete all pages in this review. Show all work for credit. You may get video help and instruction via YouTube for the topics

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

Numerical and Statistical Methods

Numerical and Statistical Methods F.Y. B.Sc.(IT) : Sem. II Numerical and Statistical Methods Time : ½ Hrs.] Prelim Question Paper Solution [Marks : 75 Q. Attempt any THREE of the following : [5] Q.(a) What is a mathematical model? With

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

Numerical and Statistical Methods

Numerical and Statistical Methods F.Y. B.Sc.(IT) : Sem. II Numerical and Statistical Methods Time : ½ Hrs.] Prelim Question Paper Solution [Marks : 75 Q. Attempt any THREE of the following : [5] Q.(a) What is a mathematical model? With

More information

MODULE 1: FOUNDATIONS OF MATHEMATICS

MODULE 1: FOUNDATIONS OF MATHEMATICS MODULE 1: FOUNDATIONS OF MATHEMATICS GENERAL OBJECTIVES On completion of this Module, students should: 1. acquire competency in the application of algebraic techniques; 2. appreciate the role of exponential

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Lecture 26. Quadratic Equations

Lecture 26. Quadratic Equations Lecture 26 Quadratic Equations Quadratic polynomials....................................................... 2 Quadratic polynomials....................................................... 3 Quadratic equations

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

National 5 Learning Checklist - Relationships

National 5 Learning Checklist - Relationships National 5 Learning Checklist - Relationships Topic Skills Extra Stud / Notes Straight Line Gradient Represented b m Measure of steepness of slope Positive gradient the line is increasing Negative gradient

More information

Chap. 19: Numerical Differentiation

Chap. 19: Numerical Differentiation Chap. 19: Numerical Differentiation Differentiation Definition of difference: y x f x x i x f x i As x is approaching zero, the difference becomes a derivative: dy dx lim x 0 f x i x f x i x 2 High-Accuracy

More information

2 2xdx. Craigmount High School Mathematics Department

2 2xdx. Craigmount High School Mathematics Department Π 5 3 xdx 5 cosx 4 6 3 8 Help Your Child With Higher Maths Introduction We ve designed this booklet so that you can use it with your child throughout the session, as he/she moves through the Higher course,

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

Foundations of Math II Unit 5: Solving Equations

Foundations of Math II Unit 5: Solving Equations Foundations of Math II Unit 5: Solving Equations Academics High School Mathematics 5.1 Warm Up Solving Linear Equations Using Graphing, Tables, and Algebraic Properties On the graph below, graph the following

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information

8.8 Applications of Taylor Polynomials

8.8 Applications of Taylor Polynomials 8.8 Applications of Taylor Polynomials Mark Woodard Furman U Spring 2008 Mark Woodard (Furman U) 8.8 Applications of Taylor Polynomials Spring 2008 1 / 14 Outline 1 Point estimation 2 Estimation on an

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

6x 2 8x + 5 ) = 12x 8

6x 2 8x + 5 ) = 12x 8 Example. If f(x) = x 3 4x + 5x + 1, then f (x) = 6x 8x + 5 Observation: f (x) is also a differentiable function... d dx ( f (x) ) = d dx ( 6x 8x + 5 ) = 1x 8 The derivative of f (x) is called the second

More information

MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics. B. Decomposition with Irreducible Quadratics

MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics. B. Decomposition with Irreducible Quadratics Math 250 Partial Fraction Decomposition Topic 3 Page MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics I. Decomposition with Linear Factors Practice Problems II. A. Irreducible

More information

Interpolation. P. Sam Johnson. January 30, P. Sam Johnson (NITK) Interpolation January 30, / 75

Interpolation. P. Sam Johnson. January 30, P. Sam Johnson (NITK) Interpolation January 30, / 75 Interpolation P. Sam Johnson January 30, 2015 P. Sam Johnson (NITK) Interpolation January 30, 2015 1 / 75 Overview One of the basic ideas in Mathematics is that of a function and most useful tool of numerical

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter Infinite series, improper integrals, and Taylor series. Determine which of the following sequences converge or diverge (a) {e n } (b) {2 n } (c) {ne 2n } (d) { 2 n } (e) {n } (f) {ln(n)} 2.2 Which

More information

Learning Objectives These show clearly the purpose and extent of coverage for each topic.

Learning Objectives These show clearly the purpose and extent of coverage for each topic. Preface This book is prepared for students embarking on the study of Additional Mathematics. Topical Approach Examinable topics for Upper Secondary Mathematics are discussed in detail so students can focus

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information