MAT137 Calculus! Lecture 5

Size: px
Start display at page:

Download "MAT137 Calculus! Lecture 5"

Transcription

1 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: DIfferentiation Rules Deadline to notify us if you have a conflict with Test 1: June 05

2 Continuity at a point Definition (Continuity at a point) Let f be a function defined at least on an open interval (c p, c + p). We say that f is continuous at c if lim f (x) = f (c). x c

3 Discontinuity Types Removable Discontinuity c Jump Discontinuity c Infinite Discontinuity c

4 Continuous Functions are Cool! If f is continuous, 1 To compute the limit we just need to plug-in the value lim f (x) = f (a) x a 2 We can take the limit inside the function. Theorem Let f and g be functions such that THEN lim g(x) = L, and x c f is continuous at L. ( ) lim f (g(x)) = f lim g(x). x c x c

5 The Pinching Theorem ( a.k.a. Squeeze Theorem) Theorem Let p > 0. Suppose that for all x with 0 < x a < p, f (x) g(x) h(x). IF THEN lim f (x) = L and lim h(x) = L, x a x a lim g(x) = L. x a

6 The Pinching Theorem ( a.k.a. Squeeze Theorem) Show that ( ) 1 lim x 2 sin = 0. x 0 x

7 The Pinching Theorem ( a.k.a. Squeeze Theorem) Show that ( ) 1 lim x 2 sin = 0. x 0 x

8 The Pinching Theorem ( a.k.a. Squeeze Theorem) Show that ( ) 1 lim x 2 sin = 0. x 0 x

9 The Pinching Theorem ( a.k.a. Squeeze Theorem) Example IF f (x) is bounded and lim x a g(x) = 0, THEN lim x a f (x)g(x) = 0.

10 The Pinching Theorem ( a.k.a. Squeeze Theorem) Example IF f (x) is bounded and lim x a g(x) = 0, THEN lim x a f (x)g(x) = 0. Exercise IF lim x a f (x) = 0, THEN lim x a f (x) = 0. Hint: First show that f (x) f (x) f (x).

11 The Pinching Theorem ( a.k.a. Squeeze Theorem) Example Show that the function given by { x is continuous at 0. x Q 0 x / Q

12 Trigonometric Limits Proposition lim sin(x) = 0 and lim cos(x) = 1 x 0 x 0 Read proof in pages I will post some material with the proof in the course website.

13 Trigonometric Limits Proposition lim sin(x) = 0 and lim cos(x) = 1 x 0 x 0 Read proof in pages I will post some material with the proof in the course website. Theorem The sine and cosine functions are everywhere continuous; i.e. for all real numbers c, lim sin(x) = sin(c) and lim cos(x) = cos(c) x c x c

14 Two Useful Limits Useful Limits lim x 0 sin x x = 1 and lim x 0 1 cos x x = 0. Read proof on page 93. I will post some material with the proof in the course website.

15 Two Useful Limits Useful Limits lim x 0 sin x x = 1 and lim x 0 1 cos x x = 0. Read proof on page 93. I will post some material with the proof in the course website. In general, lim x 0 sin ax ax = 1 and lim x 0 1 cos ax ax = 0.

16 Trig. Limits - Example 1 sin(2x) Find lim. x 0 3x Answer: Useful Limits lim x 0 sin ax ax = 1 and lim x 0 1 cos ax ax = 0.

17 Trig. Limits - Example 2 Find lim x 0 sin 2 (x 2 ) 3x 4 cos 5x. Answer: Useful Limits lim x 0 sin ax ax = 1 and lim x 0 1 cos ax ax = 0.

18 Intermediate Value Theorem (IVT) Theorem (Intermediate Value Theorem) IF f be continuous on [a, b] and K is any number between f (a) and f (b), THEN there is at least one number c between a and b for which f (c) = K.

19 Intermediate Value Theorem (IVT) Theorem (Intermediate Value Theorem) IF f be continuous on [a, b] and K is any number between f (a) and f (b), THEN there is at least one number c between a and b for which f (c) = K.

20 IVT - Example 1 Show that there is a solution to the equation x 2 = sin x + 2 cos x on the interval (0, π 2 ). Theorem (Intermediate Value Theorem) IF f be continuous on [a, b] and K is any number between f (a) and f (b), THEN there is at least one number c between a and b for which f (c) = K.

