FINITEDIMENSIONAL LINEAR ALGEBRA


 Robyn Small
 2 years ago
 Views:
Transcription
1 DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H ROSEN FINITEDIMENSIONAL LINEAR ALGEBRA Mark S Gockenbach Michigan Technological University Houghton, USA CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an Imprint of the Taylor & Francis Croup, an Informa business A CHAPMAN & HALL BOOK
2 Contents Preface xv About the author xxi 1 Some problems posed on vector spaces 1 11 Linear equations Systems of linear algebraic equations Linear ordinary differential equations Some interpretation: The structure of the solution set to a linear equation Finite fields and applications in discrete mathematics 7 12 Best approximation Overdetermined linear systems Best approximation by a polynomial Diagonalization Summary 17 2 Fields and vector spaces Fields Definition and examples Basic properties of fields Vector spaces Examples of vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Secret sharing Continuous piecewise polynomial functions Continuous piecewise linear functions Continuous piecewise quadratic functions Error in polynomial interpolation 90 ix
3 x Contents 3 Linear operators Linear operators Matrix operators More properties of linear operators Vector spaces of operators The matrix of a linear operator on Euclidean spaces Derivative and differential operators Representing spanning sets and bases using matrices The transpose of a matrix Isomorphic vector spaces Injective and surjective functions; inverses The matrix of a linear operator on general vector spaces Linear operator equations Homogeneous linear equations Inhomogeneous linear equations General solutions Existence and uniqueness of solutions The kernel of a linear operator and injectivity The rank of a linear operator and surjectivity Existence and uniqueness The fundamental theorem; inverse operators The inverse of a linear operator The inverse of a matrix Gaussian elimination Computing A' Fields other than R Newton's method Linear ordinary differential equations The dimension of ker(l) Finding a basis for ker(l) The easy case: Distinct real roots The case of repeated real roots The case of complex roots The Wronskian test for linear independence The Vandermonde matrix Graph theory The incidence matrix of a graph Walks and matrix multiplication Graph isomorphisms Coding theory Generator matrices; encoding and decoding Error correction The probability of errors Linear programming Specification of linear programming problems 184
4 Contents xi 3122 Basic theory The simplex method Finding an initial BPS Unbounded LPs Degeneracy and cycling Variations on the standard LPs Determinants and eigenvalues The determinant function Permutations The complete expansion of the determinant Further properties of the determinant function Practical computation of det(a) A recursive formula for det(a) Cramer's rule A note about polynomials Eigenvalues and the characteristic polynomial Eigenvalues of real matrix Diagonalization Eigenvalues of linear operators Systems of linear ODEs Complex eigenvalues Solving the initial value problem Linear systems in matrix form Integer programming Totally unimodular matrices Transportation problems The Jordan canonical form Invariant subspaces Direct sums Eigenspaces and generalized eigenspaces Generalized eigenspaces Appendix: Beyond generalized eigenspaces The CayleyHamilton theorem Nilpotent operators The Jordan canonical form of a matrix The matrix exponential Definition of the matrix exponential Computing the matrix exponential Graphs and eigenvalues Cospectral graphs Bipartite graphs and eigenvalues Regular graphs Distinct eigenvalues of a graph 330
5 xii Contents 6 Orthogonality and best approximation Norms and inner products Examples of norms and inner products The adjoint of a linear operator The adjoint of a linear operator Orthogonal vectors and bases Orthogonal bases The projection theorem Overdetermined linear systems The GramSchmidt process Leastsquares polynomial approximation Orthogonal complements The fundamental theorem of linear algebra revisited Complex inner product spaces Examples of complex inner product spaces Orthogonality in complex inner product spaces The adjoint of a linear operator More on polynomial approximation A weighted L2 inner product The energy inner product and Galerkin's method Piecewise polynomials Continuous piecewise quadratic functions Higher degree finite element spaces Gaussian quadrature The trapezoidal rule and Simpson's rule Gaussian quadrature Orthogonal polynomials Weighted Gaussian quadrature The Helmholtz decomposition The divergence theorem Stokes's theorem The Helmholtz decomposition The spectral theory of symmetric matrices The spectral theorem for symmetric matrices Symmetric positive definite matrices Hermitian matrices The spectral theorem for normal matrices Outer products and the spectral decomposition Optimization and the Hessian matrix Background Optimization of quadratic functions Taylor's theorem First and secondorder optimality conditions Local quadratic approximations 446
