Fast Methods for Integral Equations. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Size: px
Start display at page:

Download "Fast Methods for Integral Equations. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy"

Transcription

1 Introduction to Simulation - Lecture 23 Fast Methods for Integral Equations Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

2 Outline Solving Discretized Integral Equations Using Krylov Subspace Methods Fast Matrix-Vector Products Multipole Algorithms Multipole Representation. Basic Hierarchy Algorithmic Improvements Local Expansions Adaptive Algorithms Computational Results

3 Exterior Problem in Electrostatics potential + v 2 Ψ=0 Outside - Ψ is given on Surface Dirichelet Problem First Kind Integral Equation For Charge: 1 Ψ ( x) = σ ( x ) ds x x { surface Ch arg e potential Green' s Density Function SMA-HPC 2003 MIT

4 Drag Force in a Microresonator Courtesy of Werner Hemmert, Ph.D. Used with permission. Resonator Discretized Structure Computed Forces Bottom View Computed Forces Top View SMA-HPC 2003 MIT

5 3-D Laplace s Equation Integral Equation: Ψ x = Basis Function Approach Piecewise Constant Basis ( ) ( ) surface 1 x x σ x ds Discretize Surface into Panels Represent n σ ( x) α ( ) i ϕi x { i= 1 Basis Functions Panel j ϕ j x = x ϕ = j ( ) 1 if is on panel j ( x) 0 otherwise SMA-HPC 2003 MIT

6 3-D Laplace s Equation Basis Function Approach Centroid Collocation Put collocation points at panel centroids ( ) (, ) c α j c Ψ = i c i x Collocation point n x G x x ds i j= 1 panel j A i, j ( x ) c A1,1 L L A1, n α1 Ψ 1 M O M M M = M O M M M A ( ) n,1 L L An, n α n Ψ x cn SMA-HPC 2003 MIT

7 3-D Laplace s Equation Basis Function Approach Calculating Matrix Elements z y x x Collocation c i point Panel j A i, j 1 = panel j x x c i ds One point quadrature Approximation A i, j Panel Area x c i x centroid j Four point quadrature Approximation SMA-HPC 2003 MIT A i, j * Area x j= 1 c i x point j

8 3-D Laplace s Equation Basis Function Approach Calculating Self-Term z y x x Collocation c i point Panel i A ii, 1 = panel i x x c i ds One point quadrature Approximation SMA-HPC 2003 MIT A ii, Panel Area x c i i Aii, = ds is an integrable singularity x x panel i c i 0 x c

9 3-D Laplace s Equation z y Integrate in two pieces x Panel i Basis Function Approach x Collocation c i point Disk of radius R surrounding collocation point Calculating Self-Term Tricks of the trade A ii, 1 = panel i x x c i ds 1 1 Aii, = ds + ds x x x x disk c i rest of panel c i Disk Integral has singularity but has analytic formula disk x c i 1 x R 2π 1 ds = rdrdθ = 2π R r 0 0 SMA-HPC 2003 MIT

10 3-D Laplace s Equation z y x Panel i Basis Function Approach x Collocation c i point Calculating Self-Term Other Tricks of the trade A ii, = panel i x c 1 x i Integrand is singular ds 1) If panel is a flat polygon, analytical formulas exist 2) Curve panels can be handled with projection SMA-HPC 2003 MIT

11 3-D Laplace s Equation Basis Function Approach Galerkin (test=basis) n ( ) ( ) ( ) (, ) ( ) ϕi x Ψ x ds = α j ϕi x G x x ϕ j x dsds j= b A i For piecewise constant Basis n 1 Ψ ( x) ds = α j dsds panel i panel j j= 1 x x b i A i, j i, j SMA-HPC 2003 MIT A1,1 L L A1, n α1 b1 M O M M M = M O M M M An,1 L L An, n α n b n

12 3-D Laplace s Equation Basis Function Approach Problem with dense matrix Integral Equation Method Generate Huge Dense Matrices ( x ) c A1,1 L L A1, n α1 Ψ 1 M O M M M = M O M M M A ( ) n,1 L L An, n α n Ψ x cn Gaussian Elimination Much Too Slow! SMA-HPC 2003 MIT

