"#$!%&'()$&*$!+'!%&,%-%,).(!,%''$/$&*$0! +&!"#$!%+1.!2.34(%&2!".05!.&,! /$.(61+/(,!,$*%0%+&!3.5%&2!

Size: px
Start display at page:

Download ""#$!%&'()$&*$!+'!%&,%-%,).(!,%''$/$&*$0! +&!"#$!%+1.!2.34(%&2!".05!.&,! /$.(61+/(,!,$*%0%+&!3.5%&2!"

Transcription

1 "#$%&'()$&*$+'%&,%-%,).(,%''$/$&*$0 +&"#$% (%&2".05.&, /$.(61+/(,,$*%0%+&3.5%& $'+/$0")&%-$/0%"H 3.0"$/+'./"0 TDI<I:38T:II<IL;QJ98,Q.AR<;BC,DF:,DL:I>DE9QJ98,Q*9D<C?DI

2 .*5&+1($,23$&" << MB;;<>F:8

3 ".4($+'*+&"$&"0 <<< JDL:.*5&+1($,23$&" << (%0"+''%2)/$0.&,.JJ$&,%*$ R<.40"/.*" R<<< %&"/+,)*"%+& P %BUD2D?>F<IL"D;V P "9:%2"D;D3:D;=C:BG/:DF6UBCFA, W @9:%2"BC,+% P\ 3$"#+, NN

4 <R /<;V NW %BUD2D?>F<IL"D;V]%2"^ N_ JCBE:A=C: N` /$0)(" N\ %2"DIA,+% aX 3D[<?<c<IL a`

5 R /$'$/$&*$ _O.JJ$&,%d *#+(.0"%*-%" `\

6 (%0"+''%2)/$0Q".4($0.&,.JJ$&,%*$0 R< '%2)/$0 JDL: P J:CE:I@DL:BG*DCA;*9B;:IGCB?@9:2BBA,:EV;D;D'=IE@<BIBG4FBEV N\ N J:CE:I@DL:BG*DCA;*9B;:IGCB?@9:2BBA,:EV;D;D'=IE@<BIBG4FBEV DECB;;$[M:C<?:I@; aZ ".4($0 P %2"J:CGBC?DIE:DIA,+%0EBC:;*BCC:FD@:AU<@9%IA<R<A=DF,<GG:C:IE: -DC<D>F:; ZN N 'DE@BC.IDF7;<;/:;=F@;GBC-DC<D>F:;/:FD@:A@B4B@9@9:%2"DIA,+% ZW Z 'DE@BC;DIA@9:%IA<R<A=DF,<GG:C:IE:-DC<D>F:;@9D@*B?MC<;:"9:? Z_ a 3BA:FPDIA3BA:FN0@D@<;@<E;GBC'B=C#<:CDCE9<EDF/:LC:;;<BI; JC:A<E@<IL%2" ZX W 3BA:FPDIA3BA:FN0@D@<;@<E;GBC'B=C#<:CDCE9<EDF/:LC:;;<BI; JC:A<E@<IL,+% Z\ _ 3BA:FPDIA3BA:FN0@D@<;@<E;GBC#<:CDCE9<EDF/:LC:;;<BI;JC:A<E@<IL%2" aO X 3BA:FPDIA3BA:FN0@D@<;@<E;GBC'<R:#<:CDCE9<EDF/:LC:;;<BI; JC:A<E@<IL,+% aP.JJ$&,%*$0.,:E<;<BI+=@EB?:%IR:I@BC D[<?<cD@<BI0EDF:DIA@9:3D[<?<c<IL":IA:IE70EDF: _` *,:E<;<BI0@7F:;0=CR: XP, $M;@:<Ie;/D@<BIDF6$[M:C<:I@<DF%IR:I@BC XZ

7 R<< $ *BLI<@<R:/:GF:E@<BI":;@ XW ' /<;V6"DV<ILJCBM:I;<@ X_ 2 4%0Y4.00EDF: XX # )JJ0%?M=F;<R:4:9DR<BC0EDF: `P % /:LC:@0EDF: `X T %I@:CEBCC:FD@<BI;D?BIL<IA<R<A=DFA<GG:C:IE:A:E<;<BI6C:FD@:ARDC<D>F:; ``

