PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

Size: px
Start display at page:

Download "PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces."

Transcription

1 PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION NOAH WHITE The basic aim of this note is to describe how to break rational functions into pieces. For example 2x + 3 = + x 3 x +. The point is that we don t know how to integrate the left hand side, but integrating the right hand side is easy! We will break this problem down into pieces. In general we have two polynomials p(x) and q(x). Lets say p(x) has degree m (this means the largest power of x is x m ) and q(x) has degree n. So that p(x) = p m x m + p m x m p x + p 0 and q(x) = q n x n + q n x n q x + q 0 for some numbers p i and q i. We want to be able to write p(x) q(x) = d(x) + A (a x + b ) ci + A 2 (a 2 x + b 2 ) c A n (a n x + b n ) cn for some numbers A i and c i and some polynomial r(x). The numbers a i and b i come from factorising q(x): q(x) = (a x + b )(a 2 x + b 2 ) (a n x + b n ). How are we going to find b(x) and the A i s? Remark. Factorising q(x) into linear factors, as above, might not always be possible (though it is if we use complex numbers). There is a way to deal with this however we will sweep this under the rug for now and assume that q(x) can be neatly factored into linear factors.

2 2 NOAH WHITE If the above general explanation doesn t quite make sense, here are some examples of how we would like to rewrite rational functions: x 3 + 3x 4 = 7 5(x + 4) 2 5(x ) () 6 x x 2 = x 3 x x 4 (2) + x + x x = x + 3 (x ) (x ) 3 (3) x 4 3x 3 + 2x 9 7x + 2 = + 4x x 4 27 x 3 (4) x x 5 x x + 4 = x (x + 4) (x ) + 5 (x ) 2 (5) Hopefully, you will agree that the right hand side of each expression look far easier to integrate than the left hand side!. Polynomial long division The first step in achieving out aim is to rewrite p(x)/q(x) in the form p(x) r(x) = d(x) + q(x) q(x) where d(x) and r(x) are polynomials and the degree of r(x) is less than the degree of q(x). For example, the first step in examples (4) and (5) above would be x 4 3x 3 + 2x 9 7x + 2 = + 4x x 20 7x + 2 x x 5 x x + 4 = x 2 + 5x2 7x + 3 x x + 4. This is achieved by polynomial long division. We call d(x) the divisor and r(x) the remainder. Polynomial long division works exactly like normal long division: + 4x + 6 x 4 + 7x 3 2 4x 3 2 4x x 48x 6 36x x 92 76x 20

3 PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION 3 Lets annotate this step by step: First we take the leading term of the numerator x 4 3x 3 + 2x 9 and divide it by the leading term of the denominator. So x 4 divided by is. Now we multiply the result, by and the denominator 7x + 2 and place it underneath, x 4 + 7x 3 2 We add the two polynomials together to get x 4 + 7x 3 2 4x x and repeat the process. Divide the leading term 4x 3 by to obtain 4x, + 4x x 4 + 7x 3 2 4x x multiply the result by and the denominator and add the resulting polynomial, Once more we repeat the process, + 4x x 4 + 7x 3 2 4x 3 2 4x x 48x 6 36x 9 + 4x + 6 x 4 + 7x 3 2 4x 3 2 4x x 48x 6 36x x 92 76x 20

