Fast Multipole Methods for Incompressible Flow Simulation

Size: px
Start display at page:

Download "Fast Multipole Methods for Incompressible Flow Simulation"

Transcription

1 Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards and is gratefully acknowledged

2 Fast Multipole Methods Complex geometric features (e.g., aircraft, submarine, or turbine geometries), physics (high <, wake-structure interactions etc.) all tend to increase problem sizes Many simulations involve several million variables Most large problems boil down to solution of linear systems or performing several matrix-vector products Regular product requires O(N 2 ) time and O(N 2 ) memory The FMM is a way to accelerate the products of particular dense matrices with vectors Do this using O(N) memory FMM achieves product in O(N) or O(N log N) time and memory Combined with iterative solution methods, can allow solution of problems hitherto unsolvable

3 Fast Multipole Methods To speed up a matrix vector product i Φ ij u i = v j Key idea: Let Φ ij =φ( x i, y j ) Translate elements corresponding to different x i to common location, x * φ (x i,y j )= l=1 p β l ψ l (x i -x * ) Ψ l (y j -x * ) Achieves a separation of variables by translation The number of terms retained, p, is only related to accuracy v j = j=1n u i l=1 p β l ψ l (x i ) Ψ l (y j ) = l=1 p β l Ψ l (y j ) i=1n u i ψ l (x i ) Can evaluate p sums over i A l = j=1n u i ψ l (x i ) Requires Np operations Then evaluate an expression of the type S(x i )= l=1 p A l β l ψ l (x i ) i=1,,m

4 Outline Incompressible Fluid problems where FMM can be used Boundary integral and particle formulations Potential flow Stokes Flow Vortex Element Methods Component of Navier-Stokes Solvers via Generalized Helmholtz decomposition Multi-sphere simulations of multiphase flow Laplace Stokes Helmholtz Numerical Analysis issues in developing efficient FMM Towards black-box FMM solvers

5 Basic Equations FMM & Fluid Mechanics n 2 1

6 Helmholtz Decomposition Key to integral equation and particle methods

7 Potential Flow Crum, 1979 Knowledge of the potential is sufficient to compute velocity and pressure Need a fast solver for the Laplace equation Applications panel methods for subsonic flow, water waves, bubble dynamics, Boschitsch et al, 1999

8 BEM/FMM Solution Laplace s Equation Lohse, 2002 Jaswon/Symm (60s) Hess & Smith (70s), Korsmeyer et al 1993, Epton & Dembart 1998, Boschitsch & Epstein 1999

9 Stokes Flow Green s function (Ladyzhenskaya 1969, Pozrikidis 1992) Motion of spermatozoa Cummins et al 1988 Integral equation formulation Stokes flow simulations remain a very important area of research MEMS, bio-fluids, emulsions, etc. BEM formulations (Tran-Cong & Phan-Thien 1989, Pozrikidis 1992) FMM (Kropinski 2000 (2D), Power 2000 (3D)) Cherax quadricarinatus. MEMS force calculations (Aluru & White, 1998

10 Rotational Flows and VEM For rotational flows Vorticity released at boundary layer or trailing edge and advected with the flow Simulated with vortex particles Especially useful where flow is mostly irrotational Fast calculation of Biot-Savart integrals (x 2,y 2,z 2 ) l n Γ (circulation strength) x Evaluation point (x 1,y 1,z 1 ) (Far field) (where y is the mid point of the filament)

11 Vorticity formulations of NSE Problems with boundary conditions for this equation (see e.g., Gresho, 1991) Divergence free and curl-free components are linked only by boundary conditions Splitting is invalid unless potentials are consistent on boundary Recently resolved by using the generalized Helmholtz decomposition (Kempka et al, 1997; Ingber & Kempka, 2001) This formulation uses a kinematically consistent Helmholtz decomposition in terms of boundary integrals When widely adopted will need use of boundary integrals, and hence the FMM Preliminary results in Ingber & Kempka, 2001

