Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, ROUSSEL J.-F., SARRAIL D, BOULAY F., INGUIMBERT V.

Size: px
Start display at page:

Download "Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, ROUSSEL J.-F., SARRAIL D, BOULAY F., INGUIMBERT V."

Transcription

1 Modelling of plasma tank and related langmuir probe calibration MATEO-VELEZ J.-C, OUSSEL J.-F., SAAIL D, BOULAY F., INGUIMBET V. PAYAN D. ONEA CNES

2 Objectives Initial: Validation of SPIS modelling (LEO type conditions) Have a simulation almost ready to simulate our routine experiments (just by changing mock-up, polarisations...) Incidental: Improve LP I-V characteristics interpretation method 2

3 The Study Ionosphere simulation tank JONAS Experiments achieved in 2002 SPIS development numerical simulations CNES &T funding Plasma source (Argon + + electrