APPROXIMATING GAUSSIAN PROCESSES

Size: px
Start display at page:

Download "APPROXIMATING GAUSSIAN PROCESSES"

Transcription

1 1 / 23 APPROXIMATING GAUSSIAN PROCESSES WITH H 2 -MATRICES Steffen Börm 1 Jochen Garcke 2 1 Christian-Albrechts-Universität zu Kiel 2 Universität Bonn and Fraunhofer SCAI

2 2 / 23 OUTLINE 1 GAUSSIAN PROCESSES 2 HIERARCHICAL MATRICES 3 H 2 -MATRIX 4 RESULTS

3 GAUSSIAN PROCESSES given set of data S = {(x i, y i ) R d R} N i=1 assuming a Gaussian process prior on f (x), i.e values f (x) are Gaussian distributed with zero mean and covariance matrix K kernel (or covariance) function k(, ) defines K via K i,j = k(x i, x j ). typical kernel: Gaussian RBF k(x, y) = e x y 2 /w representer theorem gives solution f (x) as N f (x) = α i k(x i, x) i=1 coefficient vector α is the solution of the linear equation system (K + σ 2 I)α = y full N N matrix O(N 2 ) complexity, unfeasible for large data approximation needed, e.g. use subset of size M in computational core O(M 2 N) use iterative solver with approximation of matrix vector product Kα 3 / 23

4 4 / 23 HIERARCHICAL MATRICES data sparse approximation of kernel matrix O(Nm log N) for storage, (local rank) m controls accuracy operations like matrix-vector product, matrix multiplication or inversion can now be computed efficiently efficient computation of H-matrix approximation needed H-matrix approach developed for efficient treatment of dense matrix arising from discretization of integral operators efficient computation for 2D, 3D problems exists strongly related to fast multipole, panel clustering, fast gauss transform

5 5 / 23 1D MODEL PROBLEM in the following we present the underlying ideas in one dimension τ ϱ we look at blocks in the (permuted) matrix whose corresponding subregions have a certain 1D-distance τ ϱ employ Taylor-expansion to approximate kernel Taylor-expansion only used for explanation, but not in algorithm

6 6 / 23 PANEL CLUSTERING DEGENERATE APPROXIMATION: If k is sufficiently smooth in a subdomain τ ϱ, we can approximate by a Taylor series: k(x, y) := m 1 ν=0 (x x τ ) ν ν! ν k x ν (x τ, y) (x τ, y ϱ) FACTORIZATION: For i, j I with x i τ and x j ϱ we find K ij = k(x i, x j ) k(x i, x j ) = m 1 ν=0 (x i x τ ) ν } {{ ν! } =(A τ,ϱ) iν m 1 = (A τ,ϱ ) iν (B τ,ϱ ) jν ν=0 ν k x ν (x τ, x j ) } {{ } =(B τ,ϱ) jν

7 6 / 23 PANEL CLUSTERING DEGENERATE APPROXIMATION: If k is sufficiently smooth in a subdomain τ ϱ, we can approximate by a Taylor series: k(x, y) := m 1 ν=0 (x x τ ) ν ν! ν k x ν (x τ, y) (x τ, y ϱ) FACTORIZATION: For the sets ˆτ := {i : x i τ}, ˆϱ := {j : x j ϱ} we find K ˆτ ˆϱ A τ,ϱ B τ,ϱ Storage m(#ˆτ + #ˆϱ) instead of (#ˆτ)(#ˆϱ). RESULT: Significant reduction of storage requirements if m #ˆτ, #ˆϱ.

8 7 / 23 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) ( 2 for demonstration purposes) Start with τ = ϱ = Ω. Nothing is admissible.

9 7 / 23 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) τ and ϱ are subdivided. Still nothing is admissible.

10 7 / 23 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) τ ϱ We split the intervals again. And find an admissible block. τ dist ϱ

11 7 / 23 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) We find six admissible blocks on this level.

12 7 / 23 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) The procedure is repeated...

13 CLUSTER TREE AND BLOCK PARTITION GOAL: Split Ω Ω into subdomains satisfying the admissibility condition diam(τ) 2 dist(τ, ϱ) (up to a small remainder). The procedure is repeated until only a small subdomain remains. RESULT: Domain Ω Ω partitioned into blocks τ ϱ. Clusters τ, ϱ Ω organized in a cluster tree. 7 / 23

14 8 / 23 HIERARCHICAL MATRIX IDEA: Use low-rank approximation in all admissible blocks ˆτ ˆϱ. Standard representation of original matrix K requires N 2 units of storage.