12 Generalized Helmholtz Decomposition Helmholtz decomposition leaves too many degrees of freedom Way to achieve decomposition valid on boundary and in domain, with consistent values is to use the GHD D is the domain dilatation (zero for incompressible flow) Requires solution of a boundary integral equation as part of the solution => role for the FMM in such formulations

13 Multi Sphere Problems So far we have seen FMM for boundary integral problems Can also use the FMM in problems involving many spheres Simulations of multiphase flow, effective media (porous media), dusty gases, slurries, and the like Key is a way to enforce proper boundary/continuity conditions on the spheres Translation theorems provide an ideal way to do this With FMM one can easily simulate particles on desktops and particles on supercomputers Sangani & Bo (1996), Gumerov & Duraiswami (2002,2003) Stokesian Dynamics (Brady/Bossis 1988; Kim/Karilla 1991)

14 Fast Multipole Methods Matrix-Vector Multiplication Middleman and Single Level Methods Multilevel FMM (MLFMM) Adaptive MLFMM Fast Translations Some computational results Conclusions

15 Iterative Methods To solve linear systems of equations; Simple iteration methods; Conjugate gradient or similar methods; We use Krylov subspace methods (GMRES): Preconditioners; Research is ongoing. Efficiency of these methods depends on efficiency of the matrix-vector multiplication.

16 Matrix-Vector Multiplication

17 FMM Works with Influence Matrices

18 Examples of Influence Matrices exp

19 Complexity of Standard Method Standard algorithm Sources N M Evaluation Points Total number of operations: O(NM)

20 Goal of FMM Reduce complexity of matrixvector multiplication (or field evaluation) by trading exactness for speed Evaluate to arbitrary accuracy

21 Five Key Stones of FMM Factorization Error Bound Translation Space Partitioning Data Structure

22 Degenerate Kernel: Factorization O(pN) operations: O(pM) operations: Total Complexity: O(p(N+M))

23 Factorization (Example) Scalar Product in d-dimensional space: O(dM) operations: O(dN) operations Total Complexity: O(d(N+M))

24 Middleman Algorithm Standard algorithm Sources Evaluation Points Middleman algorithm Sources Evaluation Points N M N M Total number of operations: O(NM) Total number of operations: O(N+M)

25 Non-Degenerate Kernel: Factorization Truncation Number Error Bound: Middleman Algorithm Applicability:

26 Factorization Problem: Usually there is no factorization available that provides a uniform approximation of the kernel in the entire computational domain.

27 Far and Near Field Expansions Far Field: Near Field: Far Field R c x i - x * r c x i - x * x i Ω Ω Near Field R S x * y y S: Singular (also Multipole, Outer Far Field ), R: Regular (also Local, Inner Near Field )

28 Example of S and R expansions (3D Laplace) z O θ φ r r y x Spherical Coordinates: Spherical Harmonics:

29 S and R Expansions (3D Helmholtz) z O θ φ r r y x Spherical Coordinates: Spherical Bessel Functions Spherical Hankel Functions

30 Idea of a Single Level FMM Standard algorithm Sources Evaluation Points SLFMM Sources Evaluation L groups Points K groups N M N M Total number of operations: O(NM) Needs Translation! Total number of operations: O(N+M+KL)

31 Space Partitioning Potentials due to sources in these spatial domains Φ (n) 1 (y) Φ (n) 2 (y) Φ (n) 3 (y) Ε 1 Ε 2 Ε 3 n n n

32 Single Level Algorithm 1. For each box build Far Field representation of the potential due to all sources in the box. 2. For each box build Near Field representation of the potential due to all sources outside the neighborhood. 3. Total potential for evaluation points belonging to this box is a direct sum of potentials due to sources in its neighborhood and the Near Field expansion of other sources near the box center.