4 4 NOAH WHITE Now we are at a point were we cannot repeat the process anymore (since 76x is not divisible by ) so we halt. The divisor is d(x) = + 4x + 6 and the remainder is r(x) = 76x Partial fractions, distinct factors Now we just need to deal with the case when p(x) has degree less than the degree of q(x) as in examples (), (2) and (3). First we will deal with the case where q(x) = (a x + b )(a 2 x + b 2 ) (a n x + b n ) and the factors are all distinct. That means we allow q(x) = (x )(x 2)(x 3) but not q(x) = (x ) 2 (x 3). In this case it is always true that we can find constants A, A 2,..., A n such that p(x) q(x) = A a x + b + A 2 a 2 x + b A n a n x + b n. To find these constants we simply multiply out and compare coefficients. We illustrate this with an example. Example 2. x 3 + 3x 4 = x 3 (x + 4)(x ) = A x B x If we multiply this equation on both sides by (x + 4)(x ) we obtain x 3 = A(x ) + B(x + 4) = (A + B)x A + 4B. Since we are comparing two polynomials, the coefficients of every power of x must be equal. Explicitly, looking at the coefficient of x gives A + B = and looking at the constant term gives 4B A = 3. These are simultaneous equations which we can solve to get A = 7 5 and B = 2 5. Example 3. 6 x x 2 = 6 (x )(x 3)(x 4) = A x + B x 3 + C x 4 If we multiply this equation on both sides by (x )(x 3)(x 4) we obtain 6 = A(x 3)(x 4) + B(x )(x 4) + C(x )(x 3) = (A + B + C) (7A + 5B + 4C)x + 2A + 4B + 3C. Looking at the coefficient of gives A + B + C = 0, at the coefficient of x gives 7A + 5B + 4C = 0 and looking at the constant term gives 2A + 4B + 3C = 6. These are simultaneous equations which we can solve to get A =, B = 3 and C = 2.

5 PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION 5 3. Partial fraction, distinct quadratic factors Up to now we have covered only denominators which feature unique linear factors. When factorising a polynomial, it is also possible that we may obtain quadratic factors that we cannot factorise further, for example x 3 + x = ( + )(x ). Here + cannot be broken up further into linear factors. So how do we deal with a fraction of the form ( + )(x )? Answer: for each quadratic factor a + bx + c in the denominator, we get a summand in the partial fraction expansion of the form Example 4. Ax + B a + bx + c. ( + )(x ) = Ax + B + + C x We multiply both sides by ( + )(x ) to obtain = (Ax + B)(x ) + C( + ). We can substitute x = to obtain = 2C, i.e. C = 2. Putting this back into the equation above and expanding, we get = (Ax + B)(x ) + frac2( + ) = (A + 2 )x2 + (B A)x B + 2. Equating coefficients we obtain A = B = 2. So ( + )(x ) = x + 2( + ) + 2(x ). 4. Partial fractions, repeated factors We are now left to deal with the case when q(x) has repeated factors. For example when q(x) = (x ) 2 (x 3) or q = (x ) 3. In general, for every factor of q(x) of the form (ax+b) k or (a +bx+c) k, the partial fraction expansion contains terms of the form A or ax + b + A 2 (ax + b) 2 + A 3 (ax + b) A k (ax + b) k. A x + B a + bx + c + A 2 x + B 2 (a + bx + c) 2 + A 3 x + B 3 (a + bx + c) A kx + B k (a + bx + c) k. To find the constants A i we follow exactly the same process as above. Some examples should make this clear. Example 5. + x + x x = x2 + x + (x ) 3 = A x + B (x ) 2 + C (x ) 3

6 6 NOAH WHITE We multiply both sides by (x ) 3 to obtain + x + = A(x ) 2 + B(x ) + C = A + ( 2A + B)x + A B + C. Comparing coefficient gives us the simultaneous equations Solving these gives Example 6. A = 2A + B = A B + C =. A =, B = 3 and C = x + 3 x x + 4 = 5x2 7x + 3 (x + 4)(x ) 2 = A x Multiplying both sides by (x + 4)(x ) 2 gives B x + 5 7x + 3 = A(x ) 2 + B(x )(x + 4) + C(x + 4) C (x ) 2 = (A + B) + ( 2A + 3B + C)x + A + 4B + 4C. Comparing coefficient gives us the simultaneous equations Solving these gives A + B = 5 2A + 3B + C = 7 A + 4B + 4C = 3. A = 3 25, B = and C = Some useful integrals Here we list some integrals that are useful when using partial fractions to solve integration questions. dx = ln x + a + C x + a (x + a) n dx = + C if n n (x + a) n a 2 + dx = ( x ) a tan + C a