15 8 / 23 HIERARCHICAL MATRIX IDEA: Use low-rank approximation in all admissible blocks ˆτ ˆϱ. Replace admissible block K ˆτ ˆϱ by low-rank approximation K ˆτ ˆϱ = A τ,ϱ B τ,ϱ.

16 8 / 23 HIERARCHICAL MATRIX IDEA: Use low-rank approximation in all admissible blocks ˆτ ˆϱ. Replace all admissible blocks by low-rank approximations, leave inadmissible blocks unchanged. RESULT: Hierarchical matrix approximation K of K. STORAGE REQUIREMENTS: One row of K represented by only O(m log N) units of storage, total storage requirements O(Nm log N).

17 SECOND APPROACH: CROSS APPROXIMATION OBSERVATION: If M is a rank 1 matrix and we have pivot indices i, j with M i j 0, we get the representation M = ab, a i := M ij /M i j, b j := M i j. IDEA: If M can be approximated by a rank 1 matrix, we still can find i, j with M i j 0 and M ab. HIGHER RANK: Repeating the procedure for the error matrix yields rank m approximation of arbitrary accuracy. EFFICIENT: If the pivot indices are known, only m rows and columns of M are required to construct a rank m approximation. PROBLEM: Selection of pivot indices. Efficient strategies needed. Provable in certain settings. For our case it works (but till did not work on a proof) 9 / 23

18 10 / 23 UNIFORM HIERARCHICAL MATRIX GOAL: Reduce the storage requirements. APPROACH: Expansion in both variables k(x, y) ν+µ<m yields low-rank factorization K ˆτ ˆϱ V τ S τ,ϱ V ϱ, ν+µ k x ν y µ (x τ, y ϱ ) (x x τ ) ν (y y ϱ ) µ ν! µ! (V τ ) iν := (x i x τ ) ν ν! dx, (S τ,ϱ ) νµ := ν+µ k x ν y µ (x τ, y ϱ ). IMPORTANT: V τ depends only on one cluster (τ). Only the small matrix S τ,ϱ R m m depends on both clusters.

19 11 / 23 H 2 -MATRIX IDEA: Use three-term factorization in all admissible blocks ˆτ ˆϱ. Standard representation of original matrix K requires N 2 units of storage.

20 11 / 23 H 2 -MATRIX IDEA: Use three-term factorization in all admissible blocks ˆτ ˆϱ. Replace admissible block K ˆτ ˆϱ by low-rank approximation K ˆτ ˆϱ = V τ S τ,ϱ V ϱ.

21 11 / 23 H 2 -MATRIX IDEA: Use three-term factorization in all admissible blocks ˆτ ˆϱ. Replace all admissible blocks by low-rank approximations, leave inadmissible blocks unchanged.

22 H 2 -MATRIX IDEA: Use three-term factorization in all admissible blocks ˆτ ˆϱ. Use nested representation for the cluster basis. Use transfer matrices T τ R k k with V τ ˆτ k = V τ T τ for all sons τ sons(τ) to handle cluster basis (V τ ) efficiently. RESULT: H 2 -matrix approximation K of K. STORAGE REQUIREMENTS: One row of K represented by only O(m) units of storage, total storage requirements O(Nm). 11 / 23

23 12 / 23 OVERALL ALGORITHM 1: build hierarchy of clusters t by binary space partitioning 2: build blocks t s using the admissibility criterion 3: for all admissible blocks t s do 4: use ACA to compute a low-rank approximation K t s = AB 5: end for 6: for all remaining blocks t s do 7: compute standard representation K t s = K t s 8: end for 9: coarsen the block structure adaptively with blockwise SVD 10: convert the H-matrix into an H 2 -matrix

24 13 / 23 NUMERICAL RESULTS data sets network of simple sensor motes (Intel Lab Data) predict the temperature at a mote from the measurements of neighbouring ones mote22 consists of training / 2500 test from 2 other motes mote47 has training / 2000 test from 3 nearby motes helicopter flight project predict yaw rate in next timestep based on 3 measurements heliyaw has training / 4000 test data in 3 dimensions using Gaussian RBF kernel e x y 2 /w hyperparameters w and σ were found using a 2:1 split of the training data for each data set size note: a H 2 -matrix approximation can be used for several σ disregard actual runtimes, only compare (numbers from 2007)

