Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Size: px
Start display at page:

Download "Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)"

Transcription

1 Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

2 S N VP V NP D N John hit the ball

3 Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements used Words Words Shallow syntax parsing Full syntax parsing NER, MWE SRL Full semantic parsing Phrases Sentence Phrases Parsed trees Parsed trees

4 Buffalo

5 Parsing is a difficult task!

6 Parsing is a difficult task! ^ ^ so excited! #Khaleesi #minikhaleesi #GoT

7 Telegramese A style of writing that leaves out words that are not important The Telegraph Office: How to Write Telegrams Properly The enemy has not yet been met or even seen on account of the entanglements thrown up during the night. Enemy unmet unseen account entanglements upthrown night Sell 10,000 bushels of May wheat at $1.45 ¼. Sell barney stoke [code]

8 Ambiguities POS tags (e.g., books : a verb or a noun?) Compositional expression meanings (e.g., he spilled the beans about his past) Syntactic attachments (V N PP) (e.g., I ate my spaghetti with a fork) Global semantic ambiguities (e.g., bear left at zoo) Usually, ambiguities in one layer may be resolved in upper layers

9 Ambiguities Fed raises interest rates 0.5% in effort to control inflation.

10 Motivation Parsing may help to resolve ambiguities Parsing is a step toward understanding the sentence completely Was shown to improve the results of several NLP applications: MT (Chiang, 2005) Question answering (Hovy et al., 2000)

11 Grammar S NP VP NN interest NP (DT) NN NNS rates NP NN NNS NNS raises NP NNP VBP interest VP V NP VBZ rates Minimal grammar on Fed raises sentence: 36 parses Simple 10 rule grammar: 592 parses Real-size broad-coverage grammar: millions of parses

12 Size of grammar Number of rules less more Limits unlikely parses But grammar is not robust Parses more sentences But sentences end up with ever more parses

13 Statistical parsing Statistical parsing can help selecting the rules that best fit the input sentence, allowing the grammar to contain more rules

14 Treebanks ( (S (NP-SBJ (DT The) (NN move)) (VP (VBD followed) (NP (NP (DT a) (NN round)) The Penn Treebank Project (PTB): Arabic, English, Chinese, Persian, French, (PP (IN of) (NP (NP (JJ similar) (NNS increases)) (PP (IN by) (NP (JJ other) (NNS lenders))) (PP (IN against) (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans)))))) (,,)

15 Advantages of treebanks Reusability of the labor Broad coverage Frequencies and distributional information A way to evaluate systems

16 Types of parsing Constituency parsing Dependency parsing

17 Constituency parsing Constituents are defined based on linguistic rules (phrases) Constituents are recursive (NP may contain NP as part of its sub-constituents) Different linguists may define constituents differently

18 Dependency parsing Dependency structure shows which words depend on (modify or are arguments of) which other words

19 Parsing We want to run a grammar backwards to find possible structures for a sentence Parsing can be viewed as a search problem We can do this bottom-up or top-down We search by building a search tree which is distinct from the parse tree

20 Context-free (phrase structure) grammar (CFG) G T is set of terminals N is set of variables (nonterminals) S is the start symbol (one of the variables) R is rules (productions) of the form X γ, where X is a variable and γ is a sequence of terminals and variables (possibly empty) A grammar G generates a language L=L(G)

21 Probabilistic or stochastic context-free grammars (PCFG) R: rules X γ P: P(R) gives the probability of each rule X γ R X N, P(X γ) =1 A grammar G generates a language L w T* P(w) =1

22 Soundness and completeness A parser is sound if every parse it returns is valid/correct A parser terminates if it is guaranteed to not go off into an infinite loop A parser is complete if for any given grammar and sentence, it is sound, produces every valid parse for that sentence, and terminates (For many purposes, we settle for sound but incomplete parsers: e.g., probabilistic parsers that return a k-best list.)

23 Top down parsing Top-down parsing is goal directed A top-down parser starts with a list of constituents to be built. The top-down parser rewrites the goals in the goal list by matching one against the left side of the grammar rules, and expanding it with the right side, attempting to match the sentence to be derived If a goal can be rewritten in several ways, then there is a choice of which rule to apply (search problem) Can use depth-first or breadth-first search, and goal ordering

24 Top down parsing

25 Disadvantages of top down A top-down parser will do badly if there are many different rules for the same variable. Consider if there are 600 rules for S, 599 of which start with NP, but one of which starts with V, and the sentence starts with V Useless work: expands things that are possible top-down but not there Repeated work