13 Solving Discretized Integral Equations The Generalized Conjugate Residual Algorithm The kth step of GCR compute α = k ( k ) T r ( Apk ) T ( Ap ) ( Ap ) k Apk k For discretized Integral equations, A is dense Determine optimal stepsize in kth search direction x = x + α p r r Ap k 1 k k k k + 1 k = αk k ( k 1) T ( ) k + Ar Ap k + 1 j pk + 1 = r p T j j= 0 SMA-HPC 2003 MIT Update the solution and the residual ( Ap ) ( ) j Ap j Compute the new orthogonalized search direction

14 Solving Discretized Integral Equations The Generalized Conjugate Residual Algorithm Complexity of GCR compute α = k+ 1 k T ( r ) ( Apk ) k T ( Apk) ( Apk) k 1 k x + = x + αkpk k 1 k r + = r α Ap ( 1) T k k + Ar 1 ( Ap k + j ) = T j= 0 ( Ap j) ( Ap j) p r p SMA-HPC 2003 MIT Apk k k Dense Matrix-vector product costs O(n 2 ) Vector inner products, O(n) Vector Adds, O(n) j O(k) inner products, total cost O(nk) Algorithm is O(n 2 ) for Integral Equations even though # iters (k) is small!

15 Solving Discretized Integral Equations The Generalized Conjugate Residual Algorithm Fast Matrix Vector Products exactly compute Apk Dense Matrix-vector product costs O(n 2 ) approximately compute Apk Reduces Matrix-vector product costs to O(n) or O(nlogn) SMA-HPC 2003 MIT

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 1/(# panels)

34

35

36

37

38

39 SMA-HPC 2003 MIT

40

41 SMA-HPC 2003 MIT

42 Summary Solving Discretized Integral Equations GCR plus Fast Matrix-Vector Products Multipole Algorithms Multipole Representation. Basic Hierarchy Algorithmic Improvements Local Expansions Adaptive Algorithms Computational Results Precorrected-FFT Algorithms

Laplace s Equation FEM Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera

Laplace s Equation FEM Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera Introduction to Simulation - Lecture 19 Laplace s Equation FEM Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera Outline for Poisson Equation

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Integral Equation Methods, Lecture Discretization of Boundary Integral Equations Notes by Suvranu De and J White April 23, 2003 Outline for this Module Overview of Integral Equation

More information

Methods for Computing Periodic Steady-State Jacob White

Methods for Computing Periodic Steady-State Jacob White Introduction to Simulation - Lecture 15 Methods for Computing Periodic Steady-State Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Periodic Steady-state problems Application

More information

Introduction to Simulation - Lecture 10. Modified Newton Methods. Jacob White

Introduction to Simulation - Lecture 10. Modified Newton Methods. Jacob White Introduction to Simulation - Lecture 0 Modified Newton Methods Jacob White Thans to Deepa Ramaswamy, Jaime Peraire, Michal Rewiensi, and Karen Veroy Outline Damped Newton Schemes SMA-HPC 003 MIT Globally

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures

Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures Zhenhai Zhu, Jingfang Huang, Ben Song, Jacob White Department of Electrical Engineering and

More information

Introduction to Simulation - Lecture 9. Multidimensional Newton Methods. Jacob White

Introduction to Simulation - Lecture 9. Multidimensional Newton Methods. Jacob White Introduction to Simulation - Lecture 9 Multidimensional Newton Methods Jacob White Thanks to Deepak Ramaswamy, Jaime Peraire, Michal Rewienski, and Karen Veroy Outline Quick Review of -D Newton Convergence

More information

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simulation - Lecture Equation Formulation Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Formulating Equations rom Schematics Struts and Joints

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM PACS: 43.20.Fn Gumerov, Nail A.; Duraiswami, Ramani; Fantalgo LLC, 7496

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Conjugate Gradients I: Setup

Conjugate Gradients I: Setup Conjugate Gradients I: Setup CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Conjugate Gradients I: Setup 1 / 22 Time for Gaussian Elimination

More information

Algorithms in FastImp: A Fast and Wide-Band Impedance Extraction Program for Complicated 3-D Geometries

Algorithms in FastImp: A Fast and Wide-Band Impedance Extraction Program for Complicated 3-D Geometries IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 7, JULY 2005 981 Algorithms in FastImp: A Fast and Wide-Band Impedance Extraction Program for Complicated 3-D

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL Low Rank Approximation Lecture 7 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch 1 Alternating least-squares / linear scheme General setting:

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Discrete Projection Methods for Integral Equations