33 The SLFMM requires S R-translation:

34 S R-translation Also Far-to-Local, Outer-to-Inner, Multipole-to-Local Ω 2i x *2 y R R 2 S R c x i - x *1 (S R) x *1 Ω 1 i x i Ω 1i R 2 = min{ x *2 - x *1 -R c x i - x *1,r c x i - x *2 }

35 S R-translation Operator S R-Translation Coefficients S R-Translation Matrix

36 S R-translation Operators for 3D Laplace and Helmholtz equations

37 Complexity of SLFMM We have p 2 terms and P(p) translation cost: F(K) For M~N: 0 K opt Additional Middleman complexity Κ

38 Idea of Multilevel FMM Source Data Hierarchy Evaluation Data Hierarchy S S S R N R R M Level 5 Level 2 Level 3 Level 4 Level 2 Level 3 Level 4 Level 5

39 Complexity of MLFMM Definitions: Upward Pass: Going Up on SOURCE Hierarchy Downward Pass: Going Down on EVALUATION Hierarchy Not factorial!

40 Hierarchical Spatial Domains Ε 1 Ε 2 Ε 3 Ε 4

41 Upward Pass. Step 1. S-expansion S-expansion valid in Ω Ε 3 Ω y y Ω x i x c (n,l) x * R x i S-expansion valid in E 3 (n,l)

42 Upward Pass. Step 2. S S-translation. Build potential for the parent box (find its S-expansion).

43 Downward Pass. Step 1. S R-translation Level 2: Level 3:

44 Downward Pass. Step 2. R R-translation

45 Final Summation Contribution of near sources (calculated directly) Contribution of far sources (represented by R-expansion) y j

46 Adaptive MLFMM Goal of computations:

47 Idea of Adaptation Source Point Evaluation Point Box Level Each evaluation box in this picture contains not more than 3 sources in the neighborhood. Very important for particle methods with concentrations of particles 2

48 We have implemented MLFMM General MLFMM shell software: Arbitrary dimensionality; Variable sizes of neighborhoods; Variable clustering parameter; Regular and Adaptive versions; User Specified basis functions, and translation operators; Efficient data structures using bit interleaving; Technical Report #1 is available online (visit the authors home pages).

49 Optimal choice of the clustering parameter is important 100 Max Level= CPU Time (s) N= Regular Mesh, d= Number of Points in the Smallest Box

50 Speed of computation 1000 Straightforward CPU Time (s) y=cx 2 y=bx FMM (s=4) Setting FMM FMM/(a*log(N)) 0.1 Middleman Regular Mesh, d=2, k=1, Reduced S R Number of Points

51 Error analysis

52 Complexity of Translation For 3D Laplace and Helmholtz series have p 2 terms; Translation matrices have p 4 elements; Translation performed by direct matrix-vector multiplication has complexity O(p 4 ); Can be reduced to O(p 3 ); Can be reduced to O(p 2 log 2 p); Can be reduced to O(p 2 ) (?).

53 Rotation-Coaxial Translation Decomposition Yields O(p 3 ) Method z z p 4 y x y x p3 p 3 p 3 y y z x x Coaxial Translation Rotation z

54 FFT-based Translation for 3D Laplace Equation Yields O(p 2 log 2 p) Method Translation Matrices are Toeplitz and Hankel Multiplication can be performed using FFT (Elliot & Board 1996; Tang et al 2003)

55 Sparse Matrix Decompositions Can Result in O(p 2 ) Methods Laplace and Helmholtz: Helmholtz 3D: D is a sparse matrix

56 Interaction of Multiple Spherical Particles Helmholtz (acoustical scattering) Laplace (potential incompressible flow) k 0

57 Multipole Solution 1) Reexpand solution near the center of each sphere, and satisfy boundary conditions 2) Solve linear system to determine the expansion coefficients

58 Computational Methods Used Computable on 1 GHz, 1 GB RAM Desktop PC MLFMM Method Multipole Iterative Multipole Straightforward BEM Number of Spheres 10 6