6 Contents xiii 74 Lagrange multipliers Spectral methods for differential equations Eigenpairs of the differential operator Solving the BVP using eigenfunctions 456 The singular value decomposition Introduction to the SVD The SVD for singular matrices The SVD for general matrices Solving leastsquares problems using the SVD The SVD and linear inverse problems Resolving inverse problems through regularization The truncated SVD method Tikhonov regularization The Smith normal form of a matrix An algorithm to compute the Smith normal form 852 Applications of the Smith normal form 501 Matrix factorizations and numerical linear algebra The LU factorization Operation counts Solving Ax = b using the LU factorization Partial pivoting Finiteprecision arithmetic Examples of errors in Gaussian elimination Partial pivoting The PLU factorization The Cholesky factorization Matrix norms Examples of induced matrix norms The sensitivity of linear systems to errors Numerical stability Backward error analysis Analysis of Gaussian elimination with partial pivoting The sensitivity of the leastsquares problem The QR factorization Solving the leastsquares problem Computing the QR factorization Backward stability of the Householder QR algorithm Solving a linear system Eigenvalues and simultaneous iteration Reduction to triangular form The power method Simultaneous iteration The QR algorithm 572
7 xiv Contents 9101 A practical QR algorithm Reduction to upper Hessenberg form The explicitly shifted QR algorithm The implicitly shifted QR algorithm 579 LO Analysis in vector spaces Analysis 1011 Convergence and continuity in Rn Compactness 584 in R" Completeness of R" Equivalence of norms on R Infinitedimensional vector spaces Banach and Hubert spaces Functional analysis The dual of a Hilbert space Weak convergence Convexity 611 A The Euclidean algorithm 617 A01 Computing multiplicative inverses in Zp 618 A02 Related results 619 B Permutations 621 C Polynomials 625 Cl Rings of polynomials 625 C2 Polynomial functions 630 C 21 Factorization of polynomials 632 D Summary of analysis in R 633 D 01 Convergence 633 D02 Completeness of R 634 D03 Open and closed sets 635 D04 Continuous functions 636 Bibliography 637 Index 641
Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2
Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition
More informationhomogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45
address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test
More informationPreface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact:
Linear algebra forms the basis for much of modern mathematics theoretical, applied, and computational. The purpose of this book is to provide a broad and solid foundation for the study of advanced mathematics.
More informationA THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS
A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor
More informationNumerical Methods in Matrix Computations
Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices
More informationApplied Linear Algebra
Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University
More informationHandson Matrix Algebra Using R
Preface vii 1. R Preliminaries 1 1.1 Matrix Defined, Deeper Understanding Using Software.. 1 1.2 Introduction, Why R?.................... 2 1.3 Obtaining R.......................... 4 1.4 Reference Manuals
More informationNUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group
NUMERICAL METHODS lor CHEMICAL ENGINEERS Using Excel', VBA, and MATLAB* VICTOR J. LAW CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup,
More informationMATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations
MATHEMATICS Subject Code: MA Course Structure Sections/Units Section A Section B Section C Linear Algebra Complex Analysis Real Analysis Topics Section D Section E Section F Section G Section H Section
More informationIntroduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA
Introduction to Finite and Spectral Element Methods Using MATLAB Second Edition C. Pozrikidis University of Massachusetts Amherst, USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More informationABSTRACT ALGEBRA WITH APPLICATIONS
ABSTRACT ALGEBRA WITH APPLICATIONS IN TWO VOLUMES VOLUME I VECTOR SPACES AND GROUPS KARLHEINZ SPINDLER Darmstadt, Germany Marcel Dekker, Inc. New York Basel Hong Kong Contents f Volume I Preface v VECTOR
More informationMULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS
T H I R D E D I T I O N MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS STANLEY I. GROSSMAN University of Montana and University College London SAUNDERS COLLEGE PUBLISHING HARCOURT BRACE
More informationMATRIX AND LINEAR ALGEBR A Aided with MATLAB
Second Edition (Revised) MATRIX AND LINEAR ALGEBR A Aided with MATLAB Kanti Bhushan Datta Matrix and Linear Algebra Aided with MATLAB Second Edition KANTI BHUSHAN DATTA Former Professor Department of Electrical
More information1 Number Systems and Errors 1
Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floatingpoint Representation...........