Discrete Projection Methods for Integral Equations SUB Gttttingen 7 208 427 244 98 A 5141 Discrete Projection Methods for Integral Equations M.A. Golberg & C.S. Chen TM Computational Mechanics Publications Southampton UK and Boston USA Contents Sources

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Zdeněk Strakoš Charles University, Prague http://www.karlin.mff.cuni.cz/ strakos 16th ILAS Meeting, Pisa, June 2010. Thanks

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Outline 1) Our basic example again: -u'' + u = f(x); u(0)=α, u(l)=β 2) Solution of 2-point Boundary value problems

More information

THE boundary-element, or method-of-moments [1], technique

THE boundary-element, or method-of-moments [1], technique 18 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 47, NO 1, JANUARY 1999 Capacitance Extraction of 3-D Conductor Systems in Dielectric Media with High-Permittivity Ratios Johannes Tausch and

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

Model reduction of large-scale dynamical systems

Model reduction of large-scale dynamical systems Model reduction of large-scale dynamical systems Lecture III: Krylov approximation and rational interpolation Thanos Antoulas Rice University and Jacobs University email: aca@rice.edu URL: www.ece.rice.edu/

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1 Parallel Numerics, WT 2016/2017 5 Iterative Methods for Sparse Linear Systems of Equations page 1 of 1 Contents 1 Introduction 1.1 Computer Science Aspects 1.2 Numerical Problems 1.3 Graphs 1.4 Loop Manipulations

More information

Modeling of Thermoelastic Damping in MEMS Resonators

Modeling of Thermoelastic Damping in MEMS Resonators Modeling of Thermoelastic Damping in MEMS Resonators T. Koyama a, D. Bindel b, S. Govindjee a a Dept. of Civil Engineering b Computer Science Division 1 University of California, Berkeley MEMS Resonators

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm CS 622 Data-Sparse Matrix Computations September 19, 217 Lecture 9: Krylov Subspace Methods Lecturer: Anil Damle Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky 1 Introduction

More information

Some minimization problems

Some minimization problems Week 13: Wednesday, Nov 14 Some minimization problems Last time, we sketched the following two-step strategy for approximating the solution to linear systems via Krylov subspaces: 1. Build a sequence of

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Numerical Analysis of Electromagnetic Fields

Numerical Analysis of Electromagnetic Fields Pei-bai Zhou Numerical Analysis of Electromagnetic Fields With 157 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part 1 Universal Concepts

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems.

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems. Lecture 2: Eigenvalues, eigenvectors and similarity The single most important concept in matrix theory. German word eigen means proper or characteristic. KTH Signal Processing 1 Magnus Jansson/Emil Björnson

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Jason E. Hicken Aerospace Design Lab Department of Aeronautics & Astronautics Stanford University 14 July 2011 Lecture Objectives describe when CG can be used to solve Ax

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,   ISSN X Application of the panel clustering method to the three-dimensional elastostatic problem K. Hayami* and S. A. Sauter** ^Department of Mathematical Engineering and Information Physics, School ofengineering,

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1. Introduction: Direct solvers versus iterative solvers In many applications we have to solve a linear system Ax = b with A R n n and b R n given. If n is large the

More information

Lecture 10b: iterative and direct linear solvers

Lecture 10b: iterative and direct linear solvers Lecture 10b: iterative and direct linear solvers MATH0504: Mathématiques appliquées X. Adriaens, J. Dular Université de Liège November 2018 Table of contents 1 Direct methods 2 Iterative methods Stationary

More information

MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT

MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT The following is the list of questions for the oral exam. At the same time, these questions represent all topics for the written exam. The procedure for

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

FINITE-DIMENSIONAL LINEAR ALGEBRA

FINITE-DIMENSIONAL LINEAR ALGEBRA DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H ROSEN FINITE-DIMENSIONAL LINEAR ALGEBRA Mark S Gockenbach Michigan Technological University Houghton, USA CRC Press Taylor & Francis Croup

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

Inverse Obstacle Scattering

Inverse Obstacle Scattering , Göttingen AIP 2011, Pre-Conference Workshop Texas A&M University, May 2011 Scattering theory Scattering theory is concerned with the effects that obstacles and inhomogenities have on the propagation

More information

Fast Multipole Methods for Incompressible Flow Simulation

Fast Multipole Methods for Incompressible Flow Simulation Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards 0086075

