On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering

Size: px
Start display at page:

Download "On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering"

Transcription

1 On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering Chris Ding, Xiaofeng He, Horst D. Simon Published on SDM 05 Hongchang Gao

2 Outline NMF NMF Kmeans NMF Spectral Clustering NMF Bipartite graph Kmeans

3 Outline NMF NMF Kmeans NMF Spectral Clustering NMF Bipartite graph Kmeans

4 NMF Paatero and apper (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values Environmetrices Lee and Seung (1999, 2000) Learning the parts of objects by non-negative matrix factorization, Nature Algorithms for non-negative matrix factorization, NIPS

5 NMF Matrix Factorization is widely used in machine learning, such as SVD X = U Σ V mixed nonneg interpretation of basis vectors is difficult due to mixed signs mixed

6 NMF Nonnegative Matrix Factorization where X = F G columns of F are the underlying basis vectors rows of G give the weights associated with each basis vector nonneg nonneg X R, F R, G R d n d k n k

7 Outline NMF NMF Kmeans NMF Spectral NMF Bipartite graph Kmenas

8 Kmeans Kmeans clustering is one of most widely used clustering method.

9 Kmeans Reformulate Kmeans Clustering Cluster membership indicators:

10 Kmeans Objective function Replace W = X X, which is the standard inner-product linear Kernel matrix

11 Kernel Kmeans Map x to higher dimension space: Kernel Kmeans objective:

12 NMF Kmeans Orthogonal symmetric NMF is equivalent to Kernel Kmeans clustering

13 Kernel Kmeans=>Symmetric NMF Factorization is equivalent to Kernel K-means clustering with the strict orthogonality relaxed H = arg max r( H WH ) H H= I, H 0 = arg min 2 r( H WH ) H H= I, H 0 = arg min W 2 r( H WH ) + H H H H= I, H 0 = arg min W HH H H= I, H Relaxing the orthogonality H H = I completes the proof

14 Symmetric NMF=> Kernel Kmeans W = HH factorization retains H orthogonality approxiamately. 2 Proof. min W HH is equivalent to max r( H WH ) H 0 min H H H 0 he first one recover the objective 2

15 Symmetric NMF=> Kernel Kmeans he second one Minimize the first term, we get Minimize the second term We should make sure H cannot be all zero

16 Outline NMF NMF Kmeans NMF Spectral NMF Bipartite graph Kmeans

17 Spectral Clustering Spectral clustering objective functions

18

19 Spectral Clustering Reformulate the objective based on Ncut J Replace hen, 1 cut( V, V V ) 1 h ( D W ) h = = K vol V K h Dh K K l l l l l= 1 ( l) l= 1 l l z l = D h 1/2 l 1/2 D hl K ~ K ~ l l l l l= 1 l= 1 = = J z ( I W ) z z z r( Z W Z)

20 NMF Spectral Clustering he objective of spectral clustering max r ( Z W Z ) Z Z= IZ, 0 his is identical to the Kernel Kmeans clustering Spectral Clustering Kernel Kmeans NMF ~

21 Outline NMF NMF Kmeans NMF Spectral NMF Bipartite graph Kmenas

22 Bipartite graph Kmeans Simultaneous clustering of rows and columns

23 Bipartite graph Kmeans Simultaneously cluster the rows and columns of data matrix B= ( x, x x ) 1 2,..., n Row Clustering max ( r F BB F ) F F= IF, 0 Column Clustering max ( r G B BG ) GG= IG, 0

24 Bipartite graph Kmeans Equivalent problem: Solution hen, Bg = λ f, B f = λ g k k k k k k B Bg = λ g, BB f = λ f 2 2 k k k k k k

25 Bipartite graph Kmeans=>NMF he simultaneous row and column Kmeans clustering is equivalent to the following optimization problem

26 Bipartite graph Kmeans=>NMF Proof. max r( F BG) FG, min r( F BG) FG, B r F BG + r F FG G 2 min 2 ( ) ( ) FG, min B FG FG, herefore, NMF is equivalent to Kmeans clustering with relaxed orthogonality contraints. 2

27 NMF=>Bipartite graph Kmeans In the previous, we assume both F and G are orthogonal. If one of them is orthogonal, we 2 can explicitly write B FG as a Kmeans clustering objective function. NMF with orthogonal G is identical to Kmeans clustering of the columns of B.

28 NMF=>Bipartite graph Kmeans Proof. At first, normalize the row of G, s.t. hen, for the objective function We have

29 NMF=>Bipartite graph Kmeans he orthogonality condition of G implies that in each row of G, only one element is nonzero and g ik = 0,1 Summing over i: J = x f 2 k= 1 i C which is the Kmeans clustering K k i k 2

30 Reference Ding, Chris HQ, Xiaofeng He, and Horst D. Simon. "On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering." SDM. Vol Li, ao, and Chris Ding. "he relationships among various nonnegative matrix factorization methods for clustering." Data Mining, ICDM'06. Sixth International Conference on. IEEE, Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): Shi, Jianbo, and Jitendra Malik. "Normalized cuts and image segmentation." Pattern Analysis and Machine Intelligence, IEEE ransactions on 22.8 (2000):

31 hanks

On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering

On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering Chris Ding Xiaofeng He Horst D. Simon Abstract Current nonnegative matrix factorization (NMF) deals with X = FG T type. We

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

Cholesky Decomposition Rectification for Non-negative Matrix Factorization

Cholesky Decomposition Rectification for Non-negative Matrix Factorization Cholesky Decomposition Rectification for Non-negative Matrix Factorization Tetsuya Yoshida Graduate School of Information Science and Technology, Hokkaido University N-14 W-9, Sapporo 060-0814, Japan yoshida@meme.hokudai.ac.jp

More information

arxiv: v2 [stat.ml] 28 Aug 2015

arxiv: v2 [stat.ml] 28 Aug 2015 arxiv:1507.03194v2 [stat.ml] 28 Aug 2015 A Review of Nonnegative Matrix Factorization Methods for Clustering Ali Caner Türkmen Department of Computer Engineering Bogazici University, Istanbul, Turkey caner.turkmen@boun.edu.tr

More information

Introduction to Spectral Graph Theory and Graph Clustering

Introduction to Spectral Graph Theory and Graph Clustering Introduction to Spectral Graph Theory and Graph Clustering Chengming Jiang ECS 231 Spring 2016 University of California, Davis 1 / 40 Motivation Image partitioning in computer vision 2 / 40 Motivation

More information

Multi-Task Co-clustering via Nonnegative Matrix Factorization

Multi-Task Co-clustering via Nonnegative Matrix Factorization Multi-Task Co-clustering via Nonnegative Matrix Factorization Saining Xie, Hongtao Lu and Yangcheng He Shanghai Jiao Tong University xiesaining@gmail.com, lu-ht@cs.sjtu.edu.cn, yche.sjtu@gmail.com Abstract

More information

Graph-Laplacian PCA: Closed-form Solution and Robustness

Graph-Laplacian PCA: Closed-form Solution and Robustness 2013 IEEE Conference on Computer Vision and Pattern Recognition Graph-Laplacian PCA: Closed-form Solution and Robustness Bo Jiang a, Chris Ding b,a, Bin Luo a, Jin Tang a a School of Computer Science and

More information

Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method

Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method Yunshen Zhou Advisor: Prof. Zhaojun Bai University of California, Davis yszhou@math.ucdavis.edu June 15, 2017 Yunshen

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization

Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization Tao Li School of CS Florida International Univ. Miami, FL 33199, USA taoli@cs.fiu.edu Chris Ding CSE Dept.

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database University of Maryland-College Park Advance Scientific Computing I,II Spectral Clustering on Handwritten Digits Database Author: Danielle Middlebrooks Dmiddle1@math.umd.edu Second year AMSC Student Advisor:

More information

Local Learning Regularized Nonnegative Matrix Factorization

Local Learning Regularized Nonnegative Matrix Factorization Local Learning Regularized Nonnegative Matrix Factorization Quanquan Gu Jie Zhou State Key Laboratory on Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology

More information

Non-negative Laplacian Embedding

Non-negative Laplacian Embedding 9 Ninth IEEE International Conference on Data Mining Non-negative Laplacian Embedding Dijun Luo, Chris Ding, Heng Huang Computer Science and Engineering Department University of Texas at Arlington Arlington,

More information

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences Martijn Wieling Department of Computational Linguistics, University of Groningen Seminar in Methodology and Statistics

More information

Multi-Task Clustering using Constrained Symmetric Non-Negative Matrix Factorization

Multi-Task Clustering using Constrained Symmetric Non-Negative Matrix Factorization Multi-Task Clustering using Constrained Symmetric Non-Negative Matrix Factorization Samir Al-Stouhi Chandan K. Reddy Abstract Researchers have attempted to improve the quality of clustering solutions through

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Jan 21

Big Data Analytics. Special Topics for Computer Science CSE CSE Jan 21 Big Data Analytics Special Topics for Computer Science CSE 09-001 CSE 09-00 Jan 1 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Project Rules Literature

More information

Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE Artificial Intelligence Grad Project Dr. Debasis Mitra

Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE Artificial Intelligence Grad Project Dr. Debasis Mitra Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE 5290 - Artificial Intelligence Grad Project Dr. Debasis Mitra Group 6 Taher Patanwala Zubin Kadva Factor Analysis (FA) 1. Introduction Factor

More information

Linear Spectral Hashing

Linear Spectral Hashing Linear Spectral Hashing Zalán Bodó and Lehel Csató Babeş Bolyai University - Faculty of Mathematics and Computer Science Kogălniceanu 1., 484 Cluj-Napoca - Romania Abstract. assigns binary hash keys to

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman January 27, 2015 MVA 2014/2015

More information

Spectral Clustering. by HU Pili. June 16, 2013

Spectral Clustering. by HU Pili. June 16, 2013 Spectral Clustering by HU Pili June 16, 2013 Outline Clustering Problem Spectral Clustering Demo Preliminaries Clustering: K-means Algorithm Dimensionality Reduction: PCA, KPCA. Spectral Clustering Framework

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY OUTLINE Why We Need Matrix Decomposition SVD (Singular Value Decomposition) NMF (Nonnegative

More information

Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis

Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis Hansi Jiang Carl Meyer North Carolina State University October 27, 2015 1 /

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 12: Graph Clustering Cho-Jui Hsieh UC Davis May 29, 2018 Graph Clustering Given a graph G = (V, E, W ) V : nodes {v 1,, v n } E: edges

More information

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 1 Zhong-Yuan Zhang, 2 Chris Ding, 3 Jie Tang *1, Corresponding Author School of Statistics,

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

a Short Introduction

a Short Introduction Collaborative Filtering in Recommender Systems: a Short Introduction Norm Matloff Dept. of Computer Science University of California, Davis matloff@cs.ucdavis.edu December 3, 2016 Abstract There is a strong

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

arxiv: v1 [stat.ml] 23 Dec 2015

arxiv: v1 [stat.ml] 23 Dec 2015 k-means Clustering Is Matrix Factorization Christian Bauckhage arxiv:151.07548v1 [stat.ml] 3 Dec 015 B-IT, University of Bonn, Bonn, Germany Fraunhofer IAIS, Sankt Augustin, Germany http://mmprec.iais.fraunhofer.de/bauckhage.html

More information

Spectral Clustering on Handwritten Digits Database Mid-Year Pr

Spectral Clustering on Handwritten Digits Database Mid-Year Pr Spectral Clustering on Handwritten Digits Database Mid-Year Presentation Danielle dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park

More information

Spectral Techniques for Clustering

Spectral Techniques for Clustering Nicola Rebagliati 1/54 Spectral Techniques for Clustering Nicola Rebagliati 29 April, 2010 Nicola Rebagliati 2/54 Thesis Outline 1 2 Data Representation for Clustering Setting Data Representation and Methods

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Jiho Yoo and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

Convex and Semi-Nonnegative Matrix Factorizations

Convex and Semi-Nonnegative Matrix Factorizations CONVEX AND SEMI-NONNEGATIVE MATRIX FACTORIZATIONS: DING, LI AND JORDAN 1 Convex and Semi-Nonnegative Matrix Factorizations Chris Ding, Tao Li, and Michael I. Jordan Chris Ding is with the Department of

More information

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition ECS231: Spectral Partitioning Based on Berkeley s CS267 lecture on graph partition 1 Definition of graph partitioning Given a graph G = (N, E, W N, W E ) N = nodes (or vertices), E = edges W N = node weights

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

arxiv: v3 [cs.lg] 18 Mar 2013

arxiv: v3 [cs.lg] 18 Mar 2013 Hierarchical Data Representation Model - Multi-layer NMF arxiv:1301.6316v3 [cs.lg] 18 Mar 2013 Hyun Ah Song Department of Electrical Engineering KAIST Daejeon, 305-701 hyunahsong@kaist.ac.kr Abstract Soo-Young

More information

Spectral clustering. Two ideal clusters, with two points each. Spectral clustering algorithms

Spectral clustering. Two ideal clusters, with two points each. Spectral clustering algorithms A simple example Two ideal clusters, with two points each Spectral clustering Lecture 2 Spectral clustering algorithms 4 2 3 A = Ideally permuted Ideal affinities 2 Indicator vectors Each cluster has an

More information

A spectral clustering algorithm based on Gram operators

A spectral clustering algorithm based on Gram operators A spectral clustering algorithm based on Gram operators Ilaria Giulini De partement de Mathe matiques et Applications ENS, Paris Joint work with Olivier Catoni 1 july 2015 Clustering task of grouping

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

L 2,1 Norm and its Applications

L 2,1 Norm and its Applications L 2, Norm and its Applications Yale Chang Introduction According to the structure of the constraints, the sparsity can be obtained from three types of regularizers for different purposes.. Flat Sparsity.

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

CS 556: Computer Vision. Lecture 13

CS 556: Computer Vision. Lecture 13 CS 556: Computer Vision Lecture 1 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Outline Perceptual grouping Low-level segmentation Ncuts Perceptual Grouping What do you see? 4 What do you see? Rorschach

More information

Fusion of Similarity Data in Clustering

Fusion of Similarity Data in Clustering Fusion of Similarity Data in Clustering Tilman Lange and Joachim M. Buhmann (langet,jbuhmann)@inf.ethz.ch Institute of Computational Science, Dept. of Computer Sience, ETH Zurich, Switzerland Abstract

More information

Clustering. SVD and NMF

Clustering. SVD and NMF Clustering with the SVD and NMF Amy Langville Mathematics Department College of Charleston Dagstuhl 2/14/2007 Outline Fielder Method Extended Fielder Method and SVD Clustering with SVD vs. NMF Demos with

More information

Overlapping Communities

Overlapping Communities Overlapping Communities Davide Mottin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides GRAPH

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

GAUSS-SEIDEL BASED NON-NEGATIVE MATRIX FACTORIZATION FOR GENE EXPRESSION CLUSTERING

GAUSS-SEIDEL BASED NON-NEGATIVE MATRIX FACTORIZATION FOR GENE EXPRESSION CLUSTERING GAUSS-SEIDEL BASED NON-NEGAIVE MARIX FACORIZAION FOR GENE EXPRESSION CLUSERING Qing Liao, Naiyang Guan, Qian Zhang Dept. of Computer Science & echnology, he Hong Kong University of Science and echnology

More information

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University)

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) The authors explain how the NCut algorithm for graph bisection

More information

A Unifying Approach to Hard and Probabilistic Clustering

A Unifying Approach to Hard and Probabilistic Clustering A Unifying Approach to Hard and Probabilistic Clustering Ron Zass and Amnon Shashua School of Engineering and Computer Science, The Hebrew University, Jerusalem 91904, Israel Abstract We derive the clustering

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels March 13, 2008 Paper: R.R. Coifman, S. Lafon, maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels Figure: Example Application from [LafonWWW] meaningful geometric

More information

Dimension Reduction and Iterative Consensus Clustering

Dimension Reduction and Iterative Consensus Clustering Dimension Reduction and Iterative Consensus Clustering Southeastern Clustering and Ranking Workshop August 24, 2009 Dimension Reduction and Iterative 1 Document Clustering Geometry of the SVD Centered

More information

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA

More information

Learning a Bi-Stochastic Data Similarity Matrix

Learning a Bi-Stochastic Data Similarity Matrix Learning a Bi-Stochastic Data Similarity Matrix Fei Wang Department of Statistical Science Cornell University Ithaca, NY 14853, USA fw83@cornell.edu Ping Li Department of Statistical Science Cornell University

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Fast Nonnegative Matrix Factorization with Rank-one ADMM Fast Nonnegative Matrix Factorization with Rank-one Dongjin Song, David A. Meyer, Martin Renqiang Min, Department of ECE, UCSD, La Jolla, CA, 9093-0409 dosong@ucsd.edu Department of Mathematics, UCSD,

More information

AN ENHANCED INITIALIZATION METHOD FOR NON-NEGATIVE MATRIX FACTORIZATION. Liyun Gong 1, Asoke K. Nandi 2,3 L69 3BX, UK; 3PH, UK;

AN ENHANCED INITIALIZATION METHOD FOR NON-NEGATIVE MATRIX FACTORIZATION. Liyun Gong 1, Asoke K. Nandi 2,3 L69 3BX, UK; 3PH, UK; 213 IEEE INERNAIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEP. 22 25, 213, SOUHAMPON, UK AN ENHANCED INIIALIZAION MEHOD FOR NON-NEGAIVE MARIX FACORIZAION Liyun Gong 1, Asoke K. Nandi 2,3