More informationPreface. 2 Linear Equations and Eigenvalue Problem 22
Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits
More informationMath 307 Learning Goals
Math 307 Learning Goals May 14, 2018 Chapter 1 Linear Equations 1.1 Solving Linear Equations Write a system of linear equations using matrix notation. Use Gaussian elimination to bring a system of linear
More informationReview problems for MA 54, Fall 2004.
Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on
More informationBASIC MATRIX ALGEBRA WITH ALGORITHMS AND APPLICATIONS ROBERT A. LIEBLER CHAPMAN & HALL/CRC
BASIC MATRIX ALGEBRA WITH ALGORITHMS AND APPLICATIONS ROBERT A. LIEBLER CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. Contents Preface Examples Major results/proofs
More informationTABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiplechoice test 7 Problem set 9
TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiplechoice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative
More informationIntroduction to Applied Linear Algebra with MATLAB
Sigam Series in Applied Mathematics Volume 7 Rizwan Butt Introduction to Applied Linear Algebra with MATLAB Heldermann Verlag Contents Number Systems and Errors 1 1.1 Introduction 1 1.2 Number Representation
More informationLinear Algebra Review
Linear Algebra Review CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Linear Algebra Review 1 / 16 Midterm Exam Tuesday Feb
More informationAND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup
CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES An Introduction to Partial Differential Equations with MATLAB Second Edition Matthew P Coleman Fairfield University Connecticut, USA»C)
More informationAdaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL.
Adaptive Filtering Fundamentals of Least Mean Squares with MATLABR Alexander D. Poularikas University of Alabama, Huntsville, AL CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is
More informationMath 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination
Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column
More informationMatrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland
Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii
More information1 9/5 Matrices, vectors, and their applications
1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric
More informationLinear Algebra. Min Yan
Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................
More informationANSWERS. E k E 2 E 1 A = B
MATH 7 Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009 Preface The title of the book sounds a bit mysterious. Why should anyone read this
More informationClasses of Linear Operators Vol. I
Classes of Linear Operators Vol. I Israel Gohberg Seymour Goldberg Marinus A. Kaashoek Birkhäuser Verlag Basel Boston Berlin TABLE OF CONTENTS VOLUME I Preface Table of Contents of Volume I Table of Contents
More informationLinear Algebra and Probability
Linear Algebra and Probability for Computer Science Applications Ernest Davis CRC Press Taylor!* Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor Sc Francis Croup, an informa
More informationNumerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish Subramaniam. Third Edition. Amos Gilat.
Numerical Methods for Engineers An Introduction with and Scientists Applications using MATLAB Third Edition Amos Gilat Vish Subramaniam Department of Mechanical Engineering The Ohio State University Wiley
More informationMath 307 Learning Goals. March 23, 2010
Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent
More informationIntroduction to Numerical Analysis
J. Stoer R. Bulirsch Introduction to Numerical Analysis Second Edition Translated by R. Bartels, W. Gautschi, and C. Witzgall With 35 Illustrations Springer Contents Preface to the Second Edition Preface
More informationPreliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012
Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.