More information

FFTs in Graphics and Vision. The Laplace Operator

FFTs in Graphics and Vision. The Laplace Operator FFTs in Graphics and Vision The Laplace Operator 1 Outline Math Stuff Symmetric/Hermitian Matrices Lagrange Multipliers Diagonalizing Symmetric Matrices The Laplacian Operator 2 Linear Operators Definition:

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN Master Thesis Literature Review: Efficiency Improvement for Panel Codes TU Delft MARIN Elisa Ang Yun Mei Student Number: 4420888 1-27-2015 CONTENTS 1 Introduction... 1 1.1 Problem Statement... 1 1.2 Current

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Fast Multipole Methods

Fast Multipole Methods An Introduction to Fast Multipole Methods Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen Parallel Iterative Methods for Sparse Linear Systems Lehrstuhl für Hochleistungsrechnen www.sc.rwth-aachen.de RWTH Aachen Large and Sparse Small and Dense Outline Problem with Direct Methods Iterative

More information

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems Abstract and Applied Analysis Article ID 237808 pages http://dxdoiorg/055/204/237808 Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite

More information

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++ . p.1/13 10 ec. 2014, LJLL, Paris FreeFem++ workshop : BECASIM session Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

More information

Iterative solvers for linear equations

Iterative solvers for linear equations Spectral Graph Theory Lecture 17 Iterative solvers for linear equations Daniel A. Spielman October 31, 2012 17.1 About these notes These notes are not necessarily an accurate representation of what happened

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES ITERATIVE METHODS BASED ON KRYLOV SUBSPACES LONG CHEN We shall present iterative methods for solving linear algebraic equation Au = b based on Krylov subspaces We derive conjugate gradient (CG) method

More information

Boundary Value Problems and Iterative Methods for Linear Systems

Boundary Value Problems and Iterative Methods for Linear Systems Boundary Value Problems and Iterative Methods for Linear Systems 1. Equilibrium Problems 1.1. Abstract setting We want to find a displacement u V. Here V is a complete vector space with a norm v V. In

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

PETROV-GALERKIN METHODS

PETROV-GALERKIN METHODS Chapter 7 PETROV-GALERKIN METHODS 7.1 Energy Norm Minimization 7.2 Residual Norm Minimization 7.3 General Projection Methods 7.1 Energy Norm Minimization Saad, Sections 5.3.1, 5.2.1a. 7.1.1 Methods based

More information

J.TAUSCH AND J.WHITE 1. Capacitance Extraction of 3-D Conductor Systems in. Dielectric Media with high Permittivity Ratios

J.TAUSCH AND J.WHITE 1. Capacitance Extraction of 3-D Conductor Systems in. Dielectric Media with high Permittivity Ratios JTAUSCH AND JWHITE Capacitance Extraction of -D Conductor Systems in Dielectric Media with high Permittivity Ratios Johannes Tausch and Jacob White Abstract The recent development of fast algorithms for

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright.

Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright. Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright. John L. Weatherwax July 7, 2010 wax@alum.mit.edu 1 Chapter 5 (Conjugate Gradient Methods) Notes

More information

The conjugate gradient method

The conjugate gradient method The conjugate gradient method Michael S. Floater November 1, 2011 These notes try to provide motivation and an explanation of the CG method. 1 The method of conjugate directions We want to solve the linear

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

MLISP: Machine Learning in Signal Processing Spring Lecture 8-9 May 4-7

MLISP: Machine Learning in Signal Processing Spring Lecture 8-9 May 4-7 MLISP: Machine Learning in Signal Processing Spring 2018 Prof. Veniamin Morgenshtern Lecture 8-9 May 4-7 Scribe: Mohamed Solomon Agenda 1. Wavelets: beyond smoothness 2. A problem with Fourier transform

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact:

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact: Linear algebra forms the basis for much of modern mathematics theoretical, applied, and computational. The purpose of this book is to provide a broad and solid foundation for the study of advanced mathematics.

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Golub-Kahan iterative bidiagonalization and determining the noise level in the data Golub-Kahan iterative bidiagonalization and determining the noise level in the data Iveta Hnětynková,, Martin Plešinger,, Zdeněk Strakoš, * Charles University, Prague ** Academy of Sciences of the Czech

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

APPENDIX 1 Version of 8/24/05 11:01 AM Simulation of H-NMR without a structure*:

APPENDIX 1 Version of 8/24/05 11:01 AM Simulation of H-NMR without a structure*: WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals.

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information