Particle-In-Cell Simulations of a Current-Free Double Layer

Size: px
Start display at page:

Download "Particle-In-Cell Simulations of a Current-Free Double Layer"

Transcription

1 Particle-In-Cell Simulations of a Current-Free Double Layer S. D. Baalrud 1, T. Lafleur, C. Charles and R. W. Boswell American Physical Society Division of Plasma Physics Meeting November 10, Present address: CICART, University of New Hampshire APS-DPP November 10, 2010, p 1

2 Introduction Theories of current-free double layers make different assumptions about the electron velocity distribution function (EVDF) upstream: Stationary Maxwellian: Chen, POP (2006) Maxwellian plus half-maxwellian beam: Lieberman and Charles, PRL (2006) Counter streaming Maxwellian beams: Goswami et al POP (2008) Two temperature Maxwellians: Ahedo and Sánchez PRL (2009) We also develop a model for the EVDF Maxwellian depleted in density corresponding to losses The assumed EVDF has important consequences for double layer formation and potential drop We use PIC simulations to gain insight into what EVDFs to expect 1D in space, 3D in velocity phase space Simulates plasma expansion with a particle loss profile from B expansion The PIC simulations agree qualitatively with previous simulations and experiments (potential and density profiles, IVDFs, etc) EVDFs from PIC show depleted Maxwellians Can use the PIC results to refine the EVDF model APS-DPP November 10, 2010, p 2

3 Impetus: CFDL Thruster Experiments an electric field is measured at the source exit (double layer) Charles and Boswell Phys. Plasmas 2004 source chamber is the thruster expansion chamber simulates space APS-DPP November 10, 2010, p 3

4 Ion Beams Have Been Measured Ion beams have been measured E Equal electron and ion currents reach the downstream region All ions are accelerated by E Most electrons are reflected by E, but they are very hot: 50,000 o No need for an electron source Charles, et al, APL 2003 Sun, et al, PRL 2005 Charles, et al, POP 2004 Ion beams could be used to generate thrust APS-DPP November 10, 2010, p 4

5 φ DL can be calculated from current-free condition φ Δφ s2 Δφ DL Region 2 Region 1 Δφ s1 s2 DL2 DL1 s1 x Potential drops (sheaths and DL) calculated from current balance where c s,2 T e,2 /M i. dv x v x f e2 (x = DL 2 ) } {{ } Γ e,dl2 = n 2 e 1/2 c s,2 }{{} Γ i,dl2 (1) Similar expressions at x = s2 and x = s1, find φ s2, φ DL and φ s1 APS-DPP November 10, 2010, p 5

6 φ DL can be the floating potential ln(f e,dl2 ) ln(f e,dl1 ) eδφdl For a collisional upstream chamber, and infinite downstream chamber { 0 ; v x v c,dl f e2,x = n 2a πvt exp( v 2 a x /v2 T a ) ; v c,dl v x in which v c,dl 2e φ DL /m e is a truncation speed corresponding to φ DL Putting this into Eq. (1) yields φ DL = T e,a e ( ) ln n2 me 2π e 1/2 n 2a M i Since n 2a n 2, T e,a T e for v c,dl /v T e 1, this is the floating potential: φ DL T [ ( )] e Mi 1 + ln 2e 2πm e APS-DPP November 10, 2010, p 6

7 The upstream -e ΔφDL 0 wall causes depletion (b) ln(f e,s2 ) ln(f e,dl2 ) -e ΔφDL e Δφ s2 -e Δφ DL e Δφ s2 Accounting for depletion from the upstream wall, infinite downstream (c) ln(f e,s2 ) ln(f e,dl2 ) n b,dl2, v x < v DL f x,dl2 = e v2 x /v2 T e πvt e ln(f e,dl1 ) n a,dl2, v DL v x v s2 n c,dl2, v s2 < v x From symmetry: φ DL = φ s2. Putting this into Eq. (1) gives -e Δφ s2 e Δφ s2 -e Δφ s2 e Δφ s2 φ -e ( Δφ s1 + Δφ DL = T ( ) e DL ) e ln n 2 e 1/2 2πm e n -e ( Δφ s1 + Δφ ) c,dl2 n b,dl2 ln(f e,s1 ) Expect that n c,dl2 /n b,dl2 L/l s 1, so have φ DL T [ ( e n 2 )] c,dl2 M i 1 + ln 2e 2πm e n 2 2 M i -e Δφs1 -e Δφs1 APS-DPP November 10, 2010, p 7