8 R<<< "#$%&'()$&*$+'%&,%-%,).(,%''$/$&*$0 +&"#$% (%&2".05.&, /$.(61+/(,,$*%0%+&3.5%&2 J;7E9BFBL

9 P P\\`^QA:E<;<BI?DV<IL],3^<;<IGF=:IE:AIB@BIF7>7C:D;BIQ>=@DF;B>7:?B@<BIDIA G::F<IL;8*:I@CDF@B@9:;B?D@<E?DCV:C97MB@9:;<;<;@9:<A:D@9D@;B?D@<E?DCV:C;Q U9<E9DC:C:FD@:A@B:?B@<BI;QDC<;:<I@9:MC:;:IE:BG;<@=D@<BIDF<IGBC?D@<BIQ;=E9D; ;<?<FDCE=:;BC@9B=L9@;QDIA@9B;:;@D@:;<I@=CI<IGF=:IE:BI:e;:[M:C<:IE:BG@9:E=CC:I@ ;<@=D@<BI8'BC:[D?MF:QU9:IBI:<;?DV<ILDA:E<;<BIQEBI@:?MFD@<ILDC<;V7EB=C;:BG DE@<BI?D7@C<LL:CD;B?D@<E;@D@:@9D@EBCC:;MBIA;@BMD;@M=I<;9?:I@;D;;BE<D@:AU<@9D ;<?<FDCC<;V7DE@<BIQDIA@9=;<?MF<E<@F7]BC:[MF<E<@F7Q<G@9:D=@BIB?<EC:DE@<BI<; EBI;E<B=;F7G:F@^A<;EB=CDL:;@9D@MDC@<E=FDCE9B<E:8%I@9<;UD7Q@9:,3;MDE:>:EB?:; F<?<@:A@BEB=C;:;BGDE@<BI@9D@DC:F<IV:A@BDARDI@DL:B=;B=@EB?:;GCB?@9:MD;@D; C:?:?>:C:AR<D;B?D@<E;@D@:;Q@9=;?DV<IL@9:MCBE:;;BG,3?BC::GG<E<:I@8,D?D;<B DCL=:;@9D@U<@9B=@;=E9F<?<@D@<BI;QFBL<EDFC:D;BI<ILMCBE:;;:;UB=FA9DR:@BEBI;<A:C F<?<@F:;;C:UDCADIAM=I<;9?:I@EBI@<IL:IE<:;QCDIL<ILGCB?<??:A<D@:@BFBIL6@:C? EBI;<A:CD@<BI;QC:IA:C<IL@9:,3MCBE:;;<I:GG<E<:I@8 Iowa Gambling Task "9:%BUD2D?>F<IL"D;V]%2"^UD;BC<L<IDFF7A:R:FBM:A@B@:;@@9:;B?D@<E?DCV:C97MB@9:;<;>7:[D?<I<IL,3A:G<E<@;<IMD@<:I@;U<@9F:;<BI;<I@9:R:I@CB?:A<DF MC:GCBI@DFEBC@:[]-3^QDMBM=FD@<BIU9<E9<;VIBUI@B:[M:C<:IE:A<GG<E=F@<:;U<@9>B@9,3DIA@9:MCBE:;;<ILBG:?B@<BIDF<IGBC?D@<BI]4:E9DCD:@DF8QP\\a^8"9:@D;V EBI;<;@;BGPOO@C<DF;<IU9<E9MDC@<E<MDI@;E9BB;:DEDCAGCB?BI:BGGB=CA:EV;BGEDCA;8 JDC@<E<MDI@;;@DC@@9:@D;VU<@9fNOOOBG?DV:>:F<:R:g?BI:78g,=C<IL:DE9@C<DFQDG@:C

10 N C:UDCAQ@9:C:<;;B?:@<?:;D?BI:@DC7M=I<;9?:I@8'BC:[D?MF:QDG@:CD;:F:E@<BI@9: MDC@<E<MDI@U<FF;::D?:;;DL:Q;=E9D;QhHB=UBIfPOOiBChHB=UBIfPOO8HB=FB;: "UBBG@9:A:EV;Q.DIA4QDC:EBI;<A:C:A@B>:h>DAiA:EV;8"9:7DC:D;;BE<D@:A U<@9DfPOOC:UDCAGBC:DE9;:F:E@<BI80:F:E@<BI;GCB?A:EV.C:;=F@<IGC:K=:I@ M=I<;9?:I@;CDIL<ILGCB?fPWO@BfZOO80:F:E@<BI;GCB?A:EV4C:;=F@<IDFB;;BG fpnwobie:m:c@:i@c<df;bidr:cdl:84b@9a:ev;c:;=f@<idi:@fb;;bgfnwogbc:r:c7@:i ;:F:E@<BI;GCB?:DE9A:EV8"9:B@9:C@UBA:EV;Q*DIA,QDC:EBI;<A:C:A@B>:hLBBAi A:EV;8"9:7DC:D;;BE<D@:AU<@9DfWOC:UDCAGBC:DE9;:F:E@<BIDIA;?DFF:CBR:CDFF M=I<;9?:I@;80:F:E@<BI;GCB?A:EV*C:;=F@<IM=I<;9?:I@;CDIL<ILGCB?fNW@BfXW U9<F:;:F:E@<BI;GCB?A:EV,C:;=F@<IF:;;GC:K=:I@FB;;:;BGfNWOBIE:M:C@:I@C<DF;BI DR:CDL:84B@9A:EV;*DIA,C:;=F@<IDI:@LD<IBGfNWOGBC:R:C7@:I;:F:E@<BI;GCB? BR:CEB?:<IGDRBCBG@9:;DG:CE9B<E:]A:EV;*j,^8 M=I<;9?:I@;QU9<E9DC:>:F<:R:A@BEC:D@:DIDGG:E@<R:;@D@:D;;BE<D@:AU<@9:DE9 A:E<;<BI8"9<;DGG:E@<R:EB?MBI:I@<;<I@:IA:A@BD<AMDC@<E<MDI@;<IF:DCI<IL@9:@D;VD@ DI:?B@<BIDFF:R:F80:EBIAQ@9:@D;VUD;?:DI@@B>:;=GG<E<:I@F7EB?MF:[;BD;@B?DV: <@A<GG<E=F@@BF:DCI@9:C:UDCADIAM=I<;9?:I@EBI@<IL:IE<:;=;<ILCD@<BIDFEDFE=FD@<BI; DFBI:Q?DV<IL;=EE:;;BI@9:@D;VFDCL:F7A:M:IA:I@BI:?B@<BIDFF:DCI<IL8

11 Z ]4:E9DCD:@DF8QP\\X^8"9:EBI@CBF;F:DCI:A@BLCDA=DFF7GDRBC@9:LBBAA:EV;Q*DIA,Q?BC:@9DI@9:>DAA:EV;Q.DIA4QD;@9:@D;VMCBLC:;;:A8-3MD@<:I@;Q9BU:R:CQ;9BU:A C:;MBI;:]0*/^QDI<IA:[BG:?B@<BIDFC:;MBIA<ILQUD;?:D;=C:AA=C<IL:DE9@C<DF>:GBC: EBCC:;MBIA:I@U<@9@9:<CC:UDCAYM=I<;9?:I@EBI@<IL:IE<:;8-3MD@<:I@;Q@9B=L9Q L:I:CD@:AR:C7F<@@F:QIBI;M:E<G<E0*/;<IDI@<E<MD@<BIBGA:EV;:F:E@<BIC:LDCAF:;;BG U9<E9A:EVUD;E9B;:IQ;=LL:;@<IL@9D@IB<IGF=:IE<IL:?B@<BIDFC:DE@<BI;U:C:>:<IL GBC?:A8 %IDAA<@<BI@B?:D;=C<IL@D;VM:CGBC?DIE:DIADI@<E<MD@BC70*/A=C<IL@9:%2"Q E9DCDE@:C<c:A>7C:;MBI;:;<IU9<E9;=>k:E@;;9BU:AIBVIBUF:AL:EBIE:CI<IL@9: LBBAI:;;BC>DAI:;;BG@9:A:EV;U9<F:@9:9=IE9;@DL:EBI;<;@:ABGC:;MBI;:;@9D@ <IA<ED@:AMDC@<E<MDI@;9DA;B?:<I@=<@<BIBG@9:C<;VD;;BE<D@:AU<@9@9:A:EV;8%I EBI@CD;@Q@9:EBIE:M@=DF;@DL:UD;E9DCDE@:C<c:A>7C:;MBI;:;<IU9<E9MDC@<E<MDI@;EB=FA DC@<E=FD@:;M:E<G<EVIBUF:AL:D>B=@U9<E9A:EV;U:C:?B;@DARDI@DL:B=;8

12

13 The IGT as a Measure of Real-world DM W 4:E9DCD:@DF8]NOOO^EFD<?@9D@:;;:I@<DF:F:?:I@;BGC:DF6UBCFA,3Q;=E9D; =IE:C@D<I@7QC:UDCADIAM=I<;9?:I@Q@9D@DC:MC:;:I@<I@9:%2"Q?DV:@9:@D;VDLBBA?:D;=C:BGC:DF6UBCFA,38%?MD<C:A%2"M:CGBC?DIE:D?BIL;=E9MBM=FD@<BI;D;-3 MD@<:I@;Q;=>;@DIE:D>=;:C;QLD?>F<ILDAA<E@;QE9<FAC:IDIABFA:CDA=F@;QU9BDF;B;::?@B?DV:MBBCC:DF6UBCFAA:E<;<BI;Q9D;>::I@DV:I@B;=LL:;@@9D@@9:%2"<;?:D;=C<IL ;B?:@9<ILDV<I@BC:DF6UBCFA,3]4=:FBUj0=9CQNOO\l*CBI:jRDIA:C3BF:IQNOOal,:I>=CL:@DF8QNOO_l$RDI;:@DF8QNOOWl'<LI:C:@DF8QNOO\l2B=AC<DDI:@DF8QNOOal 3BI@:CB;;B:@DF8QNOOPlH:E9<D?:@DF8QNOOW^8#BU:R:CQ;=E9:R<A:IE:<;<IG:C:I@<DFQ DIA@BAD@:@9:C:9D;>::IF<@@F:A<C:E@:R<A:IE:BGDF<IV>:@U::I%2"M:CGBC?DIE:DIA C:DF6UBCFA,3D><F<@78"9<;FDEVBGA<C:E@:R<A:IE:<;;=CMC<;<ILL<R:I@9:%2"<;IBU?DCV:@:A@BEF<I<E<DI;D;?:D;=C:BGC:DF6UBCFA,38 Cognitive Penetrability.IB@9:CEBIE:CIC:LDCA<IL@9:%2"],=IIQ,DFLF:<;9Qj(DUC:IE:QNOOW^ <IRBFR:;@9:D;;=?M@<BI@9D@<@@DM;?B;@F7=IEBI;E<B=;<IGF=:IE:;A=C<IL,3D;4:E9DCD :@DF8]P\\aQP\\_^9DR:EFD<?:A]$RDI;Q4BU?DIQj"=CI>=FFQNOOWl#<I;BIQTD?:;BIQ EBI;E<B=;VIBUF:AL:BG@9:DARDI@DL:B=;A:EV;QU9<E9;<?MF7D;VMDC@<E<MDI@;@B@:FF U9D@@9:7VIBUD>B=@@9:@D;VDIA9BU@9:7G::FD>B=@<@];::D>BR:^QDC:@BBRDL=:DIA IBI;M:E<G<E@B:F<E<@DFFD;M:E@;BGVIBUF:AL:@9D@?D7>:MC:;:I@8*BI;:K=:I@F7Q3D<D DIA3E*F:FFDIACDID;@=A7A:;<LI:A@BD;;:;;EBI;E<B=;VIBUF:AL:EBIE:CI<ILU9<E9 A:EV;U:C:?B;@DARDI@DL:B=;>7D;V<ILMDC@<E<MDI@;?BC:;M:E<G<EK=:;@<BI;Q<IEF=A<IL D;V<IL@9:?@BCD@::DE9A:EVBID(<V:C@;EDF:Q@B?DV:MC:A<E@<BI;D>B=@9BU?=E9DIA