More informationIndex. for generalized eigenvalue problem, butterfly form, 211
Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,
More informationGATE Engineering Mathematics SAMPLE STUDY MATERIAL. Postal Correspondence Course GATE. Engineering. Mathematics GATE ENGINEERING MATHEMATICS
SAMPLE STUDY MATERIAL Postal Correspondence Course GATE Engineering Mathematics GATE ENGINEERING MATHEMATICS ENGINEERING MATHEMATICS GATE Syllabus CIVIL ENGINEERING CE CHEMICAL ENGINEERING CH MECHANICAL
More information1. General Vector Spaces
1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule
More informationIndex. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)
page 121 Index (Page numbers set in bold type indicate the definition of an entry.) A absolute error...26 componentwise...31 in subtraction...27 normwise...31 angle in least squares problem...98,99 approximation
More informationComprehensive Introduction to Linear Algebra
Comprehensive Introduction to Linear Algebra WEB VERSION Joel G Broida S Gill Williamson N = a 11 a 12 a 1n a 21 a 22 a 2n C = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn a m1 a m2 a mn Comprehensive
More informationFinal Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson
Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if
More informationMATHEMATICS COMPREHENSIVE EXAM: INCLASS COMPONENT
MATHEMATICS COMPREHENSIVE EXAM: INCLASS COMPONENT The following is the list of questions for the oral exam. At the same time, these questions represent all topics for the written exam. The procedure for
More informationMobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti
Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product ScalarVector Product Changes
More informationNumerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by
Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester
More informationCheat Sheet for MATH461
Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A
More informationNumerical Methods with MATLAB
Numerical Methods with MATLAB A Resource for Scientists and Engineers G. J. BÖRSE Lehigh University PWS Publishing Company I(T)P AN!NTERNATIONAL THOMSON PUBLISHING COMPANY Boston Albany Bonn Cincinnati
More informationSolution of Linear Equations
Solution of Linear Equations (Com S 477/577 Notes) YanBin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass
More informationNUMERICAL MATHEMATICS AND COMPUTING
NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific
More informationGEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS
Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam  Boston  London
More informationLecture Notes for InfMat 3350/4350, Tom Lyche
Lecture Notes for InfMat 3350/4350, 2007 Tom Lyche August 5, 2007 2 Contents Preface vii I A Review of Linear Algebra 1 1 Introduction 3 1.1 Notation............................... 3 2 Vectors 5 2.1 Vector
More informationIr O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )
Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O
More informationELEMENTARY MATRIX ALGEBRA
ELEMENTARY MATRIX ALGEBRA Third Edition FRANZ E. HOHN DOVER PUBLICATIONS, INC. Mineola, New York CONTENTS CHAPTER \ Introduction to Matrix Algebra 1.1 Matrices 1 1.2 Equality of Matrices 2 13 Addition
More informationALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA
ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND
More informationPractical Linear Algebra: A Geometry Toolbox
Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla
More informationMATHEMATICAL OBJECTS in
MATHEMATICAL OBJECTS in Computational Tools in a Unified ObjectOriented Approach Yair Shapira @ CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis
More informationThe Essentials of Linear StateSpace Systems
:or' The Essentials of Linear StateSpace Systems J. Dwight Aplevich GIFT OF THE ASIA FOUNDATION NOT FOR RESALE John Wiley & Sons, Inc New York Chichester Weinheim OAI HOC OUOC GIA HA N^l TRUNGTAMTHANCTINTHUVIIN
More informationANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2
MATH 7 Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the CauchySchwartz inequality
More informationLINEAR AND NONLINEAR PROGRAMMING
LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGrawHill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico
More informationAMS526: Numerical Analysis I (Numerical Linear Algebra)
AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & MatrixVector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course
More informationBASIC GRAPH THEORY. SUB CODE: 09MAT01 Total hours 52
SYLLABUS For the course work syllabus recommended by the Guide for doing Ph.D in the Department of Mathematics, Sri Siddhartha Institute of Technology under SSU, Tumkur. BASIC GRAPH THEORY SUB CODE: 09MAT01
More informationNumerical Mathematics
Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector
More informationMA3025 Course Prerequisites
MA3025 Course Prerequisites MA 3025 (41) MA3025 (41) Logic and Discrete Mathematics: Provides a rigorous foundation in logic and elementary discrete mathematics. Topics from logic include modeling English
More informationPARTIAL DIFFERENTIAL EQUATIONS
MATHEMATICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL
More information1. Foundations of Numerics from Advanced Mathematics. Linear Algebra
Foundations of Numerics from Advanced Mathematics Linear Algebra Linear Algebra, October 23, 22 Linear Algebra Mathematical Structures a mathematical structure consists of one or several sets and one or
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More informationx 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7
Linear Algebra and its ApplicationsLab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)
More informationPreface to Second Edition... vii. Preface to First Edition...