8 Upstream wall determines pressure minimum The DL potential drop requires Expect that φ DL = T e e ln ) e 1/2 2πm e n c,dl2 ( n2 0 < n 2 e 1/2 2πm e < 1 n c,dl2 M i M i n c,dl2 n 2 { Lup /λ e n, L up < λ e,n 1, L up λ e,n Using λ e n = 1/(n n σ e n ) and n n = n o p where n o = m 3 and p in in mtorr, the less than one condition gives p[mtorr] e 1/2 2πm e /M i n o σ e n L up (2) For T e 1 ev in an argon plasma and L up = 5 cm, this gives p min 0.03 mtorr Can also use n c,dl2 /n 2 n o σ e n L up p[mtorr] to get scaling of φ DL with neutral pressure APS-DPP November 10, 2010, p 8

9 (b) ln(f e,s2 ) ln(f e,dl2 ) Simulation has reflection & depletion from both walls In the simulations, the downstream wall reflects most of the incident electron current φ s1, φ DL and φ s2 can still be calculated from current balance (but result is much more complicated) (c) -e ΔφDL e Δφ s2 ln(f e,s2 ) -e Δφ DL e Δφ s2 ln(f e,dl2 ) -e Δφ s2 e Δφ s2 -e Δφ s2 e Δφ s2 -e ( Δφ s1 + Δφ DL ) -e ( Δφ s1 + Δφ DL ) ln(f e,dl1 ) ln(f e,s1 ) -e Δφs1 -e Δφs1 ±e ( Δφ s2 - Δφ DL ) ±e ( Δφ s2 - Δφ DL ) APS-DPP November 10, 2010, p 9

10 PIC simulations conducted with phoenix phoenix is 1D in space, 3D in velocity phase-space Uses Monte Carlo to simulate electron-neutral and ion-neutral collisions A loss profile is imposed downstream to generate a DL Loss profile derived from volume expansion of a diverging solenoidal B Linear loss profiles have also been used (to connect with Meige et al) Electrons heated upstream in perpendicular direction using an inductive heating model Antenna placed in middle of upstream chamber for most simulations Perpendicular direction is heated (and EVDF tail repleted) by perpendicular-toparallel scattering Written in matlab Simulations take 2-5 days on a PC These simulate 10 5 macroparticles Intended to be identical to code of Meige et al, POP 12, (2005) Except that reference used a linear loss profile APS-DPP November 10, 2010, p 10

11 i + and e neutral cross sections from literature Simulate ion-neutral and electron-neutral collisions σ i,i : ionization collisions σ i,cx : charge-exchange collisions σ e,m : inelastic momentum transfer σ e,e : elastic collisions σ e,i : ionization collisions σ i,i σ i,cx σ i n [m 2 ] ε [ev] APS-DPP November 10, 2010, p 11

12 Expansion is simulated with particle loss Volume expansion: V /V o = (r/r o ) 2 = B/B o, so Vo 1 dv /dx = Bo 1 db/dx ν loss v 1 db B o dx Using solenoidal B upstream gives { 0 for 0 x x c ν loss (x) = 3R ν 4 (x x c ) o for x [R 2 +(x x c ) 2 ] 5/2 c x L Choose x c = 5 cm and R = 1.7 cm (R/L 0.17 in experiments), vary ν o v/r linear ν loss expansion ν loss νloss/νmax x [cm] APS-DPP November 10, 2010, p 12

13 Simulations capture double layer potential Qualitatively similar potentials as measured in experiments Linear and B-field expansion profiles give slightly different results DL potential drop is sharper for expansion Downstream potential is flatter for expansion Upstream potential is higher for linear Following parameters were used: Quantity Value Neutral pressure 1 mtorr Domain length 10 cm Number of grid cells 250 Time step s Total run time 25 µs Antenna frequency (ω o /2π) 10 MHz Antenna current density amplitude 100 A/m 2 q factor ν max s 1 φ [V] ne [m 3 ] x [cm] x [cm] linear ν loss expansion ν loss linear ν loss expansion ν loss 1 APS-DPP November 10, 2010, p 13

14 Ion beams are found in the simulations Simulations show acceleration of an ion beam from DL Qualitatively similar to the beams found in experiments Slow ion component forms downstream from ionization and charge exchange 0.25 x=2. 5 cm 0.2 x=6 cm [fi,x/ni]x 0.15 x=5 cm x=7 cm v x [km/s] Student Version of MATLAB APS-DPP November Student 10, Version 2010, of MATLAB p 14

15 Electrons and Ions Maxwellian in directions A very small population of ions is scattered from the beam in the DL and sheath regions The color bar has a log scale in density For the f e,y plot, blue is energy in +ŷ and red is in ŷ direction Student Version of MATLAB Student Version of MATLAB APS-DPP November 10, 2010, p 15

16 At low pressure wall effects can be seen in EVDF Pressure is 0.1 mtorr for these plots x = 1.5 cm x = 4 cm fe,s fe,dl [ev] [ev] x = 6 cm x = 9 cm fe,dl fe,s [ev] [ev] APS-DPP November 10, 2010, p 16

17 At higher pressure tail of EVDF gets filled in Pressure is 1 mtorr for these plots 1e14 1e14 f e, s2 1e12 1e10 f e, D L2 1e12 1e10 1e8 1e [ev] 1e8 1e [ev] f e, D L1 1e12 1e10 f e, s1 1e12 1e10 1e [ev] 1e [ev] APS-DPP November 10, 2010, p 17

18 Potential profiles depend on neutral pressure mtorr 0.1 mtorr 1 mtorr 10 mtorr 80 φ [V] x [cm] Find DL is indistinguishable at p =0.01 mtorr Next data point at 0.04 mtorr is nearly an arc This is consistent with our earlier estimate of 0.03 mtorr APS-DPP November 10, 2010, p 18

19 Summary The phoenix code has successfully simulated current free double layers in a 1-D geometry Simulations show an ion beam accelerated from the DL that agrees qualitatively with experimental measurements Have found EVDFs that agree with an analytic model based on depletion from losses to the plasma boundaries and repletion from e-n collisions The EVDF from simulations does not have an electron beam upstream, nor a two-temperature distribution (unlike the EVDF assumed in previous models) The minimum neutral pressure predicted from the model is consistent with that observed in the simulation results APS-DPP November 10, 2010, p 19

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Increased Upstream Ionization Due to Spontaneous Formation of a Double Layer in an Expanding Plasma

Increased Upstream Ionization Due to Spontaneous Formation of a Double Layer in an Expanding Plasma Increased Upstream Ionization Due to Spontaneous Formation of a Double Layer in an Expanding Plasma Earl E. Scime* November, 2009 APS Division of Plasma Physics Meeting * with Costel Biloiu, Ioana Biloiu,

More information

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle IEPC-2013-163 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters

Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters IEPC-217-249 Presented at the th International Electric Propulsion Conference Georgia

More information

One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma

One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma Albert Meige, Rod W. Boswell, Christine Charles, and Miles M. Turner Citation: Physics of Plasmas (1994-present)

More information

Electron Energy Distributions in a Radiofrequency Plasma. Expanded by Permanent Magnets

Electron Energy Distributions in a Radiofrequency Plasma. Expanded by Permanent Magnets J. Plasma Fusion Res. SERIES, Vol. 9 (21) Electron Energy Distributions in a Radiofrequency Plasma Expanded by Permanent Magnets Tomoyo SASAKI, Kazunori TAKAHASHI, and Tamiya FUJIWARA Department of Electrical

More information

Scattering in Cold- Cathode Discharges

Scattering in Cold- Cathode Discharges Simulating Electron Scattering in Cold- Cathode Discharges Alexander Khrabrov, Igor Kaganovich*, Vladimir I. Demidov**, George Petrov*** *Princeton Plasma Physics Laboratory ** Wright-Patterson Air Force

More information

4 Modeling of a capacitive RF discharge

4 Modeling of a capacitive RF discharge 4 Modeling of a capacitive discharge 4.1 PIC MCC model for capacitive discharge Capacitive radio frequency () discharges are very popular, both in laboratory research for the production of low-temperature

More information

PHYSICS Computational Plasma Physics

PHYSICS Computational Plasma Physics PHYSICS 78 - Computational Plasma Physics INSTRUCTOR Dr. Earl Scime (escime@wvu.edu) 93-34, ext. 1437 Office hours: MW :30 3:30 and whenever door is open Rm 18 & 05 Hodges Hall Class: MWF 1:30-:0 Rm 334

More information

Development of a Hall Thruster Fully Kinetic Simulation Model Using Artificial Electron Mass

Development of a Hall Thruster Fully Kinetic Simulation Model Using Artificial Electron Mass Development of a Hall Thruster Fully Kinetic Simulation Model Using Artificial Electron Mass IEPC-013-178 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP-1210 Oct. 2012 Electrical Engineering Department Los Angeles, California

More information

ADVENTURES IN TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF ELECTRONEGATIVE DISCHARGES

ADVENTURES IN TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF ELECTRONEGATIVE DISCHARGES ADVENTURES IN TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF ELECTRONEGATIVE DISCHARGES PART 1: DOUBLE LAYERS IN A TWO REGION DISCHARGE E. Kawamura, A.J. Lichtenberg, M.A. Lieberman and J.P. Verboncoeur

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP-6 June, Electrical Engineering Department Los Angeles, California

More information

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations PIC Method for Numerical Simulation Ninad Joshi NNP Group 1 Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations Motivation 3 Particle simulation Ion beams and Plasmas Accelerators

More information

26. Non-linear effects in plasma

26. Non-linear effects in plasma Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 1 26. Non-linear effects in plasma Collisionless shocks ([1], p.405-421, [6], p.237-245, 249-254; [4], p.429-440) Collisionless

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

Equilibrium model for two low-pressure electronegative plasmas connected by a double layer

Equilibrium model for two low-pressure electronegative plasmas connected by a double layer PHYSICS OF PLASMAS 13, 093504 2006 Equilibrium model for two low-pressure electronegative plasmas connected by a double layer P. Chabert, a N. Plihon, C. S. Corr, and J.-L. Raimbault Laboratoire de Physique

More information

PLASMA ADIABATICITY IN A DIVERGING MAGNETIC NOZZLE

PLASMA ADIABATICITY IN A DIVERGING MAGNETIC NOZZLE PLASMA ADIABATICITY IN A DIVERGING MAGNETIC NOZZLE J. P. Sheehan and Benjamin W. Longmier University of Michigan Edgar A. Bering University of Houston Christopher S. Olsen, Jared P. Squire, Mark D. Carter,

More information

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low

More information

An advanced simulation code for Hall effect thrusters

An advanced simulation code for Hall effect thrusters An advanced simulation code for Hall effect thrusters P. Fajardo, M. Merino, E. Ahedo pablo.fajardo@uc3m.es EPIC Workshop October 2017, Madrid Contents Plasmas and Space propulsion Team (EP2-UC3M) CHEOPS

More information

Wall-induced Cross-field Electron Transport with Oblique Magnetic Field Lines

Wall-induced Cross-field Electron Transport with Oblique Magnetic Field Lines Wall-induced Cross-field Electron Transport with Oblique Magnetic Field Lines IEPC-213-77 Presented at the 33 rd International Electric Propulsion Conference, The George Washington University, Washington,

More information

A theoretical study of the energy distribution function of the negative hydrogen ion H - in typical

A theoretical study of the energy distribution function of the negative hydrogen ion H - in typical Non equilibrium velocity distributions of H - ions in H 2 plasmas and photodetachment measurements P.Diomede 1,*, S.Longo 1,2 and M.Capitelli 1,2 1 Dipartimento di Chimica dell'università di Bari, Via

More information

GRID EROSION MODELING OF THE NEXT ION THRUSTER OPTICS

GRID EROSION MODELING OF THE NEXT ION THRUSTER OPTICS 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 20-23 July 2003, Huntsville, Alabama AIAA 2003-4868 GRID EROSION MODELING OF THE NEXT ION THRUSTER OPTICS ABSTRACT Results from several different

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Modelling of magnetic nozzle thrusters with application to ECR and Helicon thrusters

Modelling of magnetic nozzle thrusters with application to ECR and Helicon thrusters Modelling of magnetic nozzle thrusters with application to ECR and Helicon thrusters IEPC--994/ISTS--b-994 Presented at Joint Conference of 3th International Symposium on Space Technology and Science,