21 IVT - Example 2 Consider the function f (x) = 4 x We have f ( 1) = 4 < 0 and f (1) = 4 > 0. Can we conclude that f (c) = 0 for some c ( 1, 1)?

22 IVT - Example 2 Consider the function f (x) = 4 x We have f ( 1) = 4 < 0 and f (1) = 4 > 0. Can we conclude that f (c) = 0 for some c ( 1, 1)? No Theorem (Intermediate Value Theorem) IF f be continuous on [a, b] and K is any number between f (a) and f (b), THEN there is at least one number c between a and b for which f (c) = K.

23 IVT - Example 3 Example (Fixed point property) Show that if f is continuous on [0, 1] and 0 f (x) 1 for all x [0, 1], then there exists a point p [0, 1] such that f (p) = p.

24 Extreme Value Theorem (EVT) Theorem (Extreme-Value Theorem) IF f is continuous on a bounded closed interval [a, b], THEN on that interval f takes on both a maximum value and a minimum value.

25 EVT - Example 1 Does the function f (x) = x 2 attain a maximum or a minimum on the interval ( 1, 1)? Theorem (Extreme-Value Theorem) IF f is continuous on a bounded closed interval [a, b], THEN on that interval f takes on both a maximum value and a minimum value.

26 EVT - Example 2 Does the function f (x) = 1 x attain a maximum or a minimum on the interval [ 1, 1]? What about on the interval [1,2]? Theorem (Extreme-Value Theorem) IF f is continuous on a bounded closed interval [a, b], THEN on that interval f takes on both a maximum value and a minimum value.

27 EVT - hypotheses In the Extreme-value theorem, all the hypotheses are needed. If the interval is not bounded: The function f (x) = x 3 is continuous but has no maximum value on [0, ). If the interval is not closed: The function f (x) = x 2 is continuous but has no maximum value on the interval ( 1, 1). If the function is not continuous: The function f (x) = 1 x does not attain a maximum of a minimum on the closed and bounded interval [0, 1].

28 IVT + EVT Remark From the IVT, we see that continuous functions map intervals to intervals. From the Extreme-value theorem, we see that continuous functions map closed and bounded intervals to closed and bounded intervals.

29 Secant and Tangent Lines What is a secant of a circle? What is a tangent line to a circle?

30 Secant and Tangent Lines What does it mean to say that a line is tangent to a curve at at point P?

31 Secant and Tangent Lines Definition (Secant Line) Let f be a function and a < b be two real numbers. The unique straight line passing though the points (a, f (a)) and (b, f (b)) is called the secant line from a to b. f (b) f (a) a b The slope of this secant line is given by m ab = f (b) f (a). b a

32 Derivative Definition (Derivative) Let f be a function and a be a number in the domain of f. We say that f is differentiable at a if f (x) f (a) lim x a x a exists. If this limit exists, it is called the derivative of f at a and is denoted by f (a). If we let h = x a, then x a iff h 0. Therefore f f (x) f (a) f (a + h) f (a) (a) = lim = lim. x a x a h 0 h

33 Example 1 Example Find the derivative of the function f (x) = x 2 at x = a. Definition if the limit exists. f f (x) f (a) f (a + h) f (a) (a) = lim = lim. x a x a h 0 h

34 Example 2 Example Find an equation of the tangent line to the parabola y = x 2 at the point (2, 4). Definition if the limit exists. f f (x) f (a) f (a + h) f (a) (a) = lim = lim. x a x a h 0 h

35 The Derivative as a Function We can view the derivative as a function, with f f (x + h) f (x) f (y) f (x) (x) = lim = lim. h 0 h y x y x We say f is the derivative of f. The domain of f is the set {x : f (x) exists}.

36 Example 3 Example Consider the function f (x) = x 3 x. (a) Find a formula for f (x). (b) Compare the graphs of f and f. Definition if the limit exists. f f (y) f (x) f (x + h) f (x) (x) = lim = lim. y x y x h 0 h

37 Example 3 f (x) = x 3 x sdf f (x) = 3x 2 1

38 Example 3 f (x) = x 3 x sdf f (x) = 3x 2 1

39 Example 3 f (x) = x 3 x sdf f (x) = 3x 2 1

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT.