59 Comparisons with BEM HRTF (db) o 30 o θ 1 = 0 o 90 o o BEM MultisphereHelmholtz 30 o o 90 o 120 o o 150 o o Three Spheres, ka 1 = Angle φ 1 (deg) BEM discretization with 5400 elements

60 Convergence of the Iterative Procedure M ax Absolute Error 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 Iterations with Reflection Method 3D Helmholtz Equation, MLFMM 100 Spheres ka = E E Iteration # For Laplace equation convergence is much faster

61 Multiple Scattering from 100 spheres ka=1.6 ka=2.8 ka=4.8 FMM also used here for visualization

62 Various Configurations 343 spheres in a regular grid 1000 randomly placed spheres

63 Truncation Errors

64 Some Observations for Laplace Equation (limit at small k) Relative errors below 1% can be achieved even for p~1; Reflection method converges very fast; Number of iterations can be 2-10 for very high accuracy. CPU time on 1GHz, 1GB RAM PC for 1000 spheres ~ 1 min.

65 Some projects of students in our course related to incompressible flow 1). Jun Shen (Mechanical Engineering, UMD): 2D simulation of vortex flow (particle method + MLFMM)

66 Project 2- Calculate vortex induced forces 2). Jayanarayanan Sitaraman (Alfred Gessow Rotorcraft Center, UMD): Fast Multipole Methods For 3-D Biot-Savart Law Calculations (free vortex methods) Error, M=3200, N= p 6 7 Break-even point: MLFMM is faster then straightforward for N=M>1300

67 Conclusions We developed a shell and framework for MLFMM which can be used for many problems, including simulations of potential and vortex flows and multiparticle motion. MLFMM shows itself as very efficient method for solution of fluid dynamics problems; MLFMM enables computation of large problems (sometimes even on desktop PC); Research is ongoing. Problems: Efficient choice of parameters for MLFMM; Efficient translation algorithms; Efficient iterative procedures; More work on error bounds is needed; Etc. CSCAMM Meeting on FMM in November 2003

68 Thank You!

Partial Differential Equations. Examples of PDEs

Partial Differential Equations. Examples of PDEs Partial Differential Equations Almost all the elementary and numerous advanced parts of theoretical physics are formulated in terms of differential equations (DE). Newton s Laws Maxwell equations Schrodinger

More information

Fast Multipole Methods

Fast Multipole Methods An Introduction to Fast Multipole Methods Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM PACS: 43.20.Fn Gumerov, Nail A.; Duraiswami, Ramani; Fantalgo LLC, 7496

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov What are multipole methods and what is this course about. Problems from phsics, mathematics,

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1 FastMMLib: a generic Fast Multipole Method library Eric DARRIGRAND joint work with Yvon LAFRANCHE IRMAR Université de Rennes 1 Outline Introduction to FMM Historically SVD principle A first example of

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation A Fast N-Body Solver for the Poisson(-Boltzmann) Equation Robert D. Skeel Departments of Computer Science (and Mathematics) Purdue University http://bionum.cs.purdue.edu/2008december.pdf 1 Thesis Poisson(-Boltzmann)

More information

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method PROCEEDINGS of the 22 nd International Congress on Acoustics Boundary Element and Meshless Methods on Acoustics and Vibrations: Paper ICA2016-309 Efficient calculation for evaluating vast amounts of quadrupole

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

An implementation of the Fast Multipole Method without multipoles

An implementation of the Fast Multipole Method without multipoles An implementation of the Fast Multipole Method without multipoles Robin Schoemaker Scientific Computing Group Seminar The Fast Multipole Method Theory and Applications Spring 2002 Overview Fast Multipole

More information

The adaptive cross approximation accelerated boundary element method for bubble dynamics

The adaptive cross approximation accelerated boundary element method for bubble dynamics Boundary Elements and Other Mesh Reduction Methods XXXIV 29 The adaptive cross approximation accelerated boundary element method for bubble dynamics Z. Fu & V. Popov Wessex Institute of Technology, Environmental