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

The Role of Secondary Electrons in Low Pressure RF Glow Discharge

The Role of Secondary Electrons in Low Pressure RF Glow Discharge WDS'05 Proceedings of Contributed Papers, Part II, 306 312, 2005. ISBN 80-86732-59-2 MATFYZPRESS The Role of Secondary Electrons in Low Pressure RF Glow Discharge O. Brzobohatý and D. Trunec Department

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

The electron diffusion into the channel of stationary plasma thruster

The electron diffusion into the channel of stationary plasma thruster The electron diffusion into the channel of stationary plasma thruster IEPC-215-397 Presented at Joint Conference of 3th International Symposium on Space Technology and Science 34th International Electric

More information

arxiv: v1 [physics.plasm-ph] 10 Nov 2014

arxiv: v1 [physics.plasm-ph] 10 Nov 2014 arxiv:1411.2464v1 [physics.plasm-ph] 10 Nov 2014 Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas A. Derzsi 1, I. Korolov

More information

PIC-MCC simulations for complex plasmas

PIC-MCC simulations for complex plasmas GRADUATE SUMMER INSTITUTE "Complex Plasmas August 4, 008 PIC-MCC simulations for complex plasmas Irina Schweigert Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk Outline GRADUATE SUMMER

More information

Diffusion during Plasma Formation

Diffusion during Plasma Formation Chapter 6 Diffusion during Plasma Formation Interesting processes occur in the plasma formation stage of the Basil discharge. This early stage has particular interest because the highest plasma densities

More information

A theory for formation of a low pressure, current-free double layer

A theory for formation of a low pressure, current-free double layer INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 39 (6) 394 334 doi:.88/-377/39/5/ A theory for formation of a low pressure, current-free double layer M A Lieberman,

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma

Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma Xiao Zhang, Evan Aguirre, Derek S. Thompson, John McKee, Miguel Henriquez, and Earl E. Scime Citation: Physics of

More information

Kinetic simulation of the stationary HEMP thruster including the near field plume region

Kinetic simulation of the stationary HEMP thruster including the near field plume region Kinetic simulation of the stationary HEMP thruster including the near field plume region IEPC-2009-110 Presented at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor,

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

ion flows and temperatures in a helicon plasma source

ion flows and temperatures in a helicon plasma source Time-resolved, laser-inducedfluorescence measurements of ion flows and temperatures in a helicon plasma source Earl E. Scime* June, 2010 International Conference on Spectral Line Shapes * Ioana Biloiu,

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

2D OOPIC Simulations of the Helicon Double Layer

2D OOPIC Simulations of the Helicon Double Layer 2D OOPIC Simulations of the Helicon Double Layer IEPC-2007-146 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy I. Musso * Center for Studies and Activities for Space,

More information

Self-consistent Simulation of the Coupling Between Plasma and Neutral Gas in µn-rit

Self-consistent Simulation of the Coupling Between Plasma and Neutral Gas in µn-rit Self-consistent Simulation of the Coupling Between Plasma and Neutral Gas in µn-rit IEPC-2011-323 Presented at the 32 nd International Electric Propulsion Conference, Wiesbaden, Germany R. Henrich, D.

More information

Numerical simulation of the Helicon Double Layer Thruster Concept

Numerical simulation of the Helicon Double Layer Thruster Concept 1/93 ESA STUDY TECNICAL FINAL REP ORT Concept Final Report Numerical simulation of the Helicon Double Layer Thruster Concept ESA Contract No. Prepared by: Marco Manente, Ivano Musso, Johan Carlsson Contributions

More information

Plasma Formation in the Near Anode Region in Hall Thrusters

Plasma Formation in the Near Anode Region in Hall Thrusters 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 10-13 July 2005, Tucson, Arizona AIAA 2005-4059 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA-2005-4059 Plasma Formation

More information

Kinetic Simulation of Effects of Secondary Electron Emission on Electron Temperature in Hall Thrusters

Kinetic Simulation of Effects of Secondary Electron Emission on Electron Temperature in Hall Thrusters Kinetic Simulation of Effects of Secondary Electron Emission on Electron Temperature in Hall Thrusters IEPC-25-78 Presented at the 29 th International Electric Propulsion Conference, Princeton University

More information

Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion

Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion Scott D. Baalrud in collaboration with Chris C. Hegna and James D. Callen

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Feature-level Compensation & Control

Feature-level Compensation & Control Feature-level Compensation & Control 2 Plasma Eray Aydil, UCSB, Mike Lieberman, UCB and David Graves UCB Workshop November 19, 2003 Berkeley, CA 3 Feature Profile Evolution Simulation Eray S. Aydil University

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Modeling of Negative Ion Transport in Cesium-Seeded Volume Negative Ion Sources

Modeling of Negative Ion Transport in Cesium-Seeded Volume Negative Ion Sources Modeling of Negative Ion Transport in Cesium-Seeded Volume Negative Ion Sources Osamu Fukumasa and Ryo Nishida Department of Electrical and Electronic Engineering, Faculty of Engineering, Yamaguchi University,

More information

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Fundamentals of Plasma Physics Transport in weakly ionized plasmas Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas

More information

Comparison of SPT and HEMP thruster concepts from kinetic simulations

Comparison of SPT and HEMP thruster concepts from kinetic simulations Comparison of SPT and HEMP thruster concepts from kinetic simulations K. Matyash, R. Schneider, A. Mutzke, O. Kalentev Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, D-1749, Germany

More information

Transport coefficients in plasmas spanning weak to strong correlation

Transport coefficients in plasmas spanning weak to strong correlation Transport coefficients in plasmas spanning weak to strong correlation Scott D. Baalrud 1,2 and Jerome Daligault 1 1 Theoretical Division, Los Alamos National Laboratory 2 Department of Physics and Astronomy,

More information

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen HAN Qing ( ), WANG Jing ( ), ZHANG Lianzhu ( ) College of Physics Science and Information Engineering, Hebei Normal University,

More information

1D simulations of the Helicon Double Layer

1D simulations of the Helicon Double Layer 1D simulations of the Helicon Double Layer IEPC-2007-106 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Marco Manente CISAS University of Padua, Padova Italy Johan

More information

On the locality of parallel transport of heat carrying electrons in the SOL

On the locality of parallel transport of heat carrying electrons in the SOL P1-068 On the locality of parallel transport of heat carrying electrons in the SOL A.V. Chankin* and D.P. Coster Max-Planck-Institut für Pasmaphysik, 85748 Garching, Germany Abstract A continuum Vlasov-Fokker-Planck

More information

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces J. P. Sheehan1, I. Kaganovich2, E. Barnat3, B. Weatherford3, H. Wang2, 4 1 2 D. Sydorenko, N. Hershkowitz, and Y. Raitses

More information

Two-Dimensional Particle-in-Cell Simulation of a Micro RF Ion Thruster

Two-Dimensional Particle-in-Cell Simulation of a Micro RF Ion Thruster Two-Dimensional Particle-in-Cell Simulation of a Micro RF Ion Thruster IEPC--7 Presented at the nd International Electric Propulsion Conference, Wiesbaden Germany September 5, Yoshinori Takao, Koji Eriguchi,

More information

Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber

Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber IEPC-2005-138 Presented at the 29 th International Electric Propulsion Conference, Princeton University, Iain D. Boyd 1, Quanhua Sun

More information

Kinetic Simulations of Ion Beam Neutralization

Kinetic Simulations of Ion Beam Neutralization Kinetic Simulations of Ion Beam Neutralization O. Chang and J. Wang Astronautical Engineering Department University of Southern California Los Angeles, CA 90089-1192, USA Abstract. Full particle PIC simulations

More information

NARROW GAP ELECTRONEGATIVE CAPACITIVE DISCHARGES AND STOCHASTIC HEATING

NARROW GAP ELECTRONEGATIVE CAPACITIVE DISCHARGES AND STOCHASTIC HEATING NARRW GAP ELECTRNEGATIVE CAPACITIVE DISCHARGES AND STCHASTIC HEATING M.A. Lieberman, E. Kawamura, and A.J. Lichtenberg Department of Electrical Engineering and Computer Sciences University of California

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen. Mühlleithen / Vogtland

XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen. Mühlleithen / Vogtland UNIVERSITY OF APPLIED SCIENCES XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen Mühlleithen / Vogtland Status Report: Numerical 3D Ion Extraction Code incorporated

More information

Angular Distribution Measurements of Sputtered Particles at UCSD

Angular Distribution Measurements of Sputtered Particles at UCSD Angular Distribution Measurements of Sputtered Particles at UCSD Presented by Russ Doerner for Jonathan Yu, Edier Oyarzabal and Daisuke Nishijima QMS measurements in unmagnetized plasma Moly Carbon clusters