14 BI:A:EVGBC@9:C:?D<IA:CBG@9:@D;V8"9:C:;=F@;;9BU:A@9D@MDC@<E<MDI@;A:R:FBM:A EBI;E<B=;VIBUF:AL:BG@9:DARDI@DL:B=;;@CD@:L7:DCF<:C@9DI4:E9DCD:@DF8]P\\X^9DA C:MBC@:AQDIA@9D@<?MCBR:AM:CGBC?DIE:A<AIB@MC:E:A:EBI;E<B=;VIBUF:AL:Q>=@ C:D;BI;GBCMC:G:CC<IL@9:DARDI@DL:B=;A:EV;QDIABIF7@9:IA<AM:CGBC?DIE:<?MCBR:8 "9:CBF:BGEBI;E<B=;VIBUF:AL:9D;DF;B>::I:[D?<I:A>7DAA<ILD13@D;V@B >:M:CGBC?:AEBIE=CC:I@F7U<@9@9:%2"]#<I;BIQTD?:;BIQj19<@I:7QNOON^8%GIBI6 EBI;E<B=;:?B@<BIDF<IGF=:IE:;DC:@9:?D<IAC<R:C;BG<?MCBR:?:I@BI@9:%2"Q<@ GBFFBU;@9D@DIBEE=M<:A13;7;@:?;9B=FA9DR:F<@@F:BCIB:GG:E@BI%2"M:CGBC?DIE:8 #BU:R:CQ#<I;BI:@DF8GB=IA@9D@DAA<ILD13FBDA@BDRDC<DI@R:C;<BIBG@9:%2"Q ;:F:E@<BI;GCB?@9:LBBAA:EV8%I@9:13FBDAEBIA<@<BIQMDC@<E<MDI@;U:C:L<R:ID ;@C<ILBGWA<L<@;@BC:?:?>:CD@@9:>:L<II<ILBG:DE9%2"@C<DF8.G@:C;:F:E@<ILGCB?D ;@C<IL8"9:LCB=M=IA:CIBUBCV<IL?:?BC7FBDAUD;;<?MF7D;V:A@BM:CGBC?@9:%2"

15 X F:DCI:A],=IIQ,DFLF:<;9Qj(DUC:IE:QNOOW^ Previous study.

16 ` MDC@<E<MDI@;G<C;@<IA<ED@:U9:@9:C@9:79DR::[M:C<:IE:ADE:C@D<I;<@=D@<BIQDIA<G;BQ U9:@9:C@9:79DR::[M:C<:IE:ADI:LD@<R:B=@EB?:C:FD@:A@B@9:;<@=D@<BI8'BC:[D?MF:Q BI:<@:?D;V;MDC@<E<MDI@;@B<IA<ED@:U9:@9:C@9:79DR::R:CABI:@9:<CBUIFD=IAC7QDIA <G;BQU9:@9:C@9:79DR:C=<I:AEFB@9:;>:ED=;:@9:7A<AIB@GBFFBU@9:FD=IAC7 <I;@C=E@<BI;BI@9:FD>:F8"9:I:LD@<R:B=@EB?:;CDIL:<I;:R:C<@7GCB?F:@@<ILGBBALB ;V<FF;<IEF=A<IL@9:D><F<@7@BC:EBLI<c:;BE<DFIBC?;Q@BC:EBLI<c:@9::[@:I@BGBI:e; VIBUF:AL:Q@BEBCC:E@F7DMMF7A:E<;<BIC=F:;Q@BDEE=CD@:F7M:CE:<R:C<;VDIA@B<LIBC: MC<BC<IR:;@?:I@;]4C=<I:A:4C=<I:@DF8QNOOX^8 1:DA?<I<;@:C:A@9:,+%@BZPX=IA:CLCDA=D@:;U9BC:E:<R:AEB=C;:EC:A<@GBC MDC@<E<MD@<BIQDIA;:F:E@:AMDC@<E<MDI@;;EBC<IL<I@9:@BMDIA>B@@B?K=DC@<F:;Q C:MC:;:I@<ILU9D@U:EDFF@9:LBBA,+%LCB=M]@9B;:U9B<IA<ED@:AG:U:CMBBCA:E<;<BI M:CGBC?DIE:DIAMBBCC:DF6UBCFA,3QU:MC:A<E@:ADA<C:E@C:FD@<BI;9<M>:@U::I%2" M:CGBC?DIE:DIA,+%;EBC:;Q;=E9@9D@MBBC%2"M:CGBC?DIE:UB=FA>:D;;BE<D@:AU<@9 MBBCF<G:B=@EB?:;D;?:D;=C:A>7@9:,+%8 0:EBIAQ<IF<L9@BG@9:EBI@CBR:C;7C:LDCA<IL@9:UD7<IU9<E9EBI;E<B=; MCBE:;;:;DGG:E@%2"M:CGBC?DIE:QU:;B=L9@@BC:MF<ED@:@9:UBCVBG#<I;BI:@DF8 ]NOON^QU9B9DA;9BUI@9D@@9:DAA<@<BIBGDUBCV<IL?:?BC7]13^FBDAA:EC:D;:A M:CGBC?DIE:BIDRDC<DI@R:C;<BIBG@9:%2"QU9<F:;<?=F@DI:B=;F7:[MFBC<ILU9:@9:CD A<;C=M@<BIBGEBI;E<B=;MCBE:;;<ILUB=FA9DR:DA<GG:C:I@<DF:GG:E@BIM:CGBC?DIE:D;D