More information

Green s Functions, Boundary Integral Equations and Rotational Symmetry

Green s Functions, Boundary Integral Equations and Rotational Symmetry Green s Functions, Boundary Integral Equations and Rotational Symmetry...or, How to Construct a Fast Solver for Stokes Equation Saibal De Advisor: Shravan Veerapaneni University of Michigan, Ann Arbor

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

On the choice of abstract projection vectors for second level preconditioners

On the choice of abstract projection vectors for second level preconditioners On the choice of abstract projection vectors for second level preconditioners C. Vuik 1, J.M. Tang 1, and R. Nabben 2 1 Delft University of Technology 2 Technische Universität Berlin Institut für Mathematik

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,  ISSN X Application of the fast multipole method to the 3-D BEM analysis of electron guns T. Nishida and K. Hayami Department of Mathematical Engineering and Information Physics, School of Engineering, University

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

APPROXIMATING GAUSSIAN PROCESSES

APPROXIMATING GAUSSIAN PROCESSES 1 / 23 APPROXIMATING GAUSSIAN PROCESSES WITH H 2 -MATRICES Steffen Börm 1 Jochen Garcke 2 1 Christian-Albrechts-Universität zu Kiel 2 Universität Bonn and Fraunhofer SCAI 2 / 23 OUTLINE 1 GAUSSIAN PROCESSES

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind Δϕ=0 ME equations ( 2 ) Δ + k E = 0 Quasi static approximation Dynamic approximation Cylindrical symmetry Metallic nano wires Nano holes in metals Bessel functions 1 kind Bessel functions 2 kind Modifies

More information

A far-field based T-matrix method for three dimensional acoustic scattering

A far-field based T-matrix method for three dimensional acoustic scattering ANZIAM J. 50 (CTAC2008) pp.c121 C136, 2008 C121 A far-field based T-matrix method for three dimensional acoustic scattering M. Ganesh 1 S. C. Hawkins 2 (Received 14 August 2008; revised 4 October 2008)

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

A Solenoidal Basis Method For Efficient Inductance Extraction Λ

A Solenoidal Basis Method For Efficient Inductance Extraction Λ A Solenoidal Basis Method For Efficient Inductance Extraction Λ Hemant Mahawar Department of Computer Science Texas A&M University College Station, TX 77843 mahawarh@cs.tamu.edu Vivek Sarin Department

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

arxiv: v2 [math.na] 1 Oct 2016

arxiv: v2 [math.na] 1 Oct 2016 Inexact Krylov iterations and relaxation strategies with fast-multipole boundary element method Tingyu Wang a, Simon K. Layton b,c,1, Lorena A. Barba a a Department of Mechanical and Aerospace Engineering,

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

ABSTRACT MATRICES WITH APPLICATIONS TO THE FAST MULTIPOLE METHOD. Zhihui Tang, Doctor of Philosophy, 2004

ABSTRACT MATRICES WITH APPLICATIONS TO THE FAST MULTIPOLE METHOD. Zhihui Tang, Doctor of Philosophy, 2004 ABSTRACT Title of Dissertation: FAST TRANSFORMS BASED ON STRUCTURED MATRICES WITH APPLICATIONS TO THE FAST MULTIPOLE METHOD Zhihui Tang, Doctor of Philosophy, 2004 Dissertation directed by: Professor Ramani

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

arxiv: v1 [math.na] 28 Apr 2011

arxiv: v1 [math.na] 28 Apr 2011 arxiv:1104.5293v1 [math.na] 28 Apr 2011 Fast multi-particle scattering: a hybrid solver for the Maxwell equations in microstructured materials Z. Gimbutas and L. Greengard October 30, 2018 Abstract A variety

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational ethods CSC/ASC/APL 460 Vectors, atrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Class Outline uch of scientific computation involves solution of linear

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Nested Krylov methods for shifted linear systems