More information

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications D. D Andrea 1, W.Maschek 1 and R. Schneider 2 Vienna, May 6 th 2009 1 Institut for Institute for Nuclear and Energy Technologies

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields

Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements

More information

Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer

Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer PHYSICS OF PLASMAS 13, 122101 2006 Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer A. Aanesland, a M. A. Lieberman,

More information

Experimental investigation of double layers in expanding plasmas

Experimental investigation of double layers in expanding plasmas PHYSICS OF PLASMAS 14, 013506 2007 Experimental investigation of double layers in expanding plasmas N. Plihon, a P. Chabert, and C. S. Corr Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique,

More information

Simulation results for magnetized plasmas

Simulation results for magnetized plasmas Chapter 4 Simulation results for magnetized plasmas In this chapter, we consider the dust charge fluctuation mode and lower hybrid wave damping in a magnetized plasma. Also, we consider plasma instabilities

More information

Limits on the Efficiency of a Helicon Plasma Thruster

Limits on the Efficiency of a Helicon Plasma Thruster Limits on the Efficiency of a Helicon Plasma Thruster IEPC-05-84 Presented at Joint Conference of 0th International Symposium on Space Technology and Science 4th International Electric Propulsion Conference

More information

Wall Erosion in 2D Hall Thruster Simulations

Wall Erosion in 2D Hall Thruster Simulations Wall Erosion in D Hall Thruster Simulations IEPC-005-189 Presented at the 9 th International Electric Propulsion Conference, Princeton University, Emmanuelle Sommier *, Michelle K. Allis, and Mark A. Cappelli

More information

Ion Energy Diagnostics in the Plume of an SPT-100

Ion Energy Diagnostics in the Plume of an SPT-100 Ion Energy Diagnostics in the Plume of an SPT-100 from Thrust Axis measurements q ; e K 45 will reach the collector and be recorded as ion current. Even with about the thruster. The region behind the

More information

Advances in the kinetic simulation of microwave absorption in an ECR thruster

Advances in the kinetic simulation of microwave absorption in an ECR thruster Advances in the kinetic simulation of microwave absorption in an ECR thruster IEPC-2017-361 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta, Georgia

More information

EP2Plus: a hybrid plasma. plume/spacecraft. interaction code. F. Cichocki, M. Merino, E. Ahedo

EP2Plus: a hybrid plasma. plume/spacecraft. interaction code. F. Cichocki, M. Merino, E. Ahedo EP2Plus: a hybrid plasma plume/spacecraft interaction code F. Cichocki, M. Merino, E. Ahedo 24 th SPINE meeting ESTEC, Noordwijk, October 23 rd, 2017 Contents Introduction to EP2PLUS Overall structure

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

MONTE CARLO SIMULATION OF RADIATION TRAPPING IN ELECTRODELESS LAMPS: A STUDY OF COLLISIONAL BROADENERS*

MONTE CARLO SIMULATION OF RADIATION TRAPPING IN ELECTRODELESS LAMPS: A STUDY OF COLLISIONAL BROADENERS* MONTE CARLO SIMULATION OF RADIATION TRAPPING IN ELECTRODELESS LAMPS: A STUDY OF COLLISIONAL BROADENERS* Kapil Rajaraman** and Mark J. Kushner*** **Department of Physics ***Department of Electrical and

More information

Modeling Electron Characteristics in an Ion Thruster Plume: Fully Kinetic PIC vs. Hybrid PIC

Modeling Electron Characteristics in an Ion Thruster Plume: Fully Kinetic PIC vs. Hybrid PIC Modeling Electron Characteristics in an Ion Thruster Plume: Fully Kinetic PIC vs. Hybrid PIC IEPC-2017-301 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology,

More information

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 5 1 SEPTEMBER 2003 Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma Doosik Kim

More information

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization 22.101 Applied Nuclear Physics (Fall 2006) Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization References: R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,

More information

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

SPUTTER-WIND HEATING IN IONIZED METAL PVD+ SPUTTER-WIND HEATING IN IONIZED METAL PVD+ Junqing Lu* and Mark Kushner** *Department of Mechanical and Industrial Engineering **Department of Electrical and Computer Engineering University of Illinois

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES* 25th IEEE International Conference on Plasma Science Raleigh, North Carolina June 1-4, 1998 SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(,n) MODES* Ron L. Kinder and Mark J.

