Exploiting Primal and Dual Sparsity for Extreme Classification 1

Size: px
Start display at page:

Download "Exploiting Primal and Dual Sparsity for Extreme Classification 1"

Transcription

1 Exploiting Primal and Dual Sparsity for Extreme Classification 1 Ian E.H. Yen Joint work with Xiangru Huang, Kai Zhong, Pradeep Ravikumar and Inderjit Dhillon Machine Learning Department Carnegie Mellon University Department of Computer Science University of Texas at Austin 1 PD-Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification. ICML / 19

2 Outline 1 Extreme Multiclass & Multilabel Classification 2 Joint Primal and Dual Sparsity 3 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) 4 Experimental Results 2 / 19

3 Extreme Multiclass & Multilabel Classification Goal Learn a function h(x) : R D R K from D input features to K output scores consistent with the ground-truth labels y {0, 1} K. We consider problems with large K (e.g ). Let P(y) = {k y k = 1} and N (y) = {k y k = 0}. Multiclass: P(y) = 1. Multilabel: 0 < P(y) K typically. Linear Classification: h(x) := W T x where W : D K. Easily extended to nonlinear setting via Random Features φ(x). 3 / 19

4 Extreme Multiclass & Multilabel Classification Challenge Standard approaches (1-vs-All, 1-vs-1, Multiclass SVM) require prohibitive Ω(NDK) cost for training/prediction. Existing Approach 1: Low-Rank Embedding h(x) = W T x = (UV T )x. Existing Approach 2: Tree group {w 1, w 2,..., w K } via hierarchy. - Searching for the best tree could be difficult. When structural assumption does not hold lower accuracy than one-vs-all approach. Question If nnz(x) D, low-rank approach could have nnz(v T x) > nnz(x). Can we make model h(x) compact without sacrificing accuracy? 4 / 19

5 Outline 1 Extreme Multiclass & Multilabel Classification 2 Joint Primal and Dual Sparsity 3 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) 4 Experimental Results 5 / 19

6 Dual Sparsity Binary SVM Prediction score z R and label y { 1, 1}. L(z, y) = max(1 yz, 0) Dual solution α 0 1 yz attains the maximum. In practice, L(z, y) > 0 for a significant fraction of samples dual solution α R N has nnz(α) N. Multiclass SVM (Crammer & Singer, 2001) Prediction score z R K and label y [K]. L(z, y) = max (1 + z k z y ) + k [K]\y Dual solution α k z k z y > 0 attains the maximum (k is a Support Label). In practice, dual solution α R N K has nnz(α) NK for large K. 6 / 19

7 Joint Primal & Dual Sparsity Max-Margin Loss for Multilabel (Crammer & Singer, 2003) ( ) L(z, y) = 1 + zkn z kp max k n N (y), k p P(y) + The W R D K obtained from minimization of Max-Margin Loss min W N L(W T x i, y i ) i=1 is determined by the scores of Support Labels: that attain the maximum. (k n, k p ) argmax (1 + z kn z kp ) + k n N (y), k p P(y) 7 / 19

8 Joint Primal & Dual Sparsity Max-Margin Loss (Crammer & Singer, 2003) ( ) L(z, y) = 1 + zkn z kp max k n N (y), k p P(y) + Optimal W should satisfy Nk A constraints where k A is the average #Support Labels per sample (k A K). DK Nk A W is under-determined Can we find a sparse W with minimum loss? 8 / 19

9 Joint Primal & Dual Sparsity Theorem (Joint Primal & Dual Sparsity) For any λ > 0 and {x i } N i=1 drawn from continuous probability distribution, W argmin W λ K w k 1 + k=1 N L(W T x i, y i ) satisfies Dk W = nnz(w ) nnz(a ) = Nk A, where A : N K is the optimal solution of the dual problem. i=1 9 / 19

10 Joint Primal & Dual Sparsity l 1 -l 2 Regularization For ease of optimization, we solve the l 1 -l 2 -regularized objective min W K k=1 1 2 w k 2 + λ w k 1 + C N L(W T x i, y i ), i=1 which gives sparsity pattern similar to l 1 -regularized objective empirically. Sparsity Level when λ is tuned for best accuracy: Data sets k A : #support labels/sample k W : #nonzero/feature EUR-Lex (K=3,956) LSHTC-wiki (K=320,338) LSHTC (K=12,294) aloi.bin (K=1,000) bibtex (K=159) Dmoz (K=11,947) / 19

11 Outline 1 Extreme Multiclass & Multilabel Classification 2 Joint Primal and Dual Sparsity 3 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) 4 Experimental Results 11 / 19

12 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) Dual Form of l 1 -l 2 -regularized problem min α i C i, i [N] G(α) := 1 2 K w k (α k ) 2 + k=1 N e T i α i where w k (α k ) := prox λ. 1 (X T α k ) and C i is a (P i, N i )-bi-simplex. i=1 Smooth objective G(α) + Block-separable constraints α i C i. Minimize w.r.t. one block α i at a time. Challenge: How to identify Support labels and Active Features? Solution: Leverage primal sparsity to search active dual variables. Leverage dual sparsity to update active primal variables. 12 / 19

13 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) Search active set A i via sparse W ; maintain W (α) via sparse α i. O(nnz(x i )nnz(w j ) + nnz(x }{{} i )nnz(α i )) cost per iteration. }{{} search maintain 13 / 19

14 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) Costs O(nnz(X)k W + nnz(x)k A ) per pass of data; O(1/ɛ) passes needed to have 1 N (G(α) G ) ɛ. We know Dk W Nk A so the search time could dominate if D N. In such case, we use sampling techniques to speed up the search step. 14 / 19

15 Dual-BCFW: Efficient Implementation Fast prediction by w k, x i = j nz(x i ) x ijw j to exploit sparsity of both W and x i O(nnz(x i )k W ) (compared to O(nnz(x i )r + rk) in low-rank approach of rank r). Space-efficiency: DK space is not acceptable while maintaining W = prox(x T A) requires random access. We use D hash tables sharing a hash function Evaluate once for nnz(x i ) updates. 15 / 19

16 Outline 1 Extreme Multiclass & Multilabel Classification 2 Joint Primal and Dual Sparsity 3 Dual Block-Coordinate Frank-Wolfe (Dual-BCFW) 4 Experimental Results 16 / 19

17 Experimental Result: Multiclass 1-vs-All takes long time to train; Multi-SVM could be out of memory (> 300G). Low-rank and Tree assumption could hurt accuracy (FastXML ensembles 50 trees to re-gain accuracy). Low-rank could even lead to slower prediction for sparse feature vectors. PD-Sparse reduces training, prediction time by orders of magnitude without sacrificing accuracy. 17 / 19

18 Experimental Result: Multilabel 1-vs-All takes > 3 months to train. Even storing models is a problem ( 870G). PD-Sparse takes 1 day to train, and has 10% higher accuracy than tree-based and low-rank approaches, with orders of magnitude faster prediction. (Please see more results in the paper) 18 / 19

19 Conclusion Extreme Classification is inherently Primal and Dual sparse when N, D, K are large. A Dual BCFW algorithm can identify active dual variables by leveraging sparsity in the primal, and vice versa, thus resulting in complexity sublinear to K. Experiment shows the PD-Sparse approach reduces training and prediction time by orders of magnitude without sacrificing accuracy. 19 / 19

PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification

PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification Ian E. H. Yen 1 * Xiangru Huang 1 * Kai Zhong Pradeep Ravikumar 1, Inderjit S. Dhillon 1, * Both authors

More information

PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification

PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification Ian E. H. Yen 1 * Xiangru Huang 1 * Kai Zhong Pradeep Ravikumar 1, Inderjit S. Dhillon 1, * Both authors

More information

Extreme Multi-label Classification for Information Retrieval XMLC4IR Tutorial at ECIR 2018

Extreme Multi-label Classification for Information Retrieval XMLC4IR Tutorial at ECIR 2018 Extreme Multi-label Classification for Information Retrieval XMLC4IR Tutorial at ECIR 2018 Rohit Babbar 1 and Krzysztof Dembczyński 2 1 Aalto University, Finland, 2 Poznań University of Technology, Poland

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Lecture 3: Multiclass Classification

Lecture 3: Multiclass Classification Lecture 3: Multiclass Classification Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Some slides are adapted from Vivek Skirmar and Dan Roth CS6501 Lecture 3 1 Announcement v Please enroll in

More information

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Sparse Linear Programg via Primal and Dual Augmented Coordinate Descent Presenter: Joint work with Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar and Inderjit Dhillon. Sparse Linear Program Given vectors

More information

PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification

PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification Ian E.H. Yen Xiangru Huang Wei Dai, Pradeep Ravikumar Inderjit Dhillon Eric Xing, Carnegie Mellon University University of Texas

More information

Latent Feature Lasso

Latent Feature Lasso Latent Feature Lasso Ian E.H. Yen, Wei-Cheng Lee, Sung-En Chang, Arun Suggala, Shou-De Lin and Pradeep Ravikumar. Carnegie Mellon University National Taiwan University 1 / 16 Latent Feature Models Latent

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Nearest Neighbor based Coordinate Descent

Nearest Neighbor based Coordinate Descent Nearest Neighbor based Coordinate Descent Pradeep Ravikumar, UT Austin Joint with Inderjit Dhillon, Ambuj Tewari Simons Workshop on Information Theory, Learning and Big Data, 2015 Modern Big Data Across

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction

Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction Yoonkyung Lee Department of Statistics The Ohio State University http://www.stat.ohio-state.edu/ yklee Predictive

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology, U.S.A. Conf. on Algorithmic Learning Theory, October 9,

More information

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Shai Shalev-Shwartz and Tong Zhang School of CS and Engineering, The Hebrew University of Jerusalem Optimization for Machine

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 5: Multi-class and preference learning Juho Rousu 11. October, 2017 Juho Rousu 11. October, 2017 1 / 37 Agenda from now on: This week s theme: going

More information

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression CIS 520: Machine Learning Oct 04, 207 Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may

More information

Discriminative Learning and Big Data

Discriminative Learning and Big Data AIMS-CDT Michaelmas 2016 Discriminative Learning and Big Data Lecture 2: Other loss functions and ANN Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Lecture

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Coordinate Descent and Ascent Methods

Coordinate Descent and Ascent Methods Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, 2015 1 / 22 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem:

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

SeCSeq: Semantic Coding for Sequence-to-Sequence based Extreme Multi-label Classification

SeCSeq: Semantic Coding for Sequence-to-Sequence based Extreme Multi-label Classification SeCSeq: Semantic Coding for Sequence-to-Sequence based Extreme Multi-label Classification Wei-Cheng Chang 1 Hsiang-Fu Yu 2 Inderjit S. Dhillon 2 Yiming Yang 1 1 Carnegie Mellon University, 2 Amazon {wchang2,yiming}@cs.cmu.edu

More information

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 13 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Multi-Class Classification Mehryar Mohri - Introduction to Machine Learning page 2 Motivation

More information

Lecture 18: Multiclass Support Vector Machines

Lecture 18: Multiclass Support Vector Machines Fall, 2017 Outlines Overview of Multiclass Learning Traditional Methods for Multiclass Problems One-vs-rest approaches Pairwise approaches Recent development for Multiclass Problems Simultaneous Classification

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m ) Set W () i The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m m =.5 1 n W (m 1) i y i h(x i ; 2 ˆθ

More information

Support Vector Machines

Support Vector Machines Two SVM tutorials linked in class website (please, read both): High-level presentation with applications (Hearst 1998) Detailed tutorial (Burges 1998) Support Vector Machines Machine Learning 10701/15781

More information

Supervised Learning of Non-binary Problems Part I: Multiclass Categorization via Output Codes

Supervised Learning of Non-binary Problems Part I: Multiclass Categorization via Output Codes Supervised Learning of Non-binary Problems Part I: Multiclass Categorization via Output Codes Yoram Singer Hebrew University http://www.cs.huji.il/ singer Based on joint work with: Koby Crammer, Hebrew

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Online Passive-Aggressive Algorithms. Tirgul 11

Online Passive-Aggressive Algorithms. Tirgul 11 Online Passive-Aggressive Algorithms Tirgul 11 Multi-Label Classification 2 Multilabel Problem: Example Mapping Apps to smart folders: Assign an installed app to one or more folders Candy Crush Saga 3

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Algorithms for Predicting Structured Data

Algorithms for Predicting Structured Data 1 / 70 Algorithms for Predicting Structured Data Thomas Gärtner / Shankar Vembu Fraunhofer IAIS / UIUC ECML PKDD 2010 Structured Prediction 2 / 70 Predicting multiple outputs with complex internal structure

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Does Tail Label Help for Large-Scale Multi-Label Learning

Does Tail Label Help for Large-Scale Multi-Label Learning Does Tail Label Help for Large-Scale Multi-Label Learning Tong Wei and Yu-Feng Li National Key Laboratory for Novel Software Technology, Nanjing University Collaborative Innovation Center of Novel Software

More information

A Unified Algorithm for One-class Structured Matrix Factorization with Side Information

A Unified Algorithm for One-class Structured Matrix Factorization with Side Information A Unified Algorithm for One-class Structured Matrix Factorization with Side Information Hsiang-Fu Yu University of Texas at Austin rofuyu@cs.utexas.edu Hsin-Yuan Huang National Taiwan University momohuang@gmail.com