Contents Preface to Second Edition..................................... vii Preface to First Edition....................................... ix Part I Linear Algebra 1 Basic Vector/Matrix Structure and
More informationPart IB  Easter Term 2003 Numerical Analysis I
Part IB  Easter Term 2003 Numerical Analysis I 1. Course description Here is an approximative content of the course 1. LU factorization Introduction. Gaussian elimination. LU factorization. Pivoting.
More informationIndex. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2
Index advection equation, 29 in three dimensions, 446 advectiondiffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604
More informationMATHEMATICAL METHODS INTERPOLATION
MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU
More informationMATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More informationApplied Linear Algebra in Geoscience Using MATLAB
Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data TwoDimensional Plots Programming in
More informationGRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.
GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,
More informationCoding the Matrix Index  Version 0
0 vector, [definition]; (2.4.1): 68 2D geometry, transformations in, [lab]; (4.15.0): 196200 A T (matrix A transpose); (4.5.4): 157 absolute value, complex number; (1.4.1): 43 abstract/abstracting, over
More informationThe value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.
Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class
More informationApplied Numerical Analysis
Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M UniversityCommerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory
More informationIntroduction to Functional Analysis With Applications
Introduction to Functional Analysis With Applications A.H. Siddiqi Khalil Ahmad P. Manchanda Tunbridge Wells, UK Anamaya Publishers New Delhi Contents Preface vii List of Symbols.: '  ix 1. Normed and
More informationMatrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein
Matrix Mathematics Theory, Facts, and Formulas with Application to Linear Systems Theory Dennis S. Bernstein PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Special Symbols xv Conventions, Notation,
More informationPart IB Numerical Analysis
Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after
More informationAnalysis Preliminary Exam Workshop: Hilbert Spaces
Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H
More informationSUMMARY OF MATH 1600
SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You
More informationMatrix decompositions
Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The
More informationMain matrix factorizations
Main matrix factorizations A P L U P permutation matrix, L lower triangular, U upper triangular Key use: Solve square linear system Ax b. A Q R Q unitary, R upper triangular Key use: Solve square or overdetrmined
More informationToday s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn
Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear
More informationAPPLIED NUMERICAL LINEAR ALGEBRA
APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation
More informationHONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013
HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 PROFESSOR HENRY C. PINKHAM 1. Prerequisites The only prerequisite is Calculus III (Math 1201) or the equivalent: the first semester of multivariable calculus.
More informationUNIVERSITY OF NORTH ALABAMA MA 110 FINITE MATHEMATICS
MA 110 FINITE MATHEMATICS Course Description. This course is intended to give an overview of topics in finite mathematics together with their applications and is taken primarily by students who are not
More information8. Diagonalization.
8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard
More informationLAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM
LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM ORIGINATION DATE: 8/2/99 APPROVAL DATE: 3/22/12 LAST MODIFICATION DATE: 3/28/12 EFFECTIVE TERM/YEAR: FALL/ 12 COURSE ID: COURSE TITLE: MATH2800 Linear Algebra
More informationG1110 & 852G1 Numerical Linear Algebra
The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the
More informationReduction to the associated homogeneous system via a particular solution
June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one
More informationLinear Algebra. Session 12
Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)
More informationLECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel
LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count
More informationNUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING
NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical
More informationEE731 Lecture Notes: Matrix Computations for Signal Processing
EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten
More informationContents. I Basic Methods 13
Preface xiii 1 Introduction 1 I Basic Methods 13 2 Convergent and Divergent Series 15 2.1 Introduction... 15 2.1.1 Power series: First steps... 15 2.1.2 Further practical aspects... 17 2.2 Differential
More informationSYLLABUS. 1 Linear maps and matrices
Dr. K. Bellová Mathematics 2 (10PHYBIPMA2) SYLLABUS 1 Linear maps and matrices Operations with linear maps. Prop 1.1.1: 1) sum, scalar multiple, composition of linear maps are linear maps; 2) L(U, V
More informationFive MiniCourses on Analysis
Christopher Heil Five MiniCourses on Analysis Metrics, Norms, Inner Products, and Topology Lebesgue Measure and Integral Operator Theory and Functional Analysis Borel and Radon Measures Topological Vector
More information