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces. PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION NOAH WHITE The basic aim of this note is to describe how to break rational functions into pieces. For example 2x + 3 1 = 1 + 1 x 1 3 x + 1. The point is that

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

4.5 Integration of Rational Functions by Partial Fractions

4.5 Integration of Rational Functions by Partial Fractions 4.5 Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something like this, 2 x + 1 + 3 x 3 = 2(x 3) (x + 1)(x 3) + 3(x + 1) (x

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

8.4 Partial Fractions

8.4 Partial Fractions 8.4 1 8.4 Partial Fractions Consider the following integral. (1) 13 2x x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that (2) 13 2x x 2 x 2 = 3 x 2 5 x+1 We could then

More information

6.3 Partial Fractions

6.3 Partial Fractions 6.3 Partial Fractions Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 6.3 Partial Fractions Fall 2009 1 / 11 Outline 1 The method illustrated 2 Terminology 3 Factoring Polynomials 4 Partial fraction

More information

(x + 1)(x 2) = 4. x

(x + 1)(x 2) = 4. x dvanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

(2) Dividing both sides of the equation in (1) by the divisor, 3, gives: =

(2) Dividing both sides of the equation in (1) by the divisor, 3, gives: = Dividing Polynomials Prepared by: Sa diyya Hendrickson Name: Date: Let s begin by recalling the process of long division for numbers. Consider the following fraction: Recall that fractions are just division

More information

7.4: Integration of rational functions

7.4: Integration of rational functions A rational function is a function of the form: f (x) = P(x) Q(x), where P(x) and Q(x) are polynomials in x. P(x) = a n x n + a n 1 x n 1 + + a 0. Q(x) = b m x m + b m 1 x m 1 + + b 0. How to express a

More information

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. Class X - NCERT Maths EXERCISE NO:.1 Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) (iv) (v)

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7 Partial Fractions -4-209 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x Advanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Core Mathematics 3 Algebra

Core Mathematics 3 Algebra http://kumarmathsweeblycom/ Core Mathematics 3 Algebra Edited by K V Kumaran Core Maths 3 Algebra Page Algebra fractions C3 The specifications suggest that you should be able to do the following: Simplify

More information

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Adding and Subtracting Rational Expressions Recall that we can use multiplication and common denominators to write a sum or difference

More information

4 Unit Math Homework for Year 12

4 Unit Math Homework for Year 12 Yimin Math Centre 4 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 3 Topic 3 Polynomials Part 2 1 3.2 Factorisation of polynomials and fundamental theorem of algebra...........

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

Warm-Up. Use long division to divide 5 into

Warm-Up. Use long division to divide 5 into Warm-Up Use long division to divide 5 into 3462. 692 5 3462-30 46-45 12-10 2 Warm-Up Use long division to divide 5 into 3462. Divisor 692 5 3462-30 46-45 12-10 2 Quotient Dividend Remainder Warm-Up Use

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 2 JoungDong Kim Week 2: 1D, 1E, 2A Chapter 1D. Rational Expression. Definition of a Rational Expression A rational expression is an expression of the form p, where

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Factorise each polynomial: a) x 2 6x + 5 b) x 2 16 c) 9x 2 25 2) Simplify the following algebraic fractions fully: a) x 2

More information

Chapter 2.7 and 7.3. Lecture 5

Chapter 2.7 and 7.3. Lecture 5 Chapter 2.7 and 7.3 Chapter 2 Polynomial and Rational Functions 2.1 Complex Numbers 2.2 Quadratic Functions 2.3 Polynomial Functions and Their Graphs 2.4 Dividing Polynomials; Remainder and Factor Theorems