25 NUMERICAL RESULTS (QUALITY, SPEEDUP) stored o.t.fly (f. both) H 2 -matrix data set #data time time error time error KB/N mote mote n/a mote mote n/a heliyaw heliyaw n/a matrix for N = can (barely) be stored speedups of two orders of magnitude for large data sets twice to ten-times the speedup of related work storage reduction of more than one order of magnitude for helicopter data set from down to 6.6, or in total from about 6 GB to about 250 MB 14 / 23

26 / 23 MOTE22: H 2 -MATRIX APPROXIMATION FOR 5000 DATA difference between full matrix and H 2 -matrix is in the spectral norm

27 MOTE 22: STUDY SCALING OF APPROACHES using w = 2 9 and σ = 2 5 for different data set sizes compare runtime per iteration for the different values of N on-the-fly computation expected O(N 2 ) scaling stored matrix even worse than O(N 2 ) from to data for H 2 -matrix scaling is nearly like O(Nm) H 2 -matrix time its time/its stored matrix time its n/a time/its on-the-fly time its time/its / 23

28 MOTE22, DIFFERENT DATA SET SIZES USING OPTIMAL PARAMETERS w / σ #data w / σ stored o.t.fly error H 2 error KB/N / / / / /2 5 n/a optimal w / σ found via 2:1 split of training data observe different optimal w / σ found for each data set size need for parameter tuning on large data set runtime of H 2 -matrix starts to make an improvement against stored matrix after 5000 data points more data useful for better results 17 / 23

29 18 / 23 EFFECT OF σ ON NUMBER OF ITERATIONS using the data of mote22 results are from 2:1 split using w = 2 8 and different σ i.e. matrix size is observe how number of iterations of GMRES depends on σ σ MAE its note: with smaller w the number of iterations usually grows as well

30 19 / 23 HOW CAN ONE GO INTO HIGHER DIMENSIONS question: how many dimensions can be handled? related recent fast Gauss-transform can give insights refer approach and study from M. Griebel and D. Wissel, Fast approximation of the discrete Gauss transform in higher dimensions. Journal of Scientific Computing, their study compares FGT (Greengard and Strain, 1991) Improved FGT (Yang, Duraiswami, and Gumerov, 2003) Dual-Tree FGT (Lee, Gray, and Moore, 2005) Optimized FGT (Griebel and Wissel, 2013) study dependence of algorithms on dimension and bandwitdh

31 h 20 / 23 OBSERVATIONS FROM GRIEBEL AND WISSEL I uniform data dc 5 dc 10 dc 20 of 5 of 10 of 20 2,000 N = 200,000 1,

32 OBSERVATIONS FROM GRIEBEL AND WISSEL II real life data is not uniform dc cmo3 dc cte4 dc bio6 of cmo3 of cte4 of bio / 23

33 OBSERVATIONS FROM GRIEBEL AND WISSEL III real life data is not uniform dc shu9 dc gal21 dc aco50 of shu9 of gal21 of aco / 23

34 23 / 23 CONCLUSIONS H 2 -matrices for approximating Gaussian Processes time O(Nm log(n)), storage O(Nm) handling of large data sets how to efficiently built H 2 -matrix in higher dim s H2Lib available at References (and see references therein): Börm and Garcke, Approximating Gaussian Processes with H2-matrices. ECML 2007, pages 42-53, Griebel and Wissel, Fast approximation of the discrete Gauss transform in higher dimensions. Journal of Scientific Computing, 55(1): , 2013.