17 \

18 PO

19 PP Implications of previous

20

21 PZ Hypotheses about individual differences underlying IGT/DOI relationship

22 Pa 9D;>::I

23 PW Current Study

24 P_

25 PX %2"GB=IA<IB=CMC:R<B=;UBCV8

26 P` Individual difference variables previously examined in relation to the IGT. "B @UB6FDI:CBDADIA%2"M:CGBC?DIE:

27 P\ Individual difference variables previously examined in relation to the DOI.

28 NO Individual difference variables not previously compared with the IGT or DOI

29 NP

30 METHODS NN Materials

31 NZ Measures of decision making styles.

32 Na ].MM:IA<[,^8

33 NW Risk-taking. fpogbc;=c:qbc9dr:dpoqe9die:bgu<ii<ilfpoodiad\oqe9die:bgu<ii<il E9B;:I].MM:IA<['^8 Personality variables. U:C:?:D;=C:A

15) Find UG if FG = 8. 17) Find QE if QU = 30

15) Find UG if FG = 8. 17) Find QE if QU = 30 -4-14) ind if N = 3.7 15) ind if = 8 N 16) ind if = 27 17) ind if = 30 18) ind if = 4.5 19) ind if = 2.5 20) ind A if A = 6 A 21) ind if P = 6.4 P 22) ind if = 5 A -5- 27) ind if = 15 N 28) ind if = 6.3

More information

2010 GCE A Level H2 Maths Solution Paper 2 Section A: Pure Mathematics. 1i) x 2 6x + 34 = 0 6 ± x = 2

2010 GCE A Level H2 Maths Solution Paper 2 Section A: Pure Mathematics. 1i) x 2 6x + 34 = 0 6 ± x = 2 00 GCE A Level H Maths Solution Paper Section A: Pure Mathematics i) x 6x + 34 0 6 ± 36 36 x 6 ± 0i 3 ± 5i (ii) Since the coefficients are all real, another root of the equation is x i. [ x ( + i) ] [

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

GCE A Level H2 Mathematics November 2014 Paper 1. 1i) f 2 (x) = f( f(x) )

GCE A Level H2 Mathematics November 2014 Paper 1. 1i) f 2 (x) = f( f(x) ) GCE A Level H Mathematics November 0 Paper i) f () f( f() ) f ( ),, 0 Let y y y y y y y f (). D f R f R\{0, } f () f (). Students must know that f () stands for f (f() ) and not [f()]. Students must also

More information

280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE Tests of Statistical Hypotheses

280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE Tests of Statistical Hypotheses 280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE 9-1.2 Tests of Statistical Hypotheses To illustrate the general concepts, consider the propellant burning rate problem introduced earlier. The null

More information

Lecture 16. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University. Relationship between Discrete

Lecture 16. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University. Relationship between Discrete Lecture 6 STAT 5 Introduction to Probability Models February 3, 04 between Whitney Huang Purdue University 6. Agenda Distributions between 6. Choosing a Distribution between 6.3 In some of our examples,

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

14.12 Game Theory Lecture Notes Theory of Choice

14.12 Game Theory Lecture Notes Theory of Choice 14.12 Game Theory Lecture Notes Theory of Choice Muhamet Yildiz (Lecture 2) 1 The basic theory of choice We consider a set X of alternatives. Alternatives are mutually exclusive in the sense that one cannot

More information

Power Series Solutions for Ordinary Differential Equations

Power Series Solutions for Ordinary Differential Equations Power Series Solutions for Ordinary Differential Equations James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 2017 Outline 1 Power

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Reasoning under uncertainty

Reasoning under uncertainty Reasoning under uncertainty Probability Review II CSC384 March 16, 2018 CSC384 Reasoning under uncertainty March 16, 2018 1 / 22 From last class Axioms of probability Probability over feature vectors Independence

More information

Will Landau. Feb 28, 2013

Will Landau. Feb 28, 2013 Iowa State University The F Feb 28, 2013 Iowa State University Feb 28, 2013 1 / 46 Outline The F The F Iowa State University Feb 28, 2013 2 / 46 The normal (Gaussian) distribution A random variable X is

More information

Proportion. Lecture 25 Sections Fri, Oct 10, Hampden-Sydney College. Sampling Distribution of a Sample. Proportion. Robb T.