26 Repeated work

27 Bottom up chart parsing Bottom-up parsing is data directed The initial goal list of a bottom-up parser is the string to be parsed. If a sequence in the goal list matches the right side of a rule, then this sequence may be replaced by the left side of the rule Parsing is finished when the goal list contains just the start category If the right side of several rules match the goal list, then there is a choice of which rule to apply (search problem) The standard presentation is as shift-reduce parsing

28 Shift-reduce parsing cats scratch people with claws cats scratch people with claws SHIFT N scratch people with claws REDUCE NP scratch people with claws REDUCE NP scratch people with claws SHIFT NP V people with claws REDUCE NP V people with claws SHIFT NP V N with claws REDUCE NP V NP with claws REDUCE NP V NP with claws SHIFT NP V NP P claws REDUCE NP V NP P claws SHIFT NP V NP P N REDUCE NP V NP P NP REDUCE NP V NP PP REDUCE NP VP REDUCE S REDUCE

29 Disadvantages of bottom up Useless work: locally possible, but globally impossible. Inefficient when there is great lexical ambiguity (grammardriven control might help here) Repeated work: anywhere there is common substructure

30 Parsing as search Left recursive structures must be found, not predicted Doing these things doesn't fix the repeated work problem: Both TD and BU parsers can (and frequently do) do work exponential in the sentence length on NLP problems Grammar transformations can fix both left-recursion and epsilon productions Then you parse the same language but with different trees (and fix them post hoc)

31 Dynamic programming Rather than doing parsing-as-search, we do parsing as dynamic programming Examples: CYK (bottom up), Early (top down) It solves the problem of doing repeated work

32 Notation w 1n = w 1 w n = the word sequence from 1 to n w ab = the subsequence w a w b N j ab = the variable Nj dominating w a w b We ll write P(N i ζ j ) to mean P(N i ζ j N i ) We ll want to calculate max t P(t * w ab )

33 Tree and sentence probabilities P(t) -- The probability of tree is the product of the probabilities of the rules used to generate it P(w 1n ) -- The probability of the sentence is the sum of the probabilities of the trees which have that sentence as their yield P(w 1n ) = Σ j P(w 1n, t) where t is a parse of w 1n = Σ j P(t)

34 A treebank tree ROOT S NP VP N V NP PP N P NP N cats scratch people with claws

35 CYK (Cocke-Younger-Kasami) algorithm A bottom-up parser using dynamic programming Assume the grammar is in Chomsky normal form A BC Maintain N nxn tables µ N = number of variables, n = length of input Fill out the table entries by induction

36 After binarization ROOT N V NP PP N NP N cats scratch people with claws

37 Can 1 you 2 book 3 ELAL 4 flights 5? w1,1 w1,2 w1,3 w1,4 w1,5 1 w2,2 w2,3 w2,4 w2,5 2 w3,3 w3,4 w3,5 3 w4,4 w4,5 4 w5,5 5

38 CYK Base case Consider the input strings of length one (i.e., each individual word w i ) P(A w i ) Since the grammar is in normal form: A * wi iff A w i So µ[i, i, A] = P(A w i )

39 CYK Base case Can 1 you 2 book 3 ELAL 4 flights 5? 1.4 Aux Noun

40 CYK Recursive case For strings of words of length > 1, A * w ij iff there is at least one rule A BC where B derives the first k words (between i and i-1 +k ) and C derives the remaining ones (between i+k and j) (for each non-terminal) Choose the max among all possibilities B A C i i-1+k i+k j µ[i, j, A)] = µ [i, i-1 +k, B] * µ [i+k, j, C] * P(A BC)

41 CYK Termination The max prob parse will be µ [1, n, S] w1,1 w1,2 w1,3 w1,4 w1,5 S w2,2 w2,3 w2,4 w2,5 w3,3 w3,4 w3,5 w4,4 w4,5 w5,5

42 Top down: Early algorithm Finds constituents and partial constituents in input A B C. D E is partial: only the first half of the A A D + = A B C D E j k B C D E i j i k A B C. D E A B C D. E

43 Early algorithm Proceeds incrementally, left-to-right Before it reads word 5, it has already built all hypotheses that are consistent with first 4 words Reads word 5 & attaches it to immediately preceding hypotheses. Might yield new constituents that are then attached to hypotheses immediately preceding them Use dynamic programming.

44 Example (grammar) ROOT S S NP VP NP Papa NP Det N N caviar NP NP PP N spoon VP VP PP V ate VP V NP P with PP P NP Det the Det a

45 0 0 ROOT. S initialize Remember this stands for (0, ROOT. S)

46 0 0 ROOT. S 0 S. NP VP predict the kind of S we are looking for Remember this stands for (0, S. NP VP)

47 0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa predict the kind of NP we are looking for (actually we ll look for 3 kinds: any of the 3 will do)

48 0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a predict the kind of Det we are looking for (2 kinds)

49 0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a predict the kind of NP we re looking for but we were already looking for these so don t add duplicate goals! Note that this happened when we were processing a left-recursive rule.