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT. MAT137 - Week 5 The deadline to drop to MAT135 is tomorrow. (Details on course website.) The deadline to let us know you have a scheduling conflict with Test 1 is also tomorrow. (Details on the course

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Lecture 4. Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity. Jiwen He. Department of Mathematics, University of Houston

Lecture 4. Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity. Jiwen He. Department of Mathematics, University of Houston Review Pinching Theorem Two Basic Properties Lecture 4 Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION)

THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) The Limit Process THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) We could begin by saying that limits are important in calculus, but that would be a major understatement. Without limits, calculus would

More information

Calculus (Math 1A) Lecture 6

Calculus (Math 1A) Lecture 6 Calculus (Math 1A) Lecture 6 Vivek Shende September 5, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We introduced limits, and discussed slopes

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

Chapter Product Rule and Quotient Rule for Derivatives

Chapter Product Rule and Quotient Rule for Derivatives Chapter 3.3 - Product Rule and Quotient Rule for Derivatives Theorem 3.6: The Product Rule If f(x) and g(x) are differentiable at any x then Example: The Product Rule. Find the derivatives: Example: The

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 A] Refer to your pre-calculus notebook, the internet, or the sheets/links provided for assistance. B] Do not wait until the last minute to complete this

More information

Continuity, Intermediate Value Theorem (2.4)

Continuity, Intermediate Value Theorem (2.4) Continuity, Intermediate Value Theorem (2.4) Xiannan Li Kansas State University January 29th, 2017 Intuitive Definition: A function f(x) is continuous at a if you can draw the graph of y = f(x) without

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

Chapter 2 NAME

Chapter 2 NAME QUIZ 1 Chapter NAME 1. Determine 15 - x + x by substitution. 1. xs3 (A) (B) 8 (C) 10 (D) 1 (E) 0 5-6x + x Find, if it exists. xs5 5 - x (A) -4 (B) 0 (C) 4 (D) 6 (E) Does not exist 3. For the function y

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

MTAEA Differentiation

MTAEA Differentiation School of Economics, Australian National University February 5, 2010 Basic Properties of the Derivative. Secant Tangent Applet l 3 l 2 l 1 a a 3 a 2 a 1 Figure: The derivative of f at a is the limiting

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

MAT137 Calculus! Lecture 45

MAT137 Calculus! Lecture 45 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 45 Today: Taylor Polynomials Taylor Series Next: Taylor Series Power Series Definition (Power Series) A power series is a series of the form

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Chapter 1 Functions and Limits

Chapter 1 Functions and Limits Contents Chapter 1 Functions and Limits Motivation to Chapter 1 2 4 Tangent and Velocity Problems 3 4.1 VIDEO - Secant Lines, Average Rate of Change, and Applications......................... 3 4.2 VIDEO

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc.

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc. Calculus Calculus - the study of change, as related to functions Formally co-developed around the 1660 s by Newton and Leibniz Two main branches - differential and integral Central role in much of modern

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

Math 106 Calculus 1 Topics for first exam

Math 106 Calculus 1 Topics for first exam Chapter 2: Limits and Continuity Rates of change and its: Math 06 Calculus Topics for first exam Limit of a function f at a point a = the value the function should take at the point = the value that the

More information

MA 123 September 8, 2016

MA 123 September 8, 2016 Instantaneous velocity and its Today we first revisit the notion of instantaneous velocity, and then we discuss how we use its to compute it. Learning Catalytics session: We start with a question about

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

MAT137 - Term 2, Week 5

MAT137 - Term 2, Week 5 MAT137 - Term 2, Week 5 Test 3 is tomorrow, February 3, at 4pm. See the course website for details. Today we will: Talk more about integration by parts. Talk about integrating certain combinations of trig

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science Calculus I George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 151 George Voutsadakis (LSSU) Calculus I November 2014 1 / 67 Outline 1 Limits Limits, Rates

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Homework for MAT 603 with Pugh s Real Mathematical Analysis. Damien Pitman

Homework for MAT 603 with Pugh s Real Mathematical Analysis. Damien Pitman Homework for MAT 603 with Pugh s Real Mathematical Analysis Damien Pitman CHAPTER 1 Real Numbers 1. Preliminaries (1) In what sense is Euclid s method of reasoning superior to Aristotle s? (2) What role

More information

Outline. Recall... Limits. Problem Solving Sessions. MA211 Lecture 4: Limits and Derivatives Wednesday 17 September Definition (Limit)