Nested Krylov methods for shifted linear systems Nested Krylov methods for shifted linear systems M. Baumann, and M. B. van Gizen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands

More information

Finite and Boundary Element Methods in Acoustics

Finite and Boundary Element Methods in Acoustics Finite and Boundary Element Methods in Acoustics W. Kreuzer, Z. Chen, H. Waubke Austrian Academy of Sciences, Acoustics Research Institute ARI meets NuHAG Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Michael Griebel Christian Rieger Peter Zaspel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

A Crash Course on Fast Multipole Method (FMM)

A Crash Course on Fast Multipole Method (FMM) A Crash Course on Fast Multipole Method (FMM) Hanliang Guo Kanso Biodynamical System Lab, 2018 April What is FMM? A fast algorithm to study N body interactions (Gravitational, Coulombic interactions )

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

A Fast Solver for the Stokes Equations. Tejaswin Parthasarathy CS 598APK, Fall 2017

A Fast Solver for the Stokes Equations. Tejaswin Parthasarathy CS 598APK, Fall 2017 A Fast Solver for the Stokes Equations Tejaswin Parthasarathy CS 598APK, Fall 2017 Stokes Equations? http://www.earthtimes.org/ Continuity wallpapers-s.blogspot.com @ @t + @( u i) @ i =0 http://testingstufftonight.blogspot.com/

More information

A dual BIE approach for large-scale modelling of 3-D electrostatic problems with the fast multipole boundary element method

A dual BIE approach for large-scale modelling of 3-D electrostatic problems with the fast multipole boundary element method INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2007; 71:837 855 Published online 5 February 2007 in Wiley InterScience (www.interscience.wiley.com)..2000 A dual BIE

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Spherical harmonics based aggregation in the multilevel fast multipole algorithm

Spherical harmonics based aggregation in the multilevel fast multipole algorithm Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR NLR-TR-NLR-TR-2015-218 pherical harmonics based aggregation in the multilevel fast multipole algorithm Mc Thesis. Hack No part

More information

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN Master Thesis Literature Review: Efficiency Improvement for Panel Codes TU Delft MARIN Elisa Ang Yun Mei Student Number: 4420888 1-27-2015 CONTENTS 1 Introduction... 1 1.1 Problem Statement... 1 1.2 Current

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Fast algorithms for dimensionality reduction and data visualization

Fast algorithms for dimensionality reduction and data visualization Fast algorithms for dimensionality reduction and data visualization Manas Rachh Yale University 1/33 Acknowledgements George Linderman (Yale) Jeremy Hoskins (Yale) Stefan Steinerberger (Yale) Yuval Kluger

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

Review of Some Fast Algorithms for Electromagnetic Scattering

Review of Some Fast Algorithms for Electromagnetic Scattering Review of Some Fast Algorithms for Electromagnetic Scattering Weng Cho Chew Center for Computational Electromagnetics and Electromagnetic Laboratory University of Illinois at Urbana-Champaign CSCAMM Lecture

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Fast numerical methods for solving linear PDEs

Fast numerical methods for solving linear PDEs Fast numerical methods for solving linear PDEs P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at

More information

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS Progress In Electromagnetics Research M, Vol. 23, 53 63, 2012 AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS T.-S. Nguyen *, J.-M. Guichon, O. Chadebec, G. Meunier, and

More information

Kinematics of fluid motion

Kinematics of fluid motion Chapter 4 Kinematics of fluid motion 4.1 Elementary flow patterns Recall the discussion of flow patterns in Chapter 1. The equations for particle paths in a three-dimensional, steady fluid flow are dx

More information

(1) u i = g(x i, x j )q j, i = 1, 2,..., N, where g(x, y) is the interaction potential of electrostatics in the plane. 0 x = y.