Proportion. Lecture 25 Sections Fri, Oct 10, Hampden-Sydney College. Sampling Distribution of a Sample. Proportion. Robb T. PDFs n = s Lecture 25 Sections 8.1-8.2 Hampden-Sydney College Fri, Oct 10, 2008 Outline PDFs n = s 1 2 3 PDFs n = 4 5 s 6 7 PDFs n = s The of the In our experiment, we collected a total of 100 samples,

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Miscellaneous Results, Solving Equations, and Generalized Inverses opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Result A.7: Suppose S and T are vector spaces. If S T and

More information

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) S N VP V NP D N John hit the ball Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro CS37300 Class Notes Jennifer Neville, Sebastian Moreno, Bruno Ribeiro 2 Background on Probability and Statistics These are basic definitions, concepts, and equations that should have been covered in your

More information

2-Step Temporal Bayesian Networks (2TBN): Filtering, Smoothing, and Beyond Technical Report: TRCIM1030

2-Step Temporal Bayesian Networks (2TBN): Filtering, Smoothing, and Beyond Technical Report: TRCIM1030 2-Step Temporal Bayesian Networks (2TBN): Filtering, Smoothing, and Beyond Technical Report: TRCIM1030 Anqi Xu anqixu(at)cim(dot)mcgill(dot)ca School of Computer Science, McGill University, Montreal, Canada,

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Dmitry Arkhipov, Olga Battaïa, Julien Cegarra, Alexander Lazarev May

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

2. Topic: Series (Mathematical Induction, Method of Difference) (i) Let P n be the statement. Whenn = 1,

2. Topic: Series (Mathematical Induction, Method of Difference) (i) Let P n be the statement. Whenn = 1, GCE A Level October/November 200 Suggested Solutions Mathematics H (9740/02) version 2. MATHEMATICS (H2) Paper 2 Suggested Solutions 9740/02 October/November 200. Topic:Complex Numbers (Complex Roots of

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

MTMS Mathematical Statistics

MTMS Mathematical Statistics MTMS.01.099 Mathematical Statistics Lecture 12. Hypothesis testing. Power function. Approximation of Normal distribution and application to Binomial distribution Tõnu Kollo Fall 2016 Hypothesis Testing

More information

Approximation of the conditional number of exceedances

Approximation of the conditional number of exceedances Approximation of the conditional number of exceedances Han Liang Gan University of Melbourne July 9, 2013 Joint work with Aihua Xia Han Liang Gan Approximation of the conditional number of exceedances

More information

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-A

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-A MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS STATISTICS, S Practice Paper S-A Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF) TIME

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

2009 GCE A Level H1 Mathematics Solution

2009 GCE A Level H1 Mathematics Solution 2009 GCE A Level H1 Mathematics Solution 1) x + 2y = 3 x = 3 2y Substitute x = 3 2y into x 2 + xy = 2: (3 2y) 2 + (3 2y)y = 2 9 12y + 4y 2 + 3y 2y 2 = 2 2y 2 9y + 7 = 0 (2y 7)(y 1) = 0 y = 7 2, 1 x = 4,

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

FCModeler: Dynamic Graph Display and Fuzzy Modeling of Regulatory and Metabolic Maps

FCModeler: Dynamic Graph Display and Fuzzy Modeling of Regulatory and Metabolic Maps FCModeler: Dynamic Graph Display and Fuzzy Modeling of Regulatory and Metabolic Maps Julie Dickerson 1, Zach Cox 1 and Andy Fulmer 2 1 Iowa State University and 2 Proctor & Gamble. FCModeler Goals Capture

More information

9-6. Testing the difference between proportions /20

9-6. Testing the difference between proportions /20 9-6 Testing the difference between proportions 1 Homework Discussion Question p514 Ex 9-6 p514 2, 3, 4, 7, 9, 11 (use both the critical value and p-value for all problems. 2 Objective Perform hypothesis

More information

Bivariate scatter plots and densities

Bivariate scatter plots and densities Multivariate descriptive statistics Bivariate scatter plots and densities Plotting two (related) variables is often called a scatter plot. It is a bivariate version of the rug plot. It can show something

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Formal Modeling in Cognitive Science

Formal Modeling in Cognitive Science Formal Modeling in Cognitive Science Lecture 9: Application of Bayes Theorem; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk

More information

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series LECTURE 25 Solving Differential Equations Using Power Series We are now going to employ power series to find solutions to differential equations of the form (25.) y + p(x)y + q(x)y = 0 where the functions

More information

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series LECTURE 8 Solving Differential Equations Using Power Series We are now going to employ power series to find solutions to differential equations of the form () y + p(x)y + q(x)y = 0 where the functions

More information

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background.

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background. Formal Modeling in Cognitive Science Lecture 9: ; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk February 7 Probability

More information

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability CIVL 3103 Basic Laws and Axioms of Probability Why are we studying probability and statistics? How can we quantify risks of decisions based on samples from a population? How should samples be selected

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Chapter 4 - Lecture 3 The Normal Distribution

Chapter 4 - Lecture 3 The Normal Distribution Chapter 4 - Lecture 3 The October 28th, 2009 Chapter 4 - Lecture 3 The Standard Chapter 4 - Lecture 3 The Standard Normal distribution is a statistical unicorn It is the most important distribution in

More information

Machine Learning: Exercise Sheet 2

Machine Learning: Exercise Sheet 2 Machine Learning: Exercise Sheet 2 Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg mblum@informatik.uni-freiburg.de Manuel Blum Machine Learning