Outline. Recall... Limits. Problem Solving Sessions. MA211 Lecture 4: Limits and Derivatives Wednesday 17 September Definition (Limit) Outline MA211 Lecture 4: Limits and Wednesday 17 September 2008 1 0.2 0.15 0.1 2 ) x) 0.05 0 0.05 0.1 3 ) t) 0.15 0.2 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 4 Extra: Binomial Expansions MA211 Lecture 4: Limits

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES MATH90 CALCULUS - NOTES AND AFTERNOTES DR. JOSIP DERADO. Historical background Newton approach - from physics to calculus. Instantaneous velocity. Leibniz approach - from geometry to calculus Calculus

More information

Math 1: Calculus with Algebra Midterm 2 Thursday, October 29. Circle your section number: 1 Freund 2 DeFord

Math 1: Calculus with Algebra Midterm 2 Thursday, October 29. Circle your section number: 1 Freund 2 DeFord Math 1: Calculus with Algebra Midterm 2 Thursday, October 29 Name: Circle your section number: 1 Freund 2 DeFord Please read the following instructions before starting the exam: This exam is closed book,

More information

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37 Math 1431 Section 14616 Bekki George: bekki@math.uh.edu University of Houston 08/28/18 Bekki George (UH) Math 1431 08/28/18 1 / 37 Office Hours: Tuesdays and Thursdays 12:30-2pm (also available by appointment)

More information

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124 Procedural Skills Learning Objectives 1. Given a function and a point, sketch the corresponding tangent line. 2. Use the tangent line to estimate the value of the derivative at a point. 3. Recognize keywords

More information

LIMITS, AND WHAT THEY HAVE TO DO WITH CONTINUOUS FUNCTIONS

LIMITS, AND WHAT THEY HAVE TO DO WITH CONTINUOUS FUNCTIONS 1.3/27/13 LIMITS, AND WHAT THEY HAVE TO DO WITH CONTINUOUS FUNCTIONS Probably the hardest thing to understand and to remember, about limits, is that the limit of a function at a point has in general no

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

MAT137 Calculus! Lecture 19

MAT137 Calculus! Lecture 19 MAT137 Calculus! Lecture 19 Today: L Hôpital s Rule 11.5 The Indeterminate Form (0/0) 11.6 The Indeterminate Form ( / ) + other Indeterminate Forms Test 2: Friday, Nov. 25. If you have a conflict, let

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Limit. Chapter Introduction

Limit. Chapter Introduction Chapter 9 Limit Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus. Besides, Mathematics has black hole scenarios (dividing by zero, going to

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Objectives List. Important Students should expect test questions that require a synthesis of these objectives. MATH 1040 - of One Variable, Part I Textbook 1: : Algebra and Trigonometry for ET. 4 th edition by Brent, Muller Textbook 2:. Early Transcendentals, 3 rd edition by Briggs, Cochran, Gillett, Schulz s List

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

MA 137: Calculus I for the Life Sciences

MA 137: Calculus I for the Life Sciences MA 137: Calculus I for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky http://www.ms.uky.edu/~ma137/ Spring 2018 David Murrugarra (University of Kentucky) MA 137: Lecture

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

MATH 1040 Objectives List

MATH 1040 Objectives List MATH 1040 Objectives List Textbook: Calculus, Early Transcendentals, 7th edition, James Stewart Students should expect test questions that require synthesis of these objectives. Unit 1 WebAssign problems

More information

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study:

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Review for Final The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Chapter 2 Find the exact answer to a limit question by using the

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

Definition of a Differential. Finding an expression for dy given f (x) If y = 4x 3 2x 3 then find an expression for dy.

Definition of a Differential. Finding an expression for dy given f (x) If y = 4x 3 2x 3 then find an expression for dy. Section 4 7 Differentials Definition of a Differential Let y = f (x) represent a function that is differentiable on an open interval containing x. The derivative of f (x) is written as f (x) = We call

More information

December Exam Summary

December Exam Summary December Exam Summary 1 Lines and Distances 1.1 List of Concepts Distance between two numbers on the real number line or on the Cartesian Plane. Increments. If A = (a 1, a 2 ) and B = (b 1, b 2 ), then

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Math 1 Lecture 22. Dartmouth College. Monday

Math 1 Lecture 22. Dartmouth College. Monday Math 1 Lecture 22 Dartmouth College Monday 10-31-16 Contents Reminders/Announcements Last Time Implicit Differentiation Derivatives of Inverse Functions Derivatives of Inverse Trigonometric Functions Examish

More information

Calculus Summer Math Practice. 1. Find inverse functions Describe in words how you use algebra to determine the inverse function.