(1) u i = g(x i, x j )q j, i = 1, 2,..., N, where g(x, y) is the interaction potential of electrostatics in the plane. 0 x = y. Encyclopedia entry on Fast Multipole Methods. Per-Gunnar Martinsson, University of Colorado at Boulder, August 2012 Short definition. The Fast Multipole Method (FMM) is an algorithm for rapidly evaluating

More information

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. Alouges, et al., Int. J. Comp. Meth. and Ep. Meas., Vol. 5, No. 3 (07) 387 394 APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. ALOUGES, M. AUSSAL, A. LEFEBVRE-LEPOT, F. PIGEONNEAU

More information

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD V. G. Guedes a, G. C. R. Bodstein b, and M. H. Hirata c a Centro de Pesquisas de Energia Elétrica Departamento de Tecnologias

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 00:1 6 [Version: 2000/07/27 v1.0] Nonlinear Additive Schwarz Preconditioners and Application in Computational Fluid

More information

Point Vortices in a Periodic Box

Point Vortices in a Periodic Box Typeset with jpsj2.cls Letter Point Vortices in a Periodic Bo Makoto Umeki arxiv:physics/0608266v1 [physics.flu-dyn] 28 Aug 2006 Department of Physics, Graduate School of Science, University

More information

Hybrid Cross Approximation for the Electric Field Integral Equation

Hybrid Cross Approximation for the Electric Field Integral Equation Progress In Electromagnetics Research M, Vol. 75, 79 90, 2018 Hybrid Cross Approximation for the Electric Field Integral Equation Priscillia Daquin, Ronan Perrussel, and Jean-René Poirier * Abstract The

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

ELECTROMAGNETIC SCATTERING BY MIXED CONDUCTING/DIELECTRIC OBJECTS USING HIGHER-ORDER MOM

ELECTROMAGNETIC SCATTERING BY MIXED CONDUCTING/DIELECTRIC OBJECTS USING HIGHER-ORDER MOM Progress In Electromagnetics Research, PIER 66, 51 63, 2006 ELECTROMAGNETIC SCATTERING BY MIXED CONDUCTING/DIELECTRIC OBJECTS USING HIGHER-ORDER MOM S. G. Wang, X. P. Guan, D. W. Wang, X. Y. Ma, and Y.

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Journal of Computational Mathematics Vol.xx, No.x, 2x, 6. http://www.global-sci.org/jcm doi:?? ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Davod

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES

VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES EWEA 2013: Europe s Premier Wind Energy Event, Vienna, 4-7 February 2013 Figures 9, 10, 11, 12 and Table 1 corrected VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES Hamidreza Abedi *, Lars

More information

FastBEM Acoustics. Verification Manual , Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved

FastBEM Acoustics. Verification Manual , Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved FastBEM Acoustics Verification Manual 2007-2017, Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved www.fastbem.com Copyright 2007-2017, Advanced CAE Research, LLC, All Rights Reserved

More information

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Boundary Elements and Other Mesh Reduction Methods XXXVIII 113 FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Y. M. Xu, H.

More information

An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow

An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow Antonio C. Mendes, Jose C. Pascoa Universidade da Beira Interior, Laboratory of Fluid Mechanics,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7 Numerical Fluid Mechanics Fall 2011 Lecture 7 REVIEW of Lecture 6 Material covered in class: Differential forms of conservation laws Material Derivative (substantial/total derivative) Conservation of Mass

More information

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, Matrices, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, Matrices, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational ethods CSC/ASC/APL 460 Linear Systems, atrices, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Class Outline uch of scientific computation involves solution of linear equations

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

Domain decomposition for the Jacobi-Davidson method: practical strategies

Domain decomposition for the Jacobi-Davidson method: practical strategies Chapter 4 Domain decomposition for the Jacobi-Davidson method: practical strategies Abstract The Jacobi-Davidson method is an iterative method for the computation of solutions of large eigenvalue problems.

More information

An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages

An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages PIERS ONLINE, VOL. 6, NO. 7, 2010 679 An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages Haixin Liu and Dan Jiao School of Electrical

More information