50 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: the desired word is in the input!

51 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: failure

52 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: failure

53 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a attach the newly created NP (which starts at 0) to its customers (incomplete constituents that end at 0 and have NP after the dot)

54 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 0 Det. a predict

55 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a predict

56 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate predict

57 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate predict

58 0 Papa 1 0 ROOT. S 0 NP Papa. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate 1 P. with predict

59 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate 1 P. with scan: success!

60 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate 1 P. with scan: failure

61 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 0 NP. NP PP 1 VP. V NP 0 NP. Papa 1 VP. VP PP 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate 1 P. with attach

62 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 0 Det. a 1 V. ate 1 P. with predict

63 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with predict (these next few steps should look familiar)

64 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with predict

65 0 Papa 1 ate 2 0 ROOT. S 0 NP Papa. 1 V ate. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with scan (this time we fail since Papa is not the next word)

66 0 Papa 1 ate 2 the 3 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with scan: success!

67 0 Papa 1 ate 2 the 3 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 0 S. NP VP 0 S NP. VP 1 VP V. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with

68 0 Papa 1 ate 2 the 3 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 0 NP. Det N 0 NP NP. PP 2 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with

69 0 Papa 1 ate 2 the 3 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with

70 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with

71 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with

72 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with attach

73 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 0 Det. a 1 V. ate 2 Det. a 1 P. with attach (again!)

74 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 1 P. with attach (again!)

75 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with

76 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. attach (again!)

77 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S.

78 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

79 0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

80 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

81 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

82 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 5 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

83 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 5 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 5 Det. the 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 5 Det. a 1 P. with 0 ROOT S. 4 P. with

84 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 5 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 5 Det. the 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 5 Det. a 1 P. with 0 ROOT S. 4 P. with

85 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 5 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 5 Det. the 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 5 Det. a 1 P. with 0 ROOT S. 4 P. with

86 0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 5 NP. Papa 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 5 Det. the 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 5 Det. a 1 P. with 0 ROOT S. 4 P. with

87 ate 2 the 3 caviar 4 with 5 a 6. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

88 ate 2 the 3 caviar 4 with 5 a 6. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

89 ate 2 the 3 caviar 4 with 5 a 6. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 6 N. caviar 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 6 N. spoon P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

90 ate 2 the 3 caviar 4 with 5 a 6. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 6 N. caviar 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 6 N. spoon P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

91 ate 2 the 3 caviar 4 with 5 a 6 spoon 7. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 6 N spoon. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 6 N. caviar 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 6 N. spoon P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

92 ate 2 the 3 caviar 4 with 5 a 6 spoon 7. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 6 N spoon. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N 5 NP Det N. P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 6 N. caviar 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 6 N. spoon P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

93 ate 2 the 3 caviar 4 with 5 a 6 spoon 7. 1 V ate. 2 Det the. 3 N caviar. 4 P with. 5 Det a. 6 N spoon. 1 VP V. NP 2 NP Det. N 2 NP Det N. 4 PP P. NP 5 NP Det. N 5 NP Det N. P 2 NP. Det N 3 N. caviar 1 VP V NP. 5 NP. Det N 6 N. caviar 4 PP P NP. 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP. NP PP 6 N. spoon 5 NP NP. PP P 2 NP. Papa 0 S NP VP. 5 NP. Papa 2 Det. the 1 VP VP. PP 5 Det. the 2 Det. a 4 PP. P NP 5 Det. a 0 ROOT S. 4 P. with

94 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 1 P. with 0 ROOT S. 4 P. with

95 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 4 P. with

96 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP

97 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP

98 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

99 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

100 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

101 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

102 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

103 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

104 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

105 0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S 0 NP Papa. 1 V ate. 2 Det the. 3 N caviar. 6 N spoon. 0 S. NP VP 0 S NP. VP 1 VP V. NP 2 NP Det. N 2 NP Det N. 5 NP Det N. 0 NP. Det N 0 NP NP. PP 2 NP. Det N 3 N. caviar 1 VP V NP. 4 PP P NP. 0 NP. NP PP 1 VP. V NP 2 NP. NP PP 3 N. spoon 2 NP NP. PP 5 NP NP. PP 0 NP. Papa 1 VP. VP PP 2 NP. Papa 0 S NP VP. 2 NP NP PP. 0 Det. the 1 PP. P NP 2 Det. the 1 VP VP. PP 1 VP VP PP. 0 Det. a 1 V. ate 2 Det. a 4 PP. P NP 7 PP. P NP 1 P. with 0 ROOT S. 1 VP V NP. 4 P. with 2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

Attendee information. Seven Lectures on Statistical Parsing. Phrase structure grammars = context-free grammars. Assessment.

Attendee information. Seven Lectures on Statistical Parsing. Phrase structure grammars = context-free grammars. Assessment. even Lectures on tatistical Parsing Christopher Manning LA Linguistic Institute 7 LA Lecture Attendee information Please put on a piece of paper: ame: Affiliation: tatus (undergrad, grad, industry, prof,

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Natural Language Processing CS 4120/6120 Spring 2017 Northeastern University David Smith with some slides from Jason Eisner & Andrew

More information

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Natural Language Processing! CS 6120 Spring 2014! Northeastern University!! David Smith! with some slides from Jason Eisner & Andrew

More information

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing L445 / L545 / B659 Dept. of Linguistics, Indiana University Spring 2016 1 / 46 : Overview Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the

More information

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46.

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46. : Overview L545 Dept. of Linguistics, Indiana University Spring 2013 Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the problem as searching

More information

CS 6120/CS4120: Natural Language Processing

CS 6120/CS4120: Natural Language Processing CS 6120/CS4120: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Assignment/report submission

More information

LECTURER: BURCU CAN Spring

LECTURER: BURCU CAN Spring LECTURER: BURCU CAN 2017-2018 Spring Regular Language Hidden Markov Model (HMM) Context Free Language Context Sensitive Language Probabilistic Context Free Grammar (PCFG) Unrestricted Language PCFGs can

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars CS 585, Fall 2017 Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2017 Brendan O Connor College of Information and Computer Sciences

More information

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Natural Language Processing CS 4120/6120 Spring 2016 Northeastern University David Smith with some slides from Jason Eisner & Andrew

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars Berlin Chen 2005 References: 1. Natural Language Understanding, chapter 3 (3.1~3.4, 3.6) 2. Speech and Language Processing, chapters 9, 10 NLP-Berlin Chen 1 Grammars

More information

Advanced Natural Language Processing Syntactic Parsing

Advanced Natural Language Processing Syntactic Parsing Advanced Natural Language Processing Syntactic Parsing Alicia Ageno ageno@cs.upc.edu Universitat Politècnica de Catalunya NLP statistical parsing 1 Parsing Review Statistical Parsing SCFG Inside Algorithm

More information

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering Review Earley Algorithm Chapter 13.4 Lecture #9 October 2009 Top-Down vs. Bottom-Up Parsers Both generate too many useless trees Combine the two to avoid over-generation: Top-Down Parsing with Bottom-Up

More information

CS460/626 : Natural Language

CS460/626 : Natural Language CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 23, 24 Parsing Algorithms; Parsing in case of Ambiguity; Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 8 th,

More information

Probabilistic Context-Free Grammars. Michael Collins, Columbia University

Probabilistic Context-Free Grammars. Michael Collins, Columbia University Probabilistic Context-Free Grammars Michael Collins, Columbia University Overview Probabilistic Context-Free Grammars (PCFGs) The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09 Natural Language Processing : Probabilistic Context Free Grammars Updated 5/09 Motivation N-gram models and HMM Tagging only allowed us to process sentences linearly. However, even simple sentences require

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning Probabilistic Context Free Grammars Many slides from Michael Collins and Chris Manning Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic

More information

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016 CKY & Earley Parsing Ling 571 Deep Processing Techniques for NLP January 13, 2016 No Class Monday: Martin Luther King Jr. Day CKY Parsing: Finish the parse Recognizer à Parser Roadmap Earley parsing Motivation:

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Stochastic Grammars Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(22) Structured Classification

More information

In this chapter, we explore the parsing problem, which encompasses several questions, including:

In this chapter, we explore the parsing problem, which encompasses several questions, including: Chapter 12 Parsing Algorithms 12.1 Introduction In this chapter, we explore the parsing problem, which encompasses several questions, including: Does L(G) contain w? What is the highest-weight derivation

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

Constituency Parsing

Constituency Parsing CS5740: Natural Language Processing Spring 2017 Constituency Parsing Instructor: Yoav Artzi Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and

More information

Processing/Speech, NLP and the Web

Processing/Speech, NLP and the Web CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25 Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March, 2011 Bracketed Structure: Treebank Corpus [ S1[

More information

CS626: NLP, Speech and the Web. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012

CS626: NLP, Speech and the Web. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012 CS626: NLP, Speech and the Web Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012 Parsing Problem Semantics Part of Speech Tagging NLP Trinity Morph Analysis

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins

Probabilistic Context Free Grammars. Many slides from Michael Collins Probabilistic Context Free Grammars Many slides from Michael Collins Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Introduction to Computational Linguistics

Introduction to Computational Linguistics Introduction to Computational Linguistics Olga Zamaraeva (2018) Based on Bender (prev. years) University of Washington May 3, 2018 1 / 101 Midterm Project Milestone 2: due Friday Assgnments 4& 5 due dates

More information

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22 Parsing Probabilistic CFG (PCFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 22 Table of contents 1 Introduction 2 PCFG 3 Inside and outside probability 4 Parsing Jurafsky

More information

10/17/04. Today s Main Points

10/17/04. Today s Main Points Part-of-speech Tagging & Hidden Markov Model Intro Lecture #10 Introduction to Natural Language Processing CMPSCI 585, Fall 2004 University of Massachusetts Amherst Andrew McCallum Today s Main Points

More information

Remembering subresults (Part I): Well-formed substring tables

Remembering subresults (Part I): Well-formed substring tables Remembering subresults (Part I): Well-formed substring tables Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01, 1. February 2005 Problem: Inefficiency of recomputing subresults Two

More information

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation atural Language Processing 1 lecture 7: constituent parsing Ivan Titov Institute for Logic, Language and Computation Outline Syntax: intro, CFGs, PCFGs PCFGs: Estimation CFGs: Parsing PCFGs: Parsing Parsing

More information

PCFGs 2 L645 / B659. Dept. of Linguistics, Indiana University Fall PCFGs 2. Questions. Calculating P(w 1m ) Inside Probabilities

PCFGs 2 L645 / B659. Dept. of Linguistics, Indiana University Fall PCFGs 2. Questions. Calculating P(w 1m ) Inside Probabilities 1 / 22 Inside L645 / B659 Dept. of Linguistics, Indiana University Fall 2015 Inside- 2 / 22 for PCFGs 3 questions for Probabilistic Context Free Grammars (PCFGs): What is the probability of a sentence

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning A Supertag-Context Model for Weakly-Supervised CCG Parser Learning Dan Garrette Chris Dyer Jason Baldridge Noah A. Smith U. Washington CMU UT-Austin CMU Contributions 1. A new generative model for learning

More information

Handout 8: Computation & Hierarchical parsing II. Compute initial state set S 0 Compute initial state set S 0

Handout 8: Computation & Hierarchical parsing II. Compute initial state set S 0 Compute initial state set S 0 Massachusetts Institute of Technology 6.863J/9.611J, Natural Language Processing, Spring, 2001 Department of Electrical Engineering and Computer Science Department of Brain and Cognitive Sciences Handout

More information

CMPT-825 Natural Language Processing. Why are parsing algorithms important?

CMPT-825 Natural Language Processing. Why are parsing algorithms important? CMPT-825 Natural Language Processing Anoop Sarkar http://www.cs.sfu.ca/ anoop October 26, 2010 1/34 Why are parsing algorithms important? A linguistic theory is implemented in a formal system to generate

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University September 27, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machine Translation -tree-based models (cont.)- Artem Sokolov Computerlinguistik Universität Heidelberg Sommersemester 2015 material from P. Koehn, S. Riezler, D. Altshuler Bottom-Up Decoding

More information

Context- Free Parsing with CKY. October 16, 2014

Context- Free Parsing with CKY. October 16, 2014 Context- Free Parsing with CKY October 16, 2014 Lecture Plan Parsing as Logical DeducBon Defining the CFG recognibon problem BoHom up vs. top down Quick review of Chomsky normal form The CKY algorithm

More information

Chapter 14 (Partially) Unsupervised Parsing

Chapter 14 (Partially) Unsupervised Parsing Chapter 14 (Partially) Unsupervised Parsing The linguistically-motivated tree transformations we discussed previously are very effective, but when we move to a new language, we may have to come up with

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

{Probabilistic Stochastic} Context-Free Grammars (PCFGs)

{Probabilistic Stochastic} Context-Free Grammars (PCFGs) {Probabilistic Stochastic} Context-Free Grammars (PCFGs) 116 The velocity of the seismic waves rises to... S NP sg VP sg DT NN PP risesto... The velocity IN NP pl of the seismic waves 117 PCFGs APCFGGconsists

More information

Probabilistic Context-Free Grammar

Probabilistic Context-Free Grammar Probabilistic Context-Free Grammar Petr Horáček, Eva Zámečníková and Ivana Burgetová Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, 612

More information

DT2118 Speech and Speaker Recognition

DT2118 Speech and Speaker Recognition DT2118 Speech and Speaker Recognition Language Modelling Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 56 Outline Introduction Formal Language Theory Stochastic Language Models (SLM) N-gram Language