More information

PARTIAL FRACTION DECOMPOSITION. Mr. Velazquez Honors Precalculus

PARTIAL FRACTION DECOMPOSITION. Mr. Velazquez Honors Precalculus PARTIAL FRACTION DECOMPOSITION Mr. Velazquez Honors Precalculus ADDING AND SUBTRACTING RATIONAL EXPRESSIONS Recall that we can use multiplication and common denominators to write a sum or difference of

More information

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson JUST THE MATHS UNIT NUMBER 1. ALGEBRA (The theory of partial fractions) by A.J.Hobson 1..1 Introduction 1..2 Standard types of partial fraction problem 1.. Exercises 1..4 Answers to exercises UNIT 1. -

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

Section 4.3. Polynomial Division; The Remainder Theorem and the Factor Theorem

Section 4.3. Polynomial Division; The Remainder Theorem and the Factor Theorem Section 4.3 Polynomial Division; The Remainder Theorem and the Factor Theorem Polynomial Long Division Let s compute 823 5 : Example of Long Division of Numbers Example of Long Division of Numbers Let

More information

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4 2.3 Real Zeros of Polynomial Functions Name: Pre-calculus. Date: Block: 1. Long Division of Polynomials. We have factored polynomials of degree 2 and some specific types of polynomials of degree 3 using

More information

8.6 Partial Fraction Decomposition

8.6 Partial Fraction Decomposition 628 Systems of Equations and Matrices 8.6 Partial Fraction Decomposition This section uses systems of linear equations to rewrite rational functions in a form more palatable to Calculus students. In College

More information

Downloaded from

Downloaded from Question 1: Exercise 2.1 The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) Page 1 of 24 (iv) (v) (v) Page

More information

Chapter 4. Remember: F will always stand for a field.

Chapter 4. Remember: F will always stand for a field. Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

, a 1. , a 2. ,..., a n

, a 1. , a 2. ,..., a n CHAPTER Points to Remember :. Let x be a variable, n be a positive integer and a 0, a, a,..., a n be constants. Then n f ( x) a x a x... a x a, is called a polynomial in variable x. n n n 0 POLNOMIALS.

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

The absolute value (modulus) of a number

The absolute value (modulus) of a number The absolute value (modulus) of a number Given a real number x, its absolute value or modulus is dened as x if x is positive x = 0 if x = 0 x if x is negative For example, 6 = 6, 10 = ( 10) = 10. The absolute

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010 Link to past paper on OCR website: http://www.mei.org.uk/files/papers/c110ju_ergh.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

MSM120 1M1 First year mathematics for civil engineers Revision notes 3

MSM120 1M1 First year mathematics for civil engineers Revision notes 3 MSM0 M First year mathematics for civil engineers Revision notes Professor Robert. Wilson utumn 00 Functions Definition of a function: it is a rule which, given a value of the independent variable (often

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Integration of Rational Functions by Partial Fractions Part 2: Integrating Rational Functions Rational Functions Recall that a rational function is the quotient of two polynomials. x + 3 x + 2 x + 2 x

More information

7.5 Partial Fractions and Integration

7.5 Partial Fractions and Integration 650 CHPTER 7. DVNCED INTEGRTION TECHNIQUES 7.5 Partial Fractions and Integration In this section we are interested in techniques for computing integrals of the form P(x) dx, (7.49) Q(x) where P(x) and

More information

Lesson 11: The Special Role of Zero in Factoring

Lesson 11: The Special Role of Zero in Factoring Lesson 11: The Special Role of Zero in Factoring Student Outcomes Students find solutions to polynomial equations where the polynomial expression is not factored into linear factors. Students construct

More information

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Announcements Calculus II Monday, March 13th WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Today: Sec. 8.5: Partial Fractions Use partial fractions to

More information

Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations

Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations Class: Date: Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations 1 Express the following polynomial function in factored form: P( x) = 10x 3 + x 2 52x + 20 2 SE: Express the following

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Chapter 2: Polynomial and Rational Functions

Chapter 2: Polynomial and Rational Functions Chapter 2: Polynomial and Rational Functions Section 2.1 Quadratic Functions Date: Example 1: Sketching the Graph of a Quadratic Function a) Graph f(x) = 3 1 x 2 and g(x) = x 2 on the same coordinate plane.