H 2 -matrices with adaptive bases

H 2 -matrices with adaptive bases 1 H 2 -matrices with adaptive bases Steffen Börm MPI für Mathematik in den Naturwissenschaften Inselstraße 22 26, 04103 Leipzig http://www.mis.mpg.de/ Problem 2 Goal: Treat certain large dense matrices

More information

Hierarchical Matrices. Jon Cockayne April 18, 2017

Hierarchical Matrices. Jon Cockayne April 18, 2017 Hierarchical Matrices Jon Cockayne April 18, 2017 1 Sources Introduction to Hierarchical Matrices with Applications [Börm et al., 2003] 2 Sources Introduction to Hierarchical Matrices with Applications

More information

Fast evaluation of boundary integral operators arising from an eddy current problem. MPI MIS Leipzig

Fast evaluation of boundary integral operators arising from an eddy current problem. MPI MIS Leipzig 1 Fast evaluation of boundary integral operators arising from an eddy current problem Steffen Börm MPI MIS Leipzig Jörg Ostrowski ETH Zürich Induction heating 2 Induction heating: Time harmonic eddy current

More information

Computational tractability of machine learning algorithms for tall fat data

Computational tractability of machine learning algorithms for tall fat data Computational tractability of machine learning algorithms for tall fat data Getting good enough solutions as fast as possible Vikas Chandrakant Raykar vikas@cs.umd.edu University of Maryland, CollegePark

More information

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Michael Griebel Christian Rieger Peter Zaspel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität

More information

Fast Multipole Methods

Fast Multipole Methods An Introduction to Fast Multipole Methods Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov

More information

Efficient Kernel Machines Using the Improved Fast Gauss Transform

Efficient Kernel Machines Using the Improved Fast Gauss Transform Efficient Kernel Machines Using the Improved Fast Gauss Transform Changjiang Yang, Ramani Duraiswami and Larry Davis Department of Computer Science University of Maryland College Park, MD 20742 {yangcj,ramani,lsd}@umiacs.umd.edu

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Scalable machine learning for massive datasets: Fast summation algorithms

Scalable machine learning for massive datasets: Fast summation algorithms Scalable machine learning for massive datasets: Fast summation algorithms Getting good enough solutions as fast as possible Vikas Chandrakant Raykar vikas@cs.umd.edu University of Maryland, CollegePark

More information

Hierarchical matrix techniques for low and high frequency Helmholtz problems

Hierarchical matrix techniques for low and high frequency Helmholtz problems Hierarchical matrix techniques for low and high frequency Helmholtz problems Lehel Banjai Wolfgang Hackbusch 12th December 2006 Abstract In this paper, we discuss the application of hierarchical matrix

More information

An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages

An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages PIERS ONLINE, VOL. 6, NO. 7, 2010 679 An H-LU Based Direct Finite Element Solver Accelerated by Nested Dissection for Large-scale Modeling of ICs and Packages Haixin Liu and Dan Jiao School of Electrical

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Approximation of integral operators by H 2 -matrices with adaptive bases (revised version: December 2004) by Steffen Börm Preprint

More information

A butterfly algorithm. for the geometric nonuniform FFT. John Strain Mathematics Department UC Berkeley February 2013

A butterfly algorithm. for the geometric nonuniform FFT. John Strain Mathematics Department UC Berkeley February 2013 A butterfly algorithm for the geometric nonuniform FFT John Strain Mathematics Department UC Berkeley February 2013 1 FAST FOURIER TRANSFORMS Standard pointwise FFT evaluates f(k) = n j=1 e 2πikj/n f j

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN

Master Thesis Literature Review: Efficiency Improvement for Panel Codes. TU Delft MARIN Master Thesis Literature Review: Efficiency Improvement for Panel Codes TU Delft MARIN Elisa Ang Yun Mei Student Number: 4420888 1-27-2015 CONTENTS 1 Introduction... 1 1.1 Problem Statement... 1 1.2 Current

More information

MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS

MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS JIANLIN XIA Abstract. We propose multi-layer hierarchically semiseparable MHS structures for the fast factorizations of dense matrices arising from

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Hierarchical matrices and the High-Frequency Fast Multipole Method for the Helmholtz Equation with Decay revised version: March 014)

More information

Fast solver for fractional differential equations based on Hierarchical Matrices

Fast solver for fractional differential equations based on Hierarchical Matrices International Conference on Fractional Differentiation and its Applications, Novi Sad, Seria, July 18-20, 2016 Fast solver for fractional differential equations ased on Hierarchical Matrices Xuan Zhao

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples

An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples Lars Grasedyck and Wolfgang Hackbusch Bericht Nr. 329 August 2011 Key words: MSC: hierarchical Tucker tensor rank tensor approximation

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig H 2 -matrix approximation of integral operators by interpolation by Wolfgang Hackbusch and Steen Borm Preprint no.: 04 200 H 2 -Matrix