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory S.V. N. (vishy) Vishwanathan Purdue University and Microsoft vishy@purdue.edu October 9, 2012 S.V. N. Vishwanathan (Purdue,

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 27, 2015 Outline Linear regression Ridge regression and Lasso Time complexity (closed form solution) Iterative Solvers Regression Input: training

More information

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina Indirect Rule Learning: Support Vector Machines Indirect learning: loss optimization It doesn t estimate the prediction rule f (x) directly, since most loss functions do not have explicit optimizers. Indirection

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

MULTIPLEKERNELLEARNING CSE902

MULTIPLEKERNELLEARNING CSE902 MULTIPLEKERNELLEARNING CSE902 Multiple Kernel Learning -keywords Heterogeneous information fusion Feature selection Max-margin classification Multiple kernel learning MKL Convex optimization Kernel classification

More information

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML)

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML) Machine Learning Fall 2017 Kernels (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang (Chap. 12 of CIML) Nonlinear Features x4: -1 x1: +1 x3: +1 x2: -1 Concatenated (combined) features XOR:

More information

Efficient Maximum Margin Clustering

Efficient Maximum Margin Clustering Dept. Automation, Tsinghua Univ. MLA, Nov. 8, 2008 Nanjing, China Outline 1 2 3 4 5 Outline 1 2 3 4 5 Support Vector Machine Given X = {x 1,, x n }, y = (y 1,..., y n ) { 1, +1} n, SVM finds a hyperplane

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin (accepted by ALT 06, joint work with Ling Li) Learning Systems Group, Caltech Workshop Talk in MLSS 2006, Taipei, Taiwan, 07/25/2006

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Max-margin learning of GM Eric Xing Lecture 28, Apr 28, 2014 b r a c e Reading: 1 Classical Predictive Models Input and output space: Predictive

More information

Midterms. PAC Learning SVM Kernels+Boost Decision Trees. MultiClass CS446 Spring 17

Midterms. PAC Learning SVM Kernels+Boost Decision Trees. MultiClass CS446 Spring 17 Midterms PAC Learning SVM Kernels+Boost Decision Trees 1 Grades are on a curve Midterms Will be available at the TA sessions this week Projects feedback has been sent. Recall that this is 25% of your grade!

More information

Foundations of Machine Learning Multi-Class Classification. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Multi-Class Classification. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Multi-Class Classification Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation Real-world problems often have multiple classes: text, speech,

More information

Support Vector and Kernel Methods

Support Vector and Kernel Methods SIGIR 2003 Tutorial Support Vector and Kernel Methods Thorsten Joachims Cornell University Computer Science Department tj@cs.cornell.edu http://www.joachims.org 0 Linear Classifiers Rules of the Form:

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Sparse Kernel Machines - SVM

Sparse Kernel Machines - SVM Sparse Kernel Machines - SVM Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Support

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Uppsala University Department of Linguistics and Philology Slides borrowed from Ryan McDonald, Google Research Machine Learning for NLP 1(50) Introduction Linear Classifiers Classifiers

More information

Accelerate Subgradient Methods

Accelerate Subgradient Methods Accelerate Subgradient Methods Tianbao Yang Department of Computer Science The University of Iowa Contributors: students Yi Xu, Yan Yan and colleague Qihang Lin Yang (CS@Uiowa) Accelerate Subgradient Methods

More information

ESS2222. Lecture 4 Linear model

ESS2222. Lecture 4 Linear model ESS2222 Lecture 4 Linear model Hosein Shahnas University of Toronto, Department of Earth Sciences, 1 Outline Logistic Regression Predicting Continuous Target Variables Support Vector Machine (Some Details)

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Linear Classification Given labeled data: (xi, feature vector yi) label i=1,..,n where y is 1 or 1, find a hyperplane to separate from Linear Classification

More information

Large Scale Semi-supervised Linear SVMs. University of Chicago

Large Scale Semi-supervised Linear SVMs. University of Chicago Large Scale Semi-supervised Linear SVMs Vikas Sindhwani and Sathiya Keerthi University of Chicago SIGIR 2006 Semi-supervised Learning (SSL) Motivation Setting Categorize x-billion documents into commercial/non-commercial.

