Coordinate Descent and Ascent Methods

Size: px
Start display at page:

Download "Coordinate Descent and Ascent Methods"

Transcription

1 Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, / 22

2 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem: min f(x) x C Only handles simple constraints, e.g., bound constraints. Franke-Wolfe Algorithm: minimize linear function over C. Proximal-Gradient Methods Generalizes projected-gradient: min f(x) + r(x), x where f is smooth, r is general convex function (proximable). Dealing with r(x) = φ(ax) difficult, even when φ simple. Alternating Direction Method of Multipliers TODAY: We focus on coordinate descent, which is for the case where r is separable and f has some special structure. 2 / 22

3 Coordinate Descent Methods Suitable for large-scale optimization (dimension d is large): Certain smooth (unconstrained) problems. Non-smooth problems with separable constraints/regularizers. e.g., l 1-regularization, bound constraints Faster than gradient descent if iterations d times cheaper. 3 / 22

4 Problems Suitable for Coordinate Descent Coordinate update d times faster than gradient update for: d h 1 (x) = f(ax) + g i (x i ), or h 2 (x) = g i (x i ) + i=1 i V f and f ij smooth, convex A is a matrix {V, E} is a graph (i,j) E f ij (x i, x j ) g i general non-degenerate convex functions Examples h 1 : least squares, logistic regression, lasso, l 2 -norm SVMs. 1 d e.g., min x IR d 2 Ax b 2 + λ x i. Examples h 2 : quadratics, graph-based label prop., graphical models. 1 e.g., min x IR d 2 xt Ax + b T x = 1 d d d a ij x i x j + b i x i. 2 i=1 j=1 i=1 i=1 4 / 22

5 Notation and Assumptions We focus on the convex optimization problem min f(x) x IR d f coordinate-wise L-Lipschitz continuous f µ-strongly convex, i.e., i f(x + αe i ) i f(x) L α is convex for some µ > 0. x f(x) µ 2 x 2 If f is twice-differentiable, equivalent to 2 ii f(x) L, 2 f(x) µi. 5 / 22

6 Coordinate Descent vs. Gradient Descent x k+1 = x k 1 L i k f(x k )e ik x k+1 = x k α f(x k ) Global convergence rate for randomized i k selection [Nesterov]: ( E[f(x k+1 )] f(x ) 1 µ ) [f(x k ) f(x )] Ld Global convergence rate for gradient descent: ) f(x k+1 ) f(x ) (1 µlf [f(x k ) f(x )] Since Ld L f L, coordinate descent is slower per iteration, but d coordinate iterations are faster than one gradient iteration. 6 / 22

7 Proximal Coordinate Descent min x IR d F (x) f(x) + i g i (x i ) where f is smooth and g i might be non-smooth. e.g., l 1 -regularization, bound constraints Apply proximal-gradient style update, ] x k+1 = prox 1 [x L g k 1L i ik f(x k )e ik k where prox αg [y] = argmin 2 x y 2 + αg(x). Convergence for randomized i k : E[F (x k+1 )] F (x ) x IR d 1 ( 1 µ ) [ ] F (x k ) F (x ) dl 7 / 22

8 Sampling Rules Cyclic: Cycle through i in order, i.e., i 1 = 1, i 2 = 2, etc. Uniform random: Sample i k uniformly from {1, 2,..., d}. Lipschitz sampling: Sample i k proportional to L i. Gauss-Southwell: Select i k = argmax i i f(x k ). Cyclic Coordinate Descent Stochastic Coordinate Descent Gauss-Southwell-Lipschitz: Select i k = argmax i i f(x k ) Li. Wright (UW-Madison) Coordinate Descent Methods November / 59 Choose components i(j) randomly, independently at each iteration. Wright (UW-Madison) Coordinate Descent Methods November / 598 / 22