More information

Dual-Tree Fast Gauss Transforms

Dual-Tree Fast Gauss Transforms Dual-Tree Fast Gauss Transforms Dongryeol Lee Computer Science Carnegie Mellon Univ. dongryel@cmu.edu Alexander Gray Computer Science Carnegie Mellon Univ. agray@cs.cmu.edu Andrew Moore Computer Science

More information

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation A Fast N-Body Solver for the Poisson(-Boltzmann) Equation Robert D. Skeel Departments of Computer Science (and Mathematics) Purdue University http://bionum.cs.purdue.edu/2008december.pdf 1 Thesis Poisson(-Boltzmann)

More information

Hybrid Cross Approximation for the Electric Field Integral Equation

Hybrid Cross Approximation for the Electric Field Integral Equation Progress In Electromagnetics Research M, Vol. 75, 79 90, 2018 Hybrid Cross Approximation for the Electric Field Integral Equation Priscillia Daquin, Ronan Perrussel, and Jean-René Poirier * Abstract The

More information

Key words. Radial basis function, scattered data interpolation, hierarchical matrices, datasparse approximation, adaptive cross approximation

Key words. Radial basis function, scattered data interpolation, hierarchical matrices, datasparse approximation, adaptive cross approximation HIERARCHICAL MATRIX APPROXIMATION FOR KERNEL-BASED SCATTERED DATA INTERPOLATION ARMIN ISKE, SABINE LE BORNE, AND MICHAEL WENDE Abstract. Scattered data interpolation by radial kernel functions leads to

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels

Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels Stéphanie Chaillat, Luca Desiderio, Patrick Ciarlet To cite this version: Stéphanie

More information

Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks

Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks CHAPTER 2 Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks Chapter summary: The chapter describes techniques for rapidly performing algebraic operations on dense matrices

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

Fast Multipole Methods for Incompressible Flow Simulation

Fast Multipole Methods for Incompressible Flow Simulation Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards 0086075

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Transactions on Modelling and Simulation vol 19, 1998 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 19, 1998 WIT Press,   ISSN X Cost estimation of the panel clustering method applied to 3-D elastostatics Ken Hayami* & Stefan A. Sauter^ * Department of Mathematical Engineering and Information Physics, Graduate School of Engineering,

More information

Improved Fast Gauss Transform. Fast Gauss Transform (FGT)

Improved Fast Gauss Transform. Fast Gauss Transform (FGT) 10/11/011 Improved Fast Gauss Transform Based on work by Changjiang Yang (00), Vikas Raykar (005), and Vlad Morariu (007) Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

COMPARED to other computational electromagnetic

COMPARED to other computational electromagnetic IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 12, DECEMBER 2010 3697 Existence of -Matrix Representations of the Inverse Finite-Element Matrix of Electrodynamic Problems and -Based

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

Infinite Ensemble Learning with Support Vector Machinery

Infinite Ensemble Learning with Support Vector Machinery Infinite Ensemble Learning with Support Vector Machinery Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology ECML/PKDD, October 4, 2005 H.-T. Lin and L. Li (Learning Systems

More information

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX 26 Septembre 2018 - JCAD 2018 - Lyon Grégoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman Outline 1. Context 2.

More information

A Comparison of Solving the Poisson Equation Using Several Numerical Methods in Matlab and Octave on the Cluster maya

A Comparison of Solving the Poisson Equation Using Several Numerical Methods in Matlab and Octave on the Cluster maya A Comparison of Solving the Poisson Equation Using Several Numerical Methods in Matlab and Octave on the Cluster maya Sarah Swatski, Samuel Khuvis, and Matthias K. Gobbert (gobbert@umbc.edu) Department

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

COMPLEXITY OF SINGULAR VALUE DECOMPOSITION (SVD)

COMPLEXITY OF SINGULAR VALUE DECOMPOSITION (SVD) COMPLEXITY OF SINGULAR VALUE DECOMPOSITION (SVD) INPUT : Matrix M R n n in fullmatrix format OPERATION : SVD of M n = 256 Storage 1 2 MB Time (Seconds) LARS GRASEDYCK (RWTH AACHEN) HIERARCHICAL MATRICES

More information

Fast Krylov Methods for N-Body Learning

Fast Krylov Methods for N-Body Learning Fast Krylov Methods for N-Body Learning Nando de Freitas Department of Computer Science University of British Columbia nando@cs.ubc.ca Maryam Mahdaviani Department of Computer Science University of British