More information

Kernel Logistic Regression and the Import Vector Machine

Kernel Logistic Regression and the Import Vector Machine Kernel Logistic Regression and the Import Vector Machine Ji Zhu and Trevor Hastie Journal of Computational and Graphical Statistics, 2005 Presented by Mingtao Ding Duke University December 8, 2011 Mingtao

More information

1 SVM Learning for Interdependent and Structured Output Spaces

1 SVM Learning for Interdependent and Structured Output Spaces 1 SVM Learning for Interdependent and Structured Output Spaces Yasemin Altun Toyota Technological Institute at Chicago, Chicago IL 60637 USA altun@tti-c.org Thomas Hofmann Google, Zurich, Austria thofmann@google.com

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Online Passive- Aggressive Algorithms

Online Passive- Aggressive Algorithms Online Passive- Aggressive Algorithms Jean-Baptiste Behuet 28/11/2007 Tutor: Eneldo Loza Mencía Seminar aus Maschinellem Lernen WS07/08 Overview Online algorithms Online Binary Classification Problem Perceptron

More information

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data 2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data Liu Liu Instructor: Dr. Hairong Qi University of Tennessee, Knoxville lliu25@vols.utk.edu September 21, 2017 Liu Liu (UTK)

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Efficient and Principled Online Classification Algorithms for Lifelon

Efficient and Principled Online Classification Algorithms for Lifelon Efficient and Principled Online Classification Algorithms for Lifelong Learning Toyota Technological Institute at Chicago Chicago, IL USA Talk @ Lifelong Learning for Mobile Robotics Applications Workshop,

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

CTJLSVM: Componentwise Triple Jump Acceleration for Training Linear SVM

CTJLSVM: Componentwise Triple Jump Acceleration for Training Linear SVM CTJLSVM: Componentwise Triple Jump Acceleration for Training Linear SVM Han-Shen Huang, Porter Chang (Ker2) and Chun-Nan Hsu AI for Investigating Anti-cancer solutions (AIIA Lab) Institute of Information

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

1 Machine Learning Concepts (16 points)

1 Machine Learning Concepts (16 points) CSCI 567 Fall 2018 Midterm Exam DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO PLEASE TURN OFF ALL CELL PHONES Problem 1 2 3 4 5 6 Total Max 16 10 16 42 24 12 120 Points Please read the following instructions

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Foundations of Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Lecture 9 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Multi-Class Classification page 2 Motivation Real-world problems often have multiple classes:

More information

Infinite Ensemble Learning with Support Vector Machinery

Infinite Ensemble Learning with Support Vector Machinery Infinite Ensemble Learning with Support Vector Machinery Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology ECML/PKDD, October 4, 2005 H.-T. Lin and L. Li (Learning Systems

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 4: ML Models (Overview) Cho-Jui Hsieh UC Davis April 17, 2017 Outline Linear regression Ridge regression Logistic regression Other finite-sum

More information

Maximum Margin Matrix Factorization for Collaborative Ranking

Maximum Margin Matrix Factorization for Collaborative Ranking Maximum Margin Matrix Factorization for Collaborative Ranking Joint work with Quoc Le, Alexandros Karatzoglou and Markus Weimer Alexander J. Smola sml.nicta.com.au Statistical Machine Learning Program

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

The Frank-Wolfe Algorithm:

The Frank-Wolfe Algorithm: The Frank-Wolfe Algorithm: New Results, and Connections to Statistical Boosting Paul Grigas, Robert Freund, and Rahul Mazumder http://web.mit.edu/rfreund/www/talks.html Massachusetts Institute of Technology

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L6: Structured Estimation Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune, January

More information

A Magiv CV Theory for Large-Margin Classifiers

A Magiv CV Theory for Large-Margin Classifiers A Magiv CV Theory for Large-Margin Classifiers Hui Zou School of Statistics, University of Minnesota June 30, 2018 Joint work with Boxiang Wang Outline 1 Background 2 Magic CV formula 3 Magic support vector

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

A Distributed Solver for Kernelized SVM

A Distributed Solver for Kernelized SVM and A Distributed Solver for Kernelized Stanford ICME haoming@stanford.edu bzhe@stanford.edu June 3, 2015 Overview and 1 and 2 3 4 5 Support Vector Machines and A widely used supervised learning model,

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Soft-margin SVM can address linearly separable problems with outliers

Soft-margin SVM can address linearly separable problems with outliers Non-linear Support Vector Machines Non-linearly separable problems Hard-margin SVM can address linearly separable problems Soft-margin SVM can address linearly separable problems with outliers Non-linearly

More information

Non-linear Support Vector Machines

Non-linear Support Vector Machines Non-linear Support Vector Machines Andrea Passerini passerini@disi.unitn.it Machine Learning Non-linear Support Vector Machines Non-linearly separable problems Hard-margin SVM can address linearly separable

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague AdaBoost Lecturer: Jan Šochman Authors: Jan Šochman, Jiří Matas Center for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz Motivation Presentation 2/17 AdaBoost with trees

More information