More information

Probabilistic Context Free Grammars

Probabilistic Context Free Grammars 1 Defining PCFGs A PCFG G consists of Probabilistic Context Free Grammars 1. A set of terminals: {w k }, k = 1..., V 2. A set of non terminals: { i }, i = 1..., n 3. A designated Start symbol: 1 4. A set

More information

Introduction to Probablistic Natural Language Processing

Introduction to Probablistic Natural Language Processing Introduction to Probablistic Natural Language Processing Alexis Nasr Laboratoire d Informatique Fondamentale de Marseille Natural Language Processing Use computers to process human languages Machine Translation

More information

Probabilistic Linguistics

Probabilistic Linguistics Matilde Marcolli MAT1509HS: Mathematical and Computational Linguistics University of Toronto, Winter 2019, T 4-6 and W 4, BA6180 Bernoulli measures finite set A alphabet, strings of arbitrary (finite)

More information

CS 545 Lecture XVI: Parsing

CS 545 Lecture XVI: Parsing CS 545 Lecture XVI: Parsing brownies_choco81@yahoo.com brownies_choco81@yahoo.com Benjamin Snyder Parsing Given a grammar G and a sentence x = (x1, x2,..., xn), find the best parse tree. We re not going

More information

CS : Speech, NLP and the Web/Topics in AI

CS : Speech, NLP and the Web/Topics in AI CS626-449: Speech, NLP and the Web/Topics in AI Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture-17: Probabilistic parsing; insideoutside probabilities Probability of a parse tree (cont.) S 1,l NP 1,2

More information

Artificial Intelligence

Artificial Intelligence CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 20-21 Natural Language Parsing Parsing of Sentences Are sentences flat linear structures? Why tree? Is

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Hidden Markov Models Murhaf Fares & Stephan Oepen Language Technology Group (LTG) October 27, 2016 Recap: Probabilistic Language

More information

Computational Linguistics

Computational Linguistics Computational Linguistics Dependency-based Parsing Clayton Greenberg Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016 Acknowledgements These slides

More information

Algorithms for Syntax-Aware Statistical Machine Translation

Algorithms for Syntax-Aware Statistical Machine Translation Algorithms for Syntax-Aware Statistical Machine Translation I. Dan Melamed, Wei Wang and Ben Wellington ew York University Syntax-Aware Statistical MT Statistical involves machine learning (ML) seems crucial

More information

An Efficient Context-Free Parsing Algorithm. Speakers: Morad Ankri Yaniv Elia

An Efficient Context-Free Parsing Algorithm. Speakers: Morad Ankri Yaniv Elia An Efficient Context-Free Parsing Algorithm Speakers: Morad Ankri Yaniv Elia Yaniv: Introduction Terminology Informal Explanation The Recognizer Morad: Example Time and Space Bounds Empirical results Practical

More information

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP NP PP 1.0. N people 0.

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP  NP PP 1.0. N people 0. /6/7 CS 6/CS: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang The grammar: Binary, no epsilons,.9..5

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

Multiword Expression Identification with Tree Substitution Grammars

Multiword Expression Identification with Tree Substitution Grammars Multiword Expression Identification with Tree Substitution Grammars Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D. Manning Stanford University EMNLP 2011 Main Idea Use syntactic

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 28, 2003 These supplementary notes review the notion of an inductive definition and give

More information

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing Computational Linguistics Dependency-based Parsing Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2013 Acknowledgements These slides

More information

Computational Linguistics II: Parsing

Computational Linguistics II: Parsing Computational Linguistics II: Parsing Left-corner-Parsing Frank Richter & Jan-Philipp Söhn fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de January 15th, 2007 Richter/Söhn (WS 2006/07) Computational

More information

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this. Chapter 12 Synchronous CFGs Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings instead of single strings. They are useful in many situations where one

More information

Grammar formalisms Tree Adjoining Grammar: Formal Properties, Parsing. Part I. Formal Properties of TAG. Outline: Formal Properties of TAG

Grammar formalisms Tree Adjoining Grammar: Formal Properties, Parsing. Part I. Formal Properties of TAG. Outline: Formal Properties of TAG Grammar formalisms Tree Adjoining Grammar: Formal Properties, Parsing Laura Kallmeyer, Timm Lichte, Wolfgang Maier Universität Tübingen Part I Formal Properties of TAG 16.05.2007 und 21.05.2007 TAG Parsing