More information

Fast Direct Methods for Gaussian Processes

Fast Direct Methods for Gaussian Processes Fast Direct Methods for Gaussian Processes Mike O Neil Departments of Mathematics New York University oneil@cims.nyu.edu December 12, 2015 1 Collaborators This is joint work with: Siva Ambikasaran Dan

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

Fast large scale Gaussian process regression using the improved fast Gauss transform

Fast large scale Gaussian process regression using the improved fast Gauss transform Fast large scale Gaussian process regression using the improved fast Gauss transform VIKAS CHANDRAKANT RAYKAR and RAMANI DURAISWAMI Perceptual Interfaces and Reality Laboratory Department of Computer Science

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz Ansätze zur numerischen Lösung hochdimensionaler Lyapunov- und Sylvestergleichungen Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz S N SIMULATION www.tu-chemnitz.de/~benner

More information

Fastfood Approximating Kernel Expansions in Loglinear Time. Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle)

Fastfood Approximating Kernel Expansions in Loglinear Time. Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle) Fastfood Approximating Kernel Expansions in Loglinear Time Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle) Large Scale Problem: ImageNet Challenge Large scale data Number of training

More information

Teil 2: Hierarchische Matrizen

Teil 2: Hierarchische Matrizen Teil 2: Hierarchische Matrizen Mario Bebendorf, Universität Leipzig bebendorf@math.uni-leipzig.de Bebendorf, Mario (Univ. Leipzig) Kompaktkurs lineare GS und H-Matrizen 24. 2. April 2 1 / 1 1 1 2 1 2 2

More information

Easy and not so easy multifacility location problems... (In 20 minutes.)

Easy and not so easy multifacility location problems... (In 20 minutes.) Easy and not so easy multifacility location problems... (In 20 minutes.) MINLP 2014 Pittsburgh, June 2014 Justo Puerto Institute of Mathematics (IMUS) Universidad de Sevilla Outline 1 Introduction (In

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 39, No. 4, pp. A1710 A1740 c 2017 Society for Industrial and Applied Mathematics ON THE COMPLEXITY OF THE BLOCK LOW-RANK MULTIFRONTAL FACTORIZATION PATRICK AMESTOY, ALFREDO BUTTARI,

More information

A fast randomized algorithm for computing a Hierarchically Semi-Separable representation of a matrix

A fast randomized algorithm for computing a Hierarchically Semi-Separable representation of a matrix A fast randomized algorithm for computing a Hierarchically Semi-Separable representation of a matrix P.G. Martinsson, Department of Applied Mathematics, University of Colorado at Boulder Abstract: Randomized

More information

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen Parallel Iterative Methods for Sparse Linear Systems Lehrstuhl für Hochleistungsrechnen www.sc.rwth-aachen.de RWTH Aachen Large and Sparse Small and Dense Outline Problem with Direct Methods Iterative

More information

Ripser. Efficient Computation of Vietoris Rips Persistence Barcodes. Ulrich Bauer TUM

Ripser. Efficient Computation of Vietoris Rips Persistence Barcodes. Ulrich Bauer TUM Ripser Efficient Computation of Vietoris Rips Persistence Barcodes Ulrich Bauer TUM March 23, 2017 Computational and Statistical Aspects of Topological Data Analysis Alan Turing Institute http://ulrich-bauer.org/ripser-talk.pdf

More information

Fast algorithms for hierarchically semiseparable matrices

Fast algorithms for hierarchically semiseparable matrices NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2010; 17:953 976 Published online 22 December 2009 in Wiley Online Library (wileyonlinelibrary.com)..691 Fast algorithms for hierarchically

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Virtual Sensors and Large-Scale Gaussian Processes

Virtual Sensors and Large-Scale Gaussian Processes Virtual Sensors and Large-Scale Gaussian Processes Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov Coauthors: Kamalika

More information

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver Malaysian Journal of Mathematical Sciences 10(3): 369 382 (2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal An Adaptive Hierarchical Matrix on Point

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Kaggle.