More information

Standard Normal Curve Areas z

Standard Normal Curve Areas z Table A.3 Standard Normal Curve Areas z.00.01.02.03.04.09-1.2 0.1151 0.1131 0.1112 0.1094 0.1075 0.0985-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1170 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9545 1.7 0.9554

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

Introductory Econometrics

Introductory Econometrics Session 4 - Testing hypotheses Roland Sciences Po July 2011 Motivation After estimation, delivering information involves testing hypotheses Did this drug had any effect on the survival rate? Is this drug

More information

Lecture 9. Expectations of discrete random variables

Lecture 9. Expectations of discrete random variables 18.440: Lecture 9 Expectations of discrete random variables Scott Sheffield MIT 1 Outline Defining expectation Functions of random variables Motivation 2 Outline Defining expectation Functions of random

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 Winter 2012 Lecture 13 (Winter 2011) Estimation Lecture 13 1 / 33 Review of Main Concepts Sampling Distribution of Sample Mean

More information

Lecture 2: Probability and Distributions

Lecture 2: Probability and Distributions Lecture 2: Probability and Distributions Ani Manichaikul amanicha@jhsph.edu 17 April 2007 1 / 65 Probability: Why do we care? Probability helps us by: Allowing us to translate scientific questions info

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Week 5 Consumer Theory (Jehle and Reny, Ch.2)

Week 5 Consumer Theory (Jehle and Reny, Ch.2) Week 5 Consumer Theory (Jehle and Reny, Ch.2) Serçin ahin Yldz Technical University 23 October 2012 Duality Expenditure and Consumer Preferences Choose (p 0, u 0 ) R n ++ R +, and evaluate E there to obtain

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

Hypothesis tests

Hypothesis tests 6.1 6.4 Hypothesis tests Prof. Tesler Math 186 February 26, 2014 Prof. Tesler 6.1 6.4 Hypothesis tests Math 186 / February 26, 2014 1 / 41 6.1 6.2 Intro to hypothesis tests and decision rules Hypothesis

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-B

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS STATISTICS, S Practice Paper S-B Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF) TIME

More information

Probability Review. AP Statistics April 25, Dr. John Holcomb, Cleveland State University

Probability Review. AP Statistics April 25, Dr. John Holcomb, Cleveland State University Probability Review AP Statistics April 25, 2015 Dr. John Holcomb, Cleveland State University PROBLEM 1 The data below comes from a nutritional study conducted at Ohio University. Eighty three subjects

More information

Quantum Probability in Cognition. Ryan Weiss 11/28/2018

Quantum Probability in Cognition. Ryan Weiss 11/28/2018 Quantum Probability in Cognition Ryan Weiss 11/28/2018 Overview Introduction Classical vs Quantum Probability Brain Information Processing Decision Making Conclusion Introduction Quantum probability in

More information

Bayesian Networks. Marcello Cirillo PhD Student 11 th of May, 2007

Bayesian Networks. Marcello Cirillo PhD Student 11 th of May, 2007 Bayesian Networks Marcello Cirillo PhD Student 11 th of May, 2007 Outline General Overview Full Joint Distributions Bayes' Rule Bayesian Network An Example Network Everything has a cost Learning with Bayesian

More information

Probability, Entropy, and Inference / More About Inference

Probability, Entropy, and Inference / More About Inference Probability, Entropy, and Inference / More About Inference Mário S. Alvim (msalvim@dcc.ufmg.br) Information Theory DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Probability, Entropy, and Inference

More information

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Review of Normal Probability Distribution QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Testing the MC Model. 9.1 Introduction. 9.2 The Size and Solution of the MC model

Testing the MC Model. 9.1 Introduction. 9.2 The Size and Solution of the MC model 9 Testing the MC Model 9.1 Introduction This chapter is concerned with testing the overall MC model. It is the counterpart of Chapter 8 for the US model. There are, however, many fewer tests in this chapter

More information

Inference in Bayesian networks

Inference in Bayesian networks Inference in Bayesian networks hapter 14.4 5 hapter 14.4 5 1 Exact inference by enumeration Outline Approximate inference by stochastic simulation hapter 14.4 5 2 Inference tasks Simple queries: compute

More information

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa dennis-bricker@uiowa.edu Probability Theory Results page 1 D.Bricker, U. of Iowa, 2002 Probability of simultaneous occurrence

More information

Methods for the Comparability of Scores

Methods for the Comparability of Scores Assessment and Development of new Statistical Methods for the Comparability of Scores 1 Pontificia Universidad Católica de Chile 2 Laboratorio Interdisciplinario de Estadística Social Advisor: Jorge González

More information

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is Chapter 2 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is 0:3 0:0001 0:01 0:005 0:001 0:002 0:0002 0:04 ˆ 0:00009 P(A 1 F) ˆ 0:0001 0:3 ˆ 0:133: 0:00009 Similarly

More information

MATH 152 Problem set 6 solutions

MATH 152 Problem set 6 solutions MATH 52 Problem set 6 solutions. Z[ 2] is a Euclidean domain (i.e. has a division algorithm): the idea is to approximate the quotient by an element in Z[ 2]. More precisely, let a+b 2, c+d 2 Z[ 2] (of

More information

CHAPTER 3 : A SYSTEMATIC APPROACH TO DECISION MAKING

CHAPTER 3 : A SYSTEMATIC APPROACH TO DECISION MAKING CHAPTER 3 : A SYSTEMATIC APPROACH TO DECISION MAKING 47 INTRODUCTION A l o g i c a l a n d s y s t e m a t i c d e c i s i o n - m a k i n g p r o c e s s h e l p s t h e d e c i s i o n m a k e r s a