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

A Context-Free Grammar

A Context-Free Grammar Statistical Parsing A Context-Free Grammar S VP VP Vi VP Vt VP VP PP DT NN PP PP P Vi sleeps Vt saw NN man NN dog NN telescope DT the IN with IN in Ambiguity A sentence of reasonable length can easily

More information

Roger Levy Probabilistic Models in the Study of Language draft, October 2,

Roger Levy Probabilistic Models in the Study of Language draft, October 2, Roger Levy Probabilistic Models in the Study of Language draft, October 2, 2012 224 Chapter 10 Probabilistic Grammars 10.1 Outline HMMs PCFGs ptsgs and ptags Highlight: Zuidema et al., 2008, CogSci; Cohn

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Language Models & Hidden Markov Models

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Language Models & Hidden Markov Models 1 University of Oslo : Department of Informatics INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Language Models & Hidden Markov Models Stephan Oepen & Erik Velldal Language

More information

Decoding and Inference with Syntactic Translation Models

Decoding and Inference with Syntactic Translation Models Decoding and Inference with Syntactic Translation Models March 5, 2013 CFGs S NP VP VP NP V V NP NP CFGs S NP VP S VP NP V V NP NP CFGs S NP VP S VP NP V NP VP V NP NP CFGs S NP VP S VP NP V NP VP V NP

More information

CS460/626 : Natural Language

CS460/626 : Natural Language CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 27 SMT Assignment; HMM recap; Probabilistic Parsing cntd) Pushpak Bhattacharyya CSE Dept., IIT Bombay 17 th March, 2011 CMU Pronunciation

More information

Parsing. Unger s Parser. Laura Kallmeyer. Winter 2016/17. Heinrich-Heine-Universität Düsseldorf 1 / 21

Parsing. Unger s Parser. Laura Kallmeyer. Winter 2016/17. Heinrich-Heine-Universität Düsseldorf 1 / 21 Parsing Unger s Parser Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2016/17 1 / 21 Table of contents 1 Introduction 2 The Parser 3 An Example 4 Optimizations 5 Conclusion 2 / 21 Introduction

More information

Unit 2: Tree Models. CS 562: Empirical Methods in Natural Language Processing. Lectures 19-23: Context-Free Grammars and Parsing

Unit 2: Tree Models. CS 562: Empirical Methods in Natural Language Processing. Lectures 19-23: Context-Free Grammars and Parsing CS 562: Empirical Methods in Natural Language Processing Unit 2: Tree Models Lectures 19-23: Context-Free Grammars and Parsing Oct-Nov 2009 Liang Huang (lhuang@isi.edu) Big Picture we have already covered...

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 September 2, 2004 These supplementary notes review the notion of an inductive definition and

More information

Aspects of Tree-Based Statistical Machine Translation

Aspects of Tree-Based Statistical Machine Translation Aspects of Tree-Based Statistical Machine Translation Marcello Federico Human Language Technology FBK 2014 Outline Tree-based translation models: Synchronous context free grammars Hierarchical phrase-based

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

Computers playing Jeopardy!

Computers playing Jeopardy! Computers playing Jeopardy! CSE 392, Computers Playing Jeopardy!, Fall 2011 Stony Brook University http://www.cs.stonybrook.edu/~cse392 1 Last class: grammars and parsing in Prolog Verb thrills VP Verb

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Hidden Markov Models Murhaf Fares & Stephan Oepen Language Technology Group (LTG) October 18, 2017 Recap: Probabilistic Language

More information

Introduction to Semantics. The Formalization of Meaning 1

Introduction to Semantics. The Formalization of Meaning 1 The Formalization of Meaning 1 1. Obtaining a System That Derives Truth Conditions (1) The Goal of Our Enterprise To develop a system that, for every sentence S of English, derives the truth-conditions

More information

To make a grammar probabilistic, we need to assign a probability to each context-free rewrite

To make a grammar probabilistic, we need to assign a probability to each context-free rewrite Notes on the Inside-Outside Algorithm To make a grammar probabilistic, we need to assign a probability to each context-free rewrite rule. But how should these probabilities be chosen? It is natural to

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Syntax-Based Decoding

Syntax-Based Decoding Syntax-Based Decoding Philipp Koehn 9 November 2017 1 syntax-based models Synchronous Context Free Grammar Rules 2 Nonterminal rules NP DET 1 2 JJ 3 DET 1 JJ 3 2 Terminal rules N maison house NP la maison

More information

LING 473: Day 10. START THE RECORDING Coding for Probability Hidden Markov Models Formal Grammars

LING 473: Day 10. START THE RECORDING Coding for Probability Hidden Markov Models Formal Grammars LING 473: Day 10 START THE RECORDING Coding for Probability Hidden Markov Models Formal Grammars 1 Issues with Projects 1. *.sh files must have #!/bin/sh at the top (to run on Condor) 2. If run.sh is supposed