More information

For a given mass flow ṁ and thrust F, we would like to minimize the running power P. Define a thruster efficiency, P = I a V a (2) V a

For a given mass flow ṁ and thrust F, we would like to minimize the running power P. Define a thruster efficiency, P = I a V a (2) V a Session : Hall Thruster Efficiency For a given mass flow ṁ and thrust F, we would like to minimize the running power P. Define a thruster efficiency, F 2 η = (1) 2ṁP where F 2 /2ṁ is the minimum required

More information

Cluster fusion in a high magnetic field

Cluster fusion in a high magnetic field Santa Fe July 28, 2009 Cluster fusion in a high magnetic field Roger Bengtson, Boris Breizman Institute for Fusion Studies, Fusion Research Center The University of Texas at Austin In collaboration with:

More information

OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C.

OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C. 1 OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C. Theroude, S. Provost, P. Chèoux-Damas Astrium SAS, 31 avenue des Cosmonautes, 31402 Toulouse Cedex 4 (France) Phone :

More information

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas This model Monte Carlo 1 MeV e 1 MeV e C. K. Li and R. D. Petrasso MIT 47th Annual Meeting of the

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Helicon Double Layer Thruster Performance Enhancement via Manipulation of Magnetic Topology

Helicon Double Layer Thruster Performance Enhancement via Manipulation of Magnetic Topology Helicon Double Layer Thruster Performance Enhancement via Manipulation of Magnetic Topology IEPC--97 Presented at the nd International Electric Propulsion Conference, Wiesbaden, Germany S. J. Pottinger,

More information

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Dr.-Ing. Frank H. Scharf CST of America What is a plasma? What is a plasma? Often referred to as The fourth

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

CONSEQUENCES OF RADIATION TRAPPING ON ELECTRON ENERGY DISTRIBUTIONS IN LOW PRESSURE INDUCTIVELY COUPLED Hg/Ar DISCHARGES*

CONSEQUENCES OF RADIATION TRAPPING ON ELECTRON ENERGY DISTRIBUTIONS IN LOW PRESSURE INDUCTIVELY COUPLED Hg/Ar DISCHARGES* CONSEQUENCES OF RADIATION TRAPPING ON ELECTRON ENERGY DISTRIBUTIONS IN LOW PRESSURE INDUCTIVELY COUPLED Hg/Ar DISCHARGES* Kapil Rajaraman**, Alex Vasenkov*** and Mark J. Kushner*** **Department of Physics

More information

Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon Christine Charles and Rod W. Boswell

Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon Christine Charles and Rod W. Boswell IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 5, OCTOBER 2008 2141 Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon Christine Charles and Rod W. Boswell Abstract

More information

Extensions of the TEP Neutral Transport Methodology. Dingkang Zhang, John Mandrekas, Weston M. Stacey

Extensions of the TEP Neutral Transport Methodology. Dingkang Zhang, John Mandrekas, Weston M. Stacey Extensions of the TEP Neutral Transport Methodology Dingkang Zhang, John Mandrekas, Weston M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA 30332-0425, USA Abstract Recent

More information

Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, ROUSSEL J.-F., SARRAIL D, BOULAY F., INGUIMBERT V.

Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, ROUSSEL J.-F., SARRAIL D, BOULAY F., INGUIMBERT V. Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, OUSSEL J.-F., SAAIL D, BOULAY F., INGUIMBET V. PAYAN D. ONEA CNES Objectives Initial: Validation of SPIS modelling (LEO

More information

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS *

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * Yang Yang a) and Mark J. Kushner b) a) Department of Electrical and Computer Engineering

More information

Particle-in-Cell Simulations for a variable magnet length Cusped-Field thruster

Particle-in-Cell Simulations for a variable magnet length Cusped-Field thruster Particle-in-Cell Simulations for a variable magnet length Cusped-Field thruster IEPC-213-171 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

Hall Thruster Electron Mobility Investigation using Full 3D Monte Carlo Trajectory Simulations

Hall Thruster Electron Mobility Investigation using Full 3D Monte Carlo Trajectory Simulations Hall Thruster Electron Mobility Investigation using Full 3D Monte Carlo Trajectory Simulations IEPC-2007-291 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Darren

More information