More information

Maths Extension 2 - Polynomials. Polynomials

Maths Extension 2 - Polynomials. Polynomials Maths Extension - Polynomials Polynomials! Definitions and properties of polynomials! Factors & Roots! Fields ~ Q Rational ~ R Real ~ C Complex! Finding zeros over the complex field! Factorization & Division

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

MAT01B1: Integration of Rational Functions by Partial Fractions

MAT01B1: Integration of Rational Functions by Partial Fractions MAT01B1: Integration of Rational Functions by Partial Fractions Dr Craig 1 August 2018 My details: Dr Andrew Craig acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3 Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: x 3 + 3 x + x + 3x 7 () x 3 3x + x 3 From the standpoint of integration, the left side of Equation

More information

Polynomial expression

Polynomial expression 1 Polynomial expression Polynomial expression A expression S(x) in one variable x is an algebraic expression in x term as Where an,an-1,,a,a0 are constant and real numbers and an is not equal to zero Some

More information

AS1051: Mathematics. 0. Introduction

AS1051: Mathematics. 0. Introduction AS1051: Mathematics 0 Introduction The aim of this course is to review the basic mathematics which you have already learnt during A-level, and then develop it further You should find it almost entirely

More information

Chapter 2 notes from powerpoints

Chapter 2 notes from powerpoints Chapter 2 notes from powerpoints Synthetic division and basic definitions Sections 1 and 2 Definition of a Polynomial Function: Let n be a nonnegative integer and let a n, a n-1,, a 2, a 1, a 0 be real

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

Quadratics. SPTA Mathematics Higher Notes

Quadratics. SPTA Mathematics Higher Notes H Quadratics SPTA Mathematics Higher Notes Quadratics are expressions with degree 2 and are of the form ax 2 + bx + c, where a 0. The Graph of a Quadratic is called a Parabola, and there are 2 types as

More information

PARTIAL FRACTIONS. Introduction

PARTIAL FRACTIONS. Introduction Introduction PARTIAL FRACTIONS Writing any given proper rational expression of one variable as a sum (or difference) of rational expressions whose denominators are in the simplest forms is called the partial

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

2 the maximum/minimum value is ( ).

2 the maximum/minimum value is ( ). Math 60 Ch3 practice Test The graph of f(x) = 3(x 5) + 3 is with its vertex at ( maximum/minimum value is ( ). ) and the The graph of a quadratic function f(x) = x + x 1 is with its vertex at ( the maximum/minimum

More information

Student: Date: Instructor: kumnit nong Course: MATH 105 by Nong https://xlitemprodpearsoncmgcom/api/v1/print/math Assignment: CH test review 1 Find the transformation form of the quadratic function graphed

More information

Lecture 26. Quadratic Equations

Lecture 26. Quadratic Equations Lecture 26 Quadratic Equations Quadratic polynomials....................................................... 2 Quadratic polynomials....................................................... 3 Quadratic equations

More information

Final Review Accelerated Advanced Algebra

Final Review Accelerated Advanced Algebra Name: ate: 1. What are the factors of z + z 2 + 25z + 25? 5. Factor completely: (7x + 2) 2 6 (z + 1)(z + 5)(z 5) (z 1)(z + 5i) 2 (49x + 1)(x 8) (7x 4)(7x + 8) (7x + 4)(7x 8) (7x + 4)(x 9) (z 1)(z + 5i)(z

More information

CHMC: Finite Fields 9/23/17

CHMC: Finite Fields 9/23/17 CHMC: Finite Fields 9/23/17 1 Introduction This worksheet is an introduction to the fascinating subject of finite fields. Finite fields have many important applications in coding theory and cryptography,