Calculus Summer Math Practice. 1. Find inverse functions Describe in words how you use algebra to determine the inverse function. 1 Calculus 2017-2018: Summer Study Guide Mr. Kevin Braun (kbraun@bdcs.org) Bishop Dunne Catholic School Calculus Summer Math Practice Please see the math department document for instructions on setting

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

Los Angeles Unified School District Secondary Mathematics Branch

Los Angeles Unified School District Secondary Mathematics Branch Math Analysis AB or Trigonometry/Math Analysis AB (Grade 10, 11 or 12) Prerequisite: Algebra 2AB 310601 Math Analysis A 310602 Math Analysis B 310505 Trigonometry/Math Analysis A 310506 Trigonometry/Math

More information

function independent dependent domain range graph of the function The Vertical Line Test

function independent dependent domain range graph of the function The Vertical Line Test Functions A quantity y is a function of another quantity x if there is some rule (an algebraic equation, a graph, a table, or as an English description) by which a unique value is assigned to y by a corresponding

More information

Chapter 3: Derivatives

Chapter 3: Derivatives Name: Date: Period: AP Calc AB Mr. Mellina Chapter 3: Derivatives Sections: v 2.4 Rates of Change & Tangent Lines v 3.1 Derivative of a Function v 3.2 Differentiability v 3.3 Rules for Differentiation

More information

Lecture 2 (Limits) tangent line secant line

Lecture 2 (Limits) tangent line secant line Lecture 2 (Limits) We shall start with the tangent line problem. Definition: A tangent line (Latin word 'touching') to the function f(x) at the point is a line that touches the graph of the function at

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

Theorems (IVT, EVT, and MVT)

Theorems (IVT, EVT, and MVT) Theorems (IVT, EVT, and MVT) Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Multiple

More information

S56 (5.1) Integration.notebook March 09, 2017

S56 (5.1) Integration.notebook March 09, 2017 Today we will be learning about integration (indefinite integrals) Integration What would you get if you undo the differentiation? Integration is the reverse process of differentiation. It is sometimes

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

SOLUTIONS TO EXAM 2, MATH 10550

SOLUTIONS TO EXAM 2, MATH 10550 SOLUTIONS TO EXAM 2, MATH 0550. Find the critical numbers of f(x) = 6 x2 x /3. We have f (x) = 3 x 3 x 2/3 = [ x 5/3 ] 3 x 2/3. So x = 0 is a critical point. For x 0, the equation f (x) = 0 can be written

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Calculus : Summer Study Guide Mr. Kevin Braun Bishop Dunne Catholic School. Calculus Summer Math Study Guide

Calculus : Summer Study Guide Mr. Kevin Braun Bishop Dunne Catholic School. Calculus Summer Math Study Guide 1 Calculus 2018-2019: Summer Study Guide Mr. Kevin Braun (kbraun@bdcs.org) Bishop Dunne Catholic School Name: Calculus Summer Math Study Guide After you have practiced the skills on Khan Academy (list

More information

1.1 Introduction to Limits

1.1 Introduction to Limits Chapter 1 LIMITS 1.1 Introduction to Limits Why Limit? Suppose that an object steadily moves forward, with s(t) denotes the position at time t. The average speed over the interval [1,2] is The average

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Calculus (Math 1A) Lecture 5

Calculus (Math 1A) Lecture 5 Calculus (Math 1A) Lecture 5 Vivek Shende September 5, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed composition, inverses, exponentials,

More information

MAT137 Calculus! Lecture 9

MAT137 Calculus! Lecture 9 MAT137 Calculus! Lecture 9 Today we will study: Limits at infinity. L Hôpital s Rule. Mean Value Theorem. (11.5,11.6, 4.1) PS3 is due this Friday June 16. Next class: Applications of the Mean Value Theorem.

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School Aug. 19, 2010 Complete this assignment at your leisure during the summer. It is designed to help you become more comfortable with your graphing calculator,

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information