Kaggle. Administrivia Mini-project 2 due April 7, in class implement multi-class reductions, naive bayes, kernel perceptron, multi-class logistic regression and two layer neural networks training set: Project

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System Yang You 1, James Demmel 1, Kent Czechowski 2, Le Song 2, Richard Vuduc 2 UC Berkeley 1, Georgia Tech 2 Yang You (Speaker) James

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

A sparse multifrontal solver using hierarchically semi-separable frontal matrices

A sparse multifrontal solver using hierarchically semi-separable frontal matrices A sparse multifrontal solver using hierarchically semi-separable frontal matrices Pieter Ghysels Lawrence Berkeley National Laboratory Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), François-Henry

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method Abstract: Problem formulation.

A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method Abstract: Problem formulation. A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method P.G. Martinsson, Department of Applied Mathematics, University of Colorado at Boulder Abstract:

More information

10-701/ Recitation : Kernels

10-701/ Recitation : Kernels 10-701/15-781 Recitation : Kernels Manojit Nandi February 27, 2014 Outline Mathematical Theory Banach Space and Hilbert Spaces Kernels Commonly Used Kernels Kernel Theory One Weird Kernel Trick Representer

More information

Improved Fast Gauss Transform. (based on work by Changjiang Yang and Vikas Raykar)

Improved Fast Gauss Transform. (based on work by Changjiang Yang and Vikas Raykar) Improved Fast Gauss Transform (based on work by Changjiang Yang and Vikas Raykar) Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to efficiently evaluate the weighted sum

More information

A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators

A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators (1) A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators S. Hao 1, P.G. Martinsson 2 Abstract: A numerical method for variable coefficient elliptic

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM Lee, Ching-pei University of Illinois at Urbana-Champaign Joint work with Dan Roth ICML 2015 Outline Introduction Algorithm Experiments

More information

Single-tree GMM training

Single-tree GMM training Single-tree GMM training Ryan R. Curtin May 27, 2015 1 Introduction In this short document, we derive a tree-independent single-tree algorithm for Gaussian mixture model training, based on a technique

More information

Nearest Neighbors Methods for Support Vector Machines

Nearest Neighbors Methods for Support Vector Machines Nearest Neighbors Methods for Support Vector Machines A. J. Quiroz, Dpto. de Matemáticas. Universidad de Los Andes joint work with María González-Lima, Universidad Simón Boĺıvar and Sergio A. Camelo, Universidad

More information

On the design of parallel linear solvers for large scale problems

On the design of parallel linear solvers for large scale problems On the design of parallel linear solvers for large scale problems ICIAM - August 2015 - Mini-Symposium on Recent advances in matrix computations for extreme-scale computers M. Faverge, X. Lacoste, G. Pichon,

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Jochen Garcke joint work with Axel Kröner, INRIA Saclay and CMAP, Ecole Polytechnique Ilja Kalmykov, Universität

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

Risi Kondor, The University of Chicago. Nedelina Teneva UChicago. Vikas K Garg TTI-C, MIT

Risi Kondor, The University of Chicago. Nedelina Teneva UChicago. Vikas K Garg TTI-C, MIT Risi Kondor, The University of Chicago Nedelina Teneva UChicago Vikas K Garg TTI-C, MIT Risi Kondor, The University of Chicago Nedelina Teneva UChicago Vikas K Garg TTI-C, MIT {(x 1, y 1 ), (x 2, y 2 ),,

More information

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems TR-0-07 A Comparison of the Performance of ::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems Ang Li, Omkar Deshmukh, Radu Serban, Dan Negrut May, 0 Abstract ::GPU is a

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics)

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Eftychios Sifakis CS758 Guest Lecture - 19 Sept 2012 Introduction Linear systems

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,   ISSN X Application of the panel clustering method to the three-dimensional elastostatic problem K. Hayami* and S. A. Sauter** ^Department of Mathematical Engineering and Information Physics, School ofengineering,

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

The adaptive cross approximation accelerated boundary element method for bubble dynamics

The adaptive cross approximation accelerated boundary element method for bubble dynamics Boundary Elements and Other Mesh Reduction Methods XXXIV 29 The adaptive cross approximation accelerated boundary element method for bubble dynamics Z. Fu & V. Popov Wessex Institute of Technology, Environmental

More information

Randomized algorithms for the low-rank approximation of matrices

Randomized algorithms for the low-rank approximation of matrices Randomized algorithms for the low-rank approximation of matrices Yale Dept. of Computer Science Technical Report 1388 Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert

More information