9 Gauss-Southwell Rules GSL: argmax i i f(x k ) Li GS: argmax i i f(x k ) Intuition: if gradients are similar, more progress if L i is small. Gauss-Southwell-Lipschitz Gauss-Southwell x1 x2 Feasible for problems where A is super sparse or for a graph with mean nneighbours approximately equals maximum nneighbours. Show GS and GSL up to d times faster than randomized by measuring strong convexity in the 1-norm or L-norm, respectively. 9 / 22

10 Exact Optimization x k+1 = x k α k ik f(x k )e ik, for some i k Exact coordinate optimization chooses the step size minimizing f: Alternatives: f(x k+1 ) = min α {f(x k α ik f(x k )e ik )} Line search: find α > 0 such that f(x k α ik f(x k )e ik ) < f(x k ). Select step size based on global knowledge of f, e.g., 1/L. 10 / 22

11 Stochastic Dual Coordinate Ascent Suitable for large-scale supervised learning (large # loss functions n): Primal formulated as sum of convex loss functions. Operates on the dual. Achieves faster linear rate than SGD for smooth loss functions. Theoretically equivalent to SSG for non-smooth loss functions. 11 / 22

12 The Big Picture... Stochastic Gradient Descent (SGD): Strong theoretical guarantees. Hard to tune step size (requires α 0). No clear stopping criterion (Stochastic Sub-Gradient method (SSG)). Converges fast at first, then slow to more accurate solution. Stochastic Dual Coordinate Ascent (SDCA): Strong theoretical guarantees that are comparable to SGD. Easy to tune step size (line search). Terminate when the duality gap is sufficiently small. Converges to accurate solution faster than SGD. 12 / 22

13 Primal Problem (P) min w IR d P (w) = 1 n n φ i (w T x i ) + λ 2 w 2 i=1 where x 1,..., x n vectors in IR d, φ 1,..., φ n sequence of scalar convex functions, λ > 0 regularization parameter. Examples: (for given labels y 1,..., y n { 1, 1}) SVMs: φ i (a) = max{0, 1 y i a} (L-Lipschitz) Regularized logistic regression: φ i (a) = log(1 + exp( y i a)) Ridge regression: φ i (a) = (a y i ) 2 (smooth) Regression: φ i (a) = a y i Support vector regression: φ i (a) = max{0, a y i ν} 13 / 22

14 Dual Problem (D) (P) max α IR n min w IR d D(α) = 1 n P (w) = 1 n n φ i (w T x i ) + λ 2 w 2 i=1 n φ i ( α i ) λ 1 2 λn i=1 n 2 α i x i i=1 where φ i (u) = max z(zu φ i (z)) is the convex conjugate of φ i. Different dual variable associated with each example in training set. 14 / 22

15 Duality Gap (D) (P) max α IR n min w IR d D(α) = 1 n P (w) = 1 n n φ i (w T x i ) + λ 2 w 2 i=1 n φ i ( α i ) λ 1 2 λn i=1 n 2 α i x i i=1 Define w(α) = 1 λn n i=1 α ix i, then it is known that w(α ) = w. P (w ) = D(α ), which implies P (w) D(α) for all w, α. Duality gap is defined by P (w(α)) D(α): Upper bound on the primal sub-optimality: P (w(α)) P (w ). 15 / 22

16 SDCA Algorithm (1) Select a training example i at random. (2) Do exact line search in the dual, i.e., find α i : maximize φ i ( (α(t 1) i + α i )) λn 2 w(t 1) +(λn) 1 α i x i 2 (3) Update the dual variable α (t) and the primal variable w (t) : α (t) α (t 1) + α i e i w (t) w (t 1) + (λn) 1 α i x i Terminate when duality gap is sufficiently small. There are ways to get the rate without a line search that use the primal gradient/subgradient directions. 16 / 22

17 SGD vs. SDCA Alternative to SGD/SSG. If primal is smooth, get faster linear rate on duality gap than SGD. If primal is non-smooth, get sublinear rate on duality gap. SDCA has similar update to SSG on primal. SSG sensitive to step-size. Do line search in the dual with coordinate ascent. SDCA may not perform as well as SGD for first few epochs (full pass) SGD takes larger step size than SDCA earlier on, helps performance. Using modified SGD on first epoch followed by SDCA obtains faster convergence when regularization parameter λ >> log(n)/n. 17 / 22

18 Comparison of Rates Lipschitz loss function (e.g., hinge-loss, φ i (a) = max{0, 1 y i a}): Algorithm convergence type rate SGD primal Õ(1/(λε p)) online EG (Collins et al., 2008) (for SVM) dual Õ(n/ε d ) Stochastic Frank-Wolfe (Lacoste-Julien et al., 2012) primal-dual Õ(n + 1/(λε)) SDCA primal-dual Õ(n + 1/(λε)) or faster Smooth loss function (e.g., ridge-regression, φ i (a) = (a y i ) 2 ): Algorithm convergence type rate SGD primal Õ(1/(λε p)) online EG (Collins et al., 2008) (for LR) dual Õ((n + 1/λ) log(1/ε d )) SAG (Le Roux et al., 2012) (assuming n 8/(λγ)) primal Õ((n + 1/λ) log(1/ε p)) SDCA primal-dual Õ((n + 1/λ) log(1/ε)) Even if α is ε d -sub-optimal in the dual, i.e., D(α) D(α ) ε d, the primal solution w(α) might be far from optimal. Bound on duality-gap is upper bound on primal sub-optimality. Recent results have shown improvements upon some of the rates in the above tables. 18 / 22

19 Accelerated Coordinate Descent Inspired by Nesterov s accelerated gradient method. Uses multi-step strategy, carries momentum from previous iterations. For accelerated randomized coordinate descent: e.g., for a convex function: O(1/k 2 ) rate, instead of O(1/k). 19 / 22

20 Block Coordinate Descent x k+1 = x k 1 L b k f(x k )e bk, for some block of indices b k Search along coordinate hyperplane. Fixed blocks, adaptive blocks. Randomized/proximal CD easily extended to the block case. For proximal case, choice of block must be consistent with block-separable structure of regularization function g. 20 / 22

21 Parallel Coordinate Descent Synchronous parallelism: Divide iterate updates between processors (block), followed by synchronization step. Asynchronous parallelism: Each processor: Has access to x. Chooses an index i, loads components of x that are needed to compute the gradient component if(x), then updates the ith component x i. No attempt to coordinate or synchronize with other processors. Always using stale x: convergence results restrict how stale. 21 / 22

22 Discussion Coordinate Descent: Suitable for large-scale optimization (when d is large). Operates on the primal objective. Faster than gradient descent if iterations d times cheaper. Stochastic Dual Coordinate Ascent: Suitable for large-scale optimization (when n is large). Operates on the dual objective. If primal is smooth, obtains faster linear rate on duality gap than SGD. If primal is non-smooth, obtain sublinear rate on duality gap. Do line search in the dual with coordinate ascent. Outperforms SGD when relatively high solution accuracy is required. Terminate when duality-gap is sufficiently small. Variations: acceleration, block, parallel. 22 / 22

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Shai Shalev-Shwartz and Tong Zhang School of CS and Engineering, The Hebrew University of Jerusalem Optimization for Machine

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Parallel Coordinate Optimization

Parallel Coordinate Optimization 1 / 38 Parallel Coordinate Optimization Julie Nutini MLRG - Spring Term March 6 th, 2018 2 / 38 Contours of a function F : IR 2 IR. Goal: Find the minimizer of F. Coordinate Descent in 2D Contours of a

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini and Mark Schmidt The University of British Columbia LCI Forum February 28 th, 2017 1 / 17 Linear Convergence of Gradient-Based

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Coordinate descent methods

Coordinate descent methods Coordinate descent methods Master Mathematics for data science and big data Olivier Fercoq November 3, 05 Contents Exact coordinate descent Coordinate gradient descent 3 3 Proximal coordinate descent 5

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini, Mark Schmidt University of British Columbia Linear of Convergence of Gradient-Based Methods Fitting most machine learning

More information

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization Modern Stochastic Methods Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization 10-725 Last time: conditional gradient method For the problem min x f(x) subject to x C where

More information

CSC 411 Lecture 17: Support Vector Machine

CSC 411 Lecture 17: Support Vector Machine CSC 411 Lecture 17: Support Vector Machine Ethan Fetaya, James Lucas and Emad Andrews University of Toronto CSC411 Lec17 1 / 1 Today Max-margin classification SVM Hard SVM Duality Soft SVM CSC411 Lec17

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Optimization Methods for Machine Learning

Optimization Methods for Machine Learning Optimization Methods for Machine Learning Sathiya Keerthi Microsoft Talks given at UC Santa Cruz February 21-23, 2017 The slides for the talks will be made available at: http://www.keerthis.com/ Introduction

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Zheng Qu University of Hong Kong CAM, 23-26 Aug 2016 Hong Kong based on joint work with Peter Richtarik and Dominique Cisba(University

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan The Chinese University of Hong Kong chtan@se.cuhk.edu.hk Shiqian Ma The Chinese University of Hong Kong sqma@se.cuhk.edu.hk Yu-Hong

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization

Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization Lin Xiao (Microsoft Research) Joint work with Qihang Lin (CMU), Zhaosong Lu (Simon Fraser) Yuchen Zhang (UC Berkeley)

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Adaptive Probabilities in Stochastic Optimization Algorithms

Adaptive Probabilities in Stochastic Optimization Algorithms Research Collection Master Thesis Adaptive Probabilities in Stochastic Optimization Algorithms Author(s): Zhong, Lei Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010421465 Rights

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Nesterov s Acceleration

Nesterov s Acceleration Nesterov s Acceleration Nesterov Accelerated Gradient min X f(x)+ (X) f -smooth. Set s 1 = 1 and = 1. Set y 0. Iterate by increasing t: g t 2 @f(y t ) s t+1 = 1+p 1+4s 2 t 2 y t = x t + s t 1 s t+1 (x

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Fast Stochastic Optimization Algorithms for ML

Fast Stochastic Optimization Algorithms for ML Fast Stochastic Optimization Algorithms for ML Aaditya Ramdas April 20, 205 This lecture is about efficient algorithms for minimizing finite sums min w R d n i= f i (w) or min w R d n f i (w) + λ 2 w 2

More information

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Joint work with Nicolas Le Roux and Francis Bach University of British Columbia Context: Machine Learning for Big Data Large-scale

More information

Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions

Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions Olivier Fercoq and Pascal Bianchi Problem Minimize the convex function

More information

On Nesterov s Random Coordinate Descent Algorithms - Continued

On Nesterov s Random Coordinate Descent Algorithms - Continued On Nesterov s Random Coordinate Descent Algorithms - Continued Zheng Xu University of Texas At Arlington February 20, 2015 1 Revisit Random Coordinate Descent The Random Coordinate Descent Upper and Lower

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

arxiv: v1 [math.oc] 1 Jul 2016

arxiv: v1 [math.oc] 1 Jul 2016 Convergence Rate of Frank-Wolfe for Non-Convex Objectives Simon Lacoste-Julien INRIA - SIERRA team ENS, Paris June 8, 016 Abstract arxiv:1607.00345v1 [math.oc] 1 Jul 016 We give a simple proof that the

More information

Primal-dual coordinate descent

Primal-dual coordinate descent Primal-dual coordinate descent Olivier Fercoq Joint work with P. Bianchi & W. Hachem 15 July 2015 1/28 Minimize the convex function f, g, h convex f is differentiable Problem min f (x) + g(x) + h(mx) x