More information

Discrete Mathematics

Discrete Mathematics Department of Mathematics National Cheng Kung University 2008 2.4: The use of Quantifiers Definition (2.5) A declarative sentence is an open statement if 1) it contains one or more variables, and 1 ) quantifier:

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Announcements Midterm is graded! Average: 39, stdev: 6 HW2 is out today HW2 is due Thursday, May 3, by 5pm in my mailbox Decision Tree Classifiers

More information

STATPRO Exercises with Solutions. Problem Set A: Basic Probability

STATPRO Exercises with Solutions. Problem Set A: Basic Probability Problem Set A: Basic Probability 1. A tea taster is required to taste and rank three varieties of tea namely Tea A, B and C; according to the tasters preference. (ranking the teas from the best choice

More information

SINCLAIR COM M UNITY COLLEGE

SINCLAIR COM M UNITY COLLEGE 0 UN ( ) V 0 P N. - N W. NU NN. W UNY YN, 0 WN UNY NY UNY UNY NN UN, 0 pp rchitecture PY NNN Woodside rive 00 W. Y N nglewood, hio ayton, hio 0 UN ( ) V 0 P N. - N UNY W. YN, 0 VNY P Y PN N NN ( 0) WN

More information

Material presented. Direct Models for Classification. Agenda. Classification. Classification (2) Classification by machines 6/16/2010.

Material presented. Direct Models for Classification. Agenda. Classification. Classification (2) Classification by machines 6/16/2010. Material presented Direct Models for Classification SCARF JHU Summer School June 18, 2010 Patrick Nguyen (panguyen@microsoft.com) What is classification? What is a linear classifier? What are Direct Models?

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 5 Bayesian Learning of Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Recitations: Every Tuesday 4-5:30 in 243 Annenberg Homework 1 out. Due in class

More information

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science Ch.6 Uncertain Knowledge Representation Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/39 Logic and Uncertainty One

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

Choice with Menu-Dependent Rankings (Presentation Slides)

Choice with Menu-Dependent Rankings (Presentation Slides) Choice with Menu-Dependent Rankings (Presentation Slides) Paulo Natenzon October 22nd, 2008 1 References that appear on the slides are [1], [2], [3], [4], [5], [6], [7]. References [1] Markus K. Brunnermeier

More information

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Fundamentals to Biostatistics Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Statistics collection, analysis, interpretation of data development of new

More information

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes)

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes) CSE555: Introduction to Pattern Recognition Midterm Exam Solution (00 points, Closed book/notes) There are 5 questions in this exam. The last page is the Appendix that contains some useful formulas.. (5pts)

More information

Mark Scheme (Results) January Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Mark Scheme (Results) January Pearson Edexcel International A Level in Statistics 2 (WST02/01) Mark (Results) January 05 Pearson Edexcel International A Level in Statistics (WST0/0) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company.

More information

NONPARAMETRIC TESTS. LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-12

NONPARAMETRIC TESTS. LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-12 NONPARAMETRIC TESTS LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-1 lmb@iasri.res.in 1. Introduction Testing (usually called hypothesis testing ) play a major

More information

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS CDR4_BERE601_11_SE_C1QXD 1//08 1:0 PM Page 1 110: (Student CD-ROM Topic) Chi-Square Goodness-of-Fit Tests CD1-1 110 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS In this section, χ goodness-of-fit

More information

Chapter 1 (Basic Probability)

Chapter 1 (Basic Probability) Chapter 1 (Basic Probability) What is probability? Consider the following experiments: 1. Count the number of arrival requests to a web server in a day. 2. Determine the execution time of a program. 3.

More information

More Smoothing, Tuning, and Evaluation

More Smoothing, Tuning, and Evaluation More Smoothing, Tuning, and Evaluation Nathan Schneider (slides adapted from Henry Thompson, Alex Lascarides, Chris Dyer, Noah Smith, et al.) ENLP 21 September 2016 1 Review: 2 Naïve Bayes Classifier w

More information

PMT. Mark Scheme (Results) June GCE Statistics S2 (6684) Paper 1

PMT. Mark Scheme (Results) June GCE Statistics S2 (6684) Paper 1 Mark (Results) June 0 GCE Statistics S (6684) Paper Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic,

More information

Goodness of Fit Goodness of fit - 2 classes

Goodness of Fit Goodness of fit - 2 classes Goodness of Fit Goodness of fit - 2 classes A B 78 22 Do these data correspond reasonably to the proportions 3:1? We previously discussed options for testing p A = 0.75! Exact p-value Exact confidence

More information

Will Landau. Feb 21, 2013

Will Landau. Feb 21, 2013 Iowa State University Feb 21, 2013 Iowa State University Feb 21, 2013 1 / 31 Outline Iowa State University Feb 21, 2013 2 / 31 random variables Two types of random variables: Discrete random variable:

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2009

C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2009 C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2009 APPLIED MATHEMATICS Copyright 2009 Caribbean Examinations

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3 Introduction to Probability Due:August 8th, 211 Solutions of Final Exam Solve all the problems 1. (15 points) You have three coins, showing Head with probabilities p 1, p 2 and p 3. You perform two different

More information