More information

Parsing. Left-Corner Parsing. Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 17

Parsing. Left-Corner Parsing. Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 17 Parsing Left-Corner Parsing Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 17 Table of contents 1 Motivation 2 Algorithm 3 Look-ahead 4 Chart Parsing 2 / 17 Motivation Problems

More information

CSCI Compiler Construction

CSCI Compiler Construction CSCI 742 - Compiler Construction Lecture 12 Cocke-Younger-Kasami (CYK) Algorithm Instructor: Hossein Hojjat February 20, 2017 Recap: Chomsky Normal Form (CNF) A CFG is in Chomsky Normal Form if each rule

More information

Ch. 2: Phrase Structure Syntactic Structure (basic concepts) A tree diagram marks constituents hierarchically

Ch. 2: Phrase Structure Syntactic Structure (basic concepts) A tree diagram marks constituents hierarchically Ch. 2: Phrase Structure Syntactic Structure (basic concepts) A tree diagram marks constituents hierarchically NP S AUX VP Ali will V NP help D N the man A node is any point in the tree diagram and it can

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 26 February 2018 Recap: tagging POS tagging is a sequence labelling task.

More information

Random Generation of Nondeterministic Tree Automata

Random Generation of Nondeterministic Tree Automata Random Generation of Nondeterministic Tree Automata Thomas Hanneforth 1 and Andreas Maletti 2 and Daniel Quernheim 2 1 Department of Linguistics University of Potsdam, Germany 2 Institute for Natural Language

More information

Multilevel Coarse-to-Fine PCFG Parsing

Multilevel Coarse-to-Fine PCFG Parsing Multilevel Coarse-to-Fine PCFG Parsing Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine Hill, Shrivaths Iyengar, Jeremy Moore, Michael Pozar, and Theresa

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

Natural Language Processing. Lecture 13: More on CFG Parsing

Natural Language Processing. Lecture 13: More on CFG Parsing Natural Language Processing Lecture 13: More on CFG Parsing Probabilistc/Weighted Parsing Example: ambiguous parse Probabilistc CFG Ambiguous parse w/probabilites 0.05 0.05 0.20 0.10 0.30 0.20 0.60 0.75

More information

Lecture 7: Introduction to syntax-based MT

Lecture 7: Introduction to syntax-based MT Lecture 7: Introduction to syntax-based MT Andreas Maletti Statistical Machine Translation Stuttgart December 16, 2011 SMT VII A. Maletti 1 Lecture 7 Goals Overview Tree substitution grammars (tree automata)

More information

Latent Variable Models in NLP

Latent Variable Models in NLP Latent Variable Models in NLP Aria Haghighi with Slav Petrov, John DeNero, and Dan Klein UC Berkeley, CS Division Latent Variable Models Latent Variable Models Latent Variable Models Observed Latent Variable

More information

Lecture 5: UDOP, Dependency Grammars

Lecture 5: UDOP, Dependency Grammars Lecture 5: UDOP, Dependency Grammars Jelle Zuidema ILLC, Universiteit van Amsterdam Unsupervised Language Learning, 2014 Generative Model objective PCFG PTSG CCM DMV heuristic Wolff (1984) UDOP ML IO K&M

More information

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark Penn Treebank Parsing Advanced Topics in Language Processing Stephen Clark 1 The Penn Treebank 40,000 sentences of WSJ newspaper text annotated with phrasestructure trees The trees contain some predicate-argument

More information

Decidable and undecidable languages

Decidable and undecidable languages The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Decidable and undecidable languages Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Problems about

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

Grammars and introduction to machine learning. Computers Playing Jeopardy! Course Stony Brook University

Grammars and introduction to machine learning. Computers Playing Jeopardy! Course Stony Brook University Grammars and introduction to machine learning Computers Playing Jeopardy! Course Stony Brook University Last class: grammars and parsing in Prolog Noun -> roller Verb thrills VP Verb NP S NP VP NP S VP

More information

Spectral Unsupervised Parsing with Additive Tree Metrics

Spectral Unsupervised Parsing with Additive Tree Metrics Spectral Unsupervised Parsing with Additive Tree Metrics Ankur Parikh, Shay Cohen, Eric P. Xing Carnegie Mellon, University of Edinburgh Ankur Parikh 2014 1 Overview Model: We present a novel approach

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Supplementary Notes on Inductive Definitions

Supplementary Notes on Inductive Definitions Supplementary Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 29, 2002 These supplementary notes review the notion of an inductive definition

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 17 October 2016 updated 9 September 2017 Recap: tagging POS tagging is a

More information