More information

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017 Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

More information

Optimized first-order minimization methods

Optimized first-order minimization methods Optimized first-order minimization methods Donghwan Kim & Jeffrey A. Fessler EECS Dept., BME Dept., Dept. of Radiology University of Michigan web.eecs.umich.edu/~fessler UM AIM Seminar 2014-10-03 1 Disclosure

More information

Stochastic Gradient Descent with Variance Reduction

Stochastic Gradient Descent with Variance Reduction Stochastic Gradient Descent with Variance Reduction Rie Johnson, Tong Zhang Presenter: Jiawen Yao March 17, 2015 Rie Johnson, Tong Zhang Presenter: JiawenStochastic Yao Gradient Descent with Variance Reduction

More information

Mini-Batch Primal and Dual Methods for SVMs

Mini-Batch Primal and Dual Methods for SVMs Mini-Batch Primal and Dual Methods for SVMs Peter Richtárik School of Mathematics The University of Edinburgh Coauthors: M. Takáč (Edinburgh), A. Bijral and N. Srebro (both TTI at Chicago) arxiv:1303.2314

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Alberto Bietti Julien Mairal Inria Grenoble (Thoth) March 21, 2017 Alberto Bietti Stochastic MISO March 21,

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Coordinate Descent Methods on Huge-Scale Optimization Problems

Coordinate Descent Methods on Huge-Scale Optimization Problems Coordinate Descent Methods on Huge-Scale Optimization Problems Zhimin Peng Optimization Group Meeting Warm up exercise? Warm up exercise? Q: Why do mathematicians, after a dinner at a Chinese restaurant,

More information

Linearly-Convergent Stochastic-Gradient Methods

Linearly-Convergent Stochastic-Gradient Methods Linearly-Convergent Stochastic-Gradient Methods Joint work with Francis Bach, Michael Friedlander, Nicolas Le Roux INRIA - SIERRA Project - Team Laboratoire d Informatique de l École Normale Supérieure

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Homework 4. Convex Optimization /36-725

Homework 4. Convex Optimization /36-725 Homework 4 Convex Optimization 10-725/36-725 Due Friday November 4 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

The Frank-Wolfe Algorithm:

The Frank-Wolfe Algorithm: The Frank-Wolfe Algorithm: New Results, and Connections to Statistical Boosting Paul Grigas, Robert Freund, and Rahul Mazumder http://web.mit.edu/rfreund/www/talks.html Massachusetts Institute of Technology

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Sub-Sampled Newton Methods

Sub-Sampled Newton Methods Sub-Sampled Newton Methods F. Roosta-Khorasani and M. W. Mahoney ICSI and Dept of Statistics, UC Berkeley February 2016 F. Roosta-Khorasani and M. W. Mahoney (UCB) Sub-Sampled Newton Methods Feb 2016 1

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Trade-Offs in Distributed Learning and Optimization

Trade-Offs in Distributed Learning and Optimization Trade-Offs in Distributed Learning and Optimization Ohad Shamir Weizmann Institute of Science Includes joint works with Yossi Arjevani, Nathan Srebro and Tong Zhang IHES Workshop March 2016 Distributed

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Lecture 23: November 19

Lecture 23: November 19 10-725/36-725: Conve Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 23: November 19 Scribes: Charvi Rastogi, George Stoica, Shuo Li Charvi Rastogi: 23.1-23.4.2, George Stoica: 23.4.3-23.8, Shuo

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 2018

Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 2018 Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 08 Instructor: Quoc Tran-Dinh Scriber: Quoc Tran-Dinh Lecture 4: Selected

More information

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725 Quasi-Newton Methods Javier Peña Convex Optimization 10-725/36-725 Last time: primal-dual interior-point methods Consider the problem min x subject to f(x) Ax = b h(x) 0 Assume f, h 1,..., h m are convex

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information