More information

Automatic Rank Determination in Projective Nonnegative Matrix Factorization

Automatic Rank Determination in Projective Nonnegative Matrix Factorization Automatic Rank Determination in Projective Nonnegative Matrix Factorization Zhirong Yang, Zhanxing Zhu, and Erkki Oja Department of Information and Computer Science Aalto University School of Science and

More information

Nonnegative Matrix Tri-Factorization Based High-Order Co-Clustering and Its Fast Implementation

Nonnegative Matrix Tri-Factorization Based High-Order Co-Clustering and Its Fast Implementation 2011 11th IEEE International Conference on Data Mining Nonnegative Matrix Tri-Factorization Based High-Order Co-Clustering and Its Fast Implementation Hua Wang, Feiping Nie, Heng Huang, Chris Ding Department

More information

EE 381V: Large Scale Learning Spring Lecture 16 March 7

EE 381V: Large Scale Learning Spring Lecture 16 March 7 EE 381V: Large Scale Learning Spring 2013 Lecture 16 March 7 Lecturer: Caramanis & Sanghavi Scribe: Tianyang Bai 16.1 Topics Covered In this lecture, we introduced one method of matrix completion via SVD-based

More information

Non-negative matrix factorization with fixed row and column sums

Non-negative matrix factorization with fixed row and column sums Available online at www.sciencedirect.com Linear Algebra and its Applications 9 (8) 5 www.elsevier.com/locate/laa Non-negative matrix factorization with fixed row and column sums Ngoc-Diep Ho, Paul Van

More information

Learning Spectral Clustering

Learning Spectral Clustering Learning Spectral Clustering Francis R. Bach Computer Science University of California Berkeley, CA 94720 fbach@cs.berkeley.edu Michael I. Jordan Computer Science and Statistics University of California

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

Why does Subsequence Time-Series Clustering Produce Sine Waves?

Why does Subsequence Time-Series Clustering Produce Sine Waves? Why does Subsequence Time-Series Clustering Produce Sine Waves? Tsuyoshi Idé IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato, 242-852 Kanagawa, Japan goodidea@jp.ibm.com Abstract.

More information

On Spectral Basis Selection for Single Channel Polyphonic Music Separation

On Spectral Basis Selection for Single Channel Polyphonic Music Separation On Spectral Basis Selection for Single Channel Polyphonic Music Separation Minje Kim and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong, Nam-gu

More information

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization Nonnegative Matrix Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Statistical and Computational Analysis of Locality Preserving Projection

Statistical and Computational Analysis of Locality Preserving Projection Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He xiaofei@cs.uchicago.edu Department of Computer Science, University of Chicago, 00 East 58th Street, Chicago, IL 60637

More information

Clustering by Nonnegative Matrix Factorization Using Graph Random Walk

Clustering by Nonnegative Matrix Factorization Using Graph Random Walk Clustering by Nonnegative Matrix Factorization Using Graph Random Walk Zhirong Yang, Tele Hao, Onur Dmen, Xi Chen and Erkki Oja Department of Information and Computer Science Aalto University, 00076, Finland

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Dongdong Chen and Jian Cheng Lv and Zhang Yi

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

Weighted Consensus Clustering

Weighted Consensus Clustering Weighted Consensus Clustering ao Li Chris Ding Abstract Consensus clustering has emerged as an important extension of the classical clustering problem. We propose weighted consensus clustering, where each

More information

MATLAB implementation of a scalable spectral clustering algorithm with cosine similarity

MATLAB implementation of a scalable spectral clustering algorithm with cosine similarity MATLAB implementation of a scalable spectral clustering algorithm with cosine similarity Guangliang Chen San José State University, USA RRPR 2018, Beijing, China Introduction We presented a fast spectral

More information

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley Jure Leskovec (@jure) Joint work with Jaewon Yang, Julian McAuley Given a network, find communities! Sets of nodes with common function, role or property 2 3 Q: How and why do communities form? A: Strength

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Ulrike von Luxburg, Gary Miller, Mikhail Belkin October 16th, 2017 MVA 2017/2018

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION Ehsan Hosseini Asl 1, Jacek M. Zurada 1,2 1 Department of Electrical and Computer Engineering University of Louisville, Louisville,