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Simplify: a) 3x 2 5x 5 b) 5x3 y 2 15x 7 2) Factorise: a) x 2 2x 24 b) 3x 2 17x + 20 15x 2 y 3 3) Use long division to calculate:

More information

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx MA3 Lecture 5 ( & 3//00) 77 0.3. Integration by parts If we integrate both sides of the proct rule we get d (uv) dx = dx or uv = d (uv) = dx dx v + udv dx v dx dx + v dx dx + u dv dx dx u dv dx dx This

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polynomial and Rational Functions 3.1 Polynomial Functions and their Graphs So far, we have learned how to graph polynomials of degree 0, 1, and. Degree 0 polynomial functions are things like f(x) =,

More information

Par$al Fac$on Decomposi$on. Academic Resource Center

Par$al Fac$on Decomposi$on. Academic Resource Center Par$al Fac$on Decomposi$on Academic Resource Center Table of Contents. What is Par$al Frac$on Decomposi$on 2. Finding the Par$al Fac$on Decomposi$on 3. Examples 4. Exercises 5. Integra$on with Par$al Fac$ons

More information

Semester Review Packet

Semester Review Packet MATH 110: College Algebra Instructor: Reyes Semester Review Packet Remarks: This semester we have made a very detailed study of four classes of functions: Polynomial functions Linear Quadratic Higher degree

More information

Skills Practice Skills Practice for Lesson 10.1

Skills Practice Skills Practice for Lesson 10.1 Skills Practice Skills Practice for Lesson.1 Name Date Higher Order Polynomials and Factoring Roots of Polynomial Equations Problem Set Solve each polynomial equation using factoring. Then check your solution(s).

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

Math Analysis Notes Mrs. Atkinson 1

Math Analysis Notes Mrs. Atkinson 1 Name: Math Analysis Chapter 7 Notes Day 6: Section 7-1 Solving Systems of Equations with Two Variables; Sections 7-1: Solving Systems of Equations with Two Variables Solving Systems of equations with two

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

Factor each expression. Remember, always find the GCF first. Then if applicable use the x-box method and also look for difference of squares.

Factor each expression. Remember, always find the GCF first. Then if applicable use the x-box method and also look for difference of squares. NOTES 11: RATIONAL EXPRESSIONS AND EQUATIONS Name: Date: Period: Mrs. Nguyen s Initial: LESSON 11.1 SIMPLIFYING RATIONAL EXPRESSIONS Lesson Preview Review Factoring Skills and Simplifying Fractions Factor

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

Class IX Chapter 2 Polynomials Maths

Class IX Chapter 2 Polynomials Maths NCRTSOLUTIONS.BLOGSPOT.COM Class IX Chapter 2 Polynomials Maths Exercise 2.1 Question 1: Which of the following expressions are polynomials in one variable and which are No. It can be observed that the

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

MATHEMATICAL METHODS UNIT 1 CHAPTER 4 CUBIC POLYNOMIALS

MATHEMATICAL METHODS UNIT 1 CHAPTER 4 CUBIC POLYNOMIALS E da = q ε ( B da = 0 E ds = dφ. B ds = μ ( i + μ ( ε ( dφ 3 MATHEMATICAL METHODS UNIT 1 CHAPTER 4 CUBIC POLYNOMIALS dt dt Key knowledge The key features and properties of cubic polynomials functions and

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen In this section you will apply the method of long division to divide a polynomial by a binomial. You will also learn to

More information

Polynomial Functions and Models

Polynomial Functions and Models 1 CA-Fall 2011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 2012 Chapter 4: Polynomial Functions and Rational Functions Section 4.1 Polynomial Functions and Models

More information

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ... Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form... where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

( 3) ( ) ( ) ( ) ( ) ( )

( 3) ( ) ( ) ( ) ( ) ( ) 81 Instruction: Determining the Possible Rational Roots using the Rational Root Theorem Consider the theorem stated below. Rational Root Theorem: If the rational number b / c, in lowest terms, is a root

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information