More information

Space-Variant Computer Vision: A Graph Theoretic Approach

Space-Variant Computer Vision: A Graph Theoretic Approach p.1/65 Space-Variant Computer Vision: A Graph Theoretic Approach Leo Grady Cognitive and Neural Systems Boston University p.2/65 Outline of talk Space-variant vision - Why and how of graph theory Anisotropic

More information

A Generative Block-Diagonal Model for Clustering

A Generative Block-Diagonal Model for Clustering A Generative Block-Diagonal Model for Clustering Junxiang Chen Dept. of Electrical & Computer Engineering Northeastern University Boston, MA 02115 jchen@ece.neu.edu Jennifer Dy Dept. of Electrical & Computer

More information

Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence, Chi-square Statistic, and a Hybrid Method

Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence, Chi-square Statistic, and a Hybrid Method Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence, hi-square Statistic, and a Hybrid Method hris Ding a, ao Li b and Wei Peng b a Lawrence Berkeley National Laboratory,

More information

Multiclass Spectral Clustering

Multiclass Spectral Clustering Multiclass Spectral Clustering Stella X. Yu Jianbo Shi Robotics Institute and CNBC Dept. of Computer and Information Science Carnegie Mellon University University of Pennsylvania Pittsburgh, PA 15213-3890

More information

NONNEGATIVE matrix factorization (NMF) is a

NONNEGATIVE matrix factorization (NMF) is a Algorithms for Orthogonal Nonnegative Matrix Factorization Seungjin Choi Abstract Nonnegative matrix factorization (NMF) is a widely-used method for multivariate analysis of nonnegative data, the goal

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II Spectral clustering: overview MATH 567: Mathematical Techniques in Data Science Clustering II Dominique uillot Departments of Mathematical Sciences University of Delaware Overview of spectral clustering:

More information

Clustering by Low-Rank Doubly Stochastic Matrix Decomposition

Clustering by Low-Rank Doubly Stochastic Matrix Decomposition Zhirong Yang zhirong.yang@aalto.fi Department of Information and Computer Science, Aalto University, 00076, Finland Erkki Oja erkki.oja@aalto.fi Department of Information and Computer Science, Aalto University,

More information

CS 664 Segmentation (2) Daniel Huttenlocher

CS 664 Segmentation (2) Daniel Huttenlocher CS 664 Segmentation (2) Daniel Huttenlocher Recap Last time covered perceptual organization more broadly, focused in on pixel-wise segmentation Covered local graph-based methods such as MST and Felzenszwalb-Huttenlocher

More information

Research Article Relationship Matrix Nonnegative Decomposition for Clustering

Research Article Relationship Matrix Nonnegative Decomposition for Clustering Mathematical Problems in Engineering Volume 2011, Article ID 864540, 15 pages doi:10.1155/2011/864540 Research Article Relationship Matrix Nonnegative Decomposition for Clustering Ji-Yuan Pan and Jiang-She

More information

Sparseness Constraints on Nonnegative Tensor Decomposition

Sparseness Constraints on Nonnegative Tensor Decomposition Sparseness Constraints on Nonnegative Tensor Decomposition Na Li nali@clarksonedu Carmeliza Navasca cnavasca@clarksonedu Department of Mathematics Clarkson University Potsdam, New York 3699, USA Department

More information

he Applications of Tensor Factorization in Inference, Clustering, Graph Theory, Coding and Visual Representation

he Applications of Tensor Factorization in Inference, Clustering, Graph Theory, Coding and Visual Representation he Applications of Tensor Factorization in Inference, Clustering, Graph Theory, Coding and Visual Representation Amnon Shashua School of Computer Science & Eng. The Hebrew University Matrix Factorization

More information

An indicator for the number of clusters using a linear map to simplex structure

An indicator for the number of clusters using a linear map to simplex structure An indicator for the number of clusters using a linear map to simplex structure Marcus Weber, Wasinee Rungsarityotin, and Alexander Schliep Zuse Institute Berlin ZIB Takustraße 7, D-495 Berlin, Germany

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Bhargav Kanagal Department of Computer Science University of Maryland College Park, MD 277 bhargav@cs.umd.edu Vikas

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Adaptive Affinity Matrix for Unsupervised Metric Learning

Adaptive Affinity Matrix for Unsupervised Metric Learning Adaptive Affinity Matrix for Unsupervised Metric Learning Yaoyi Li, Junxuan Chen, Yiru Zhao and Hongtao Lu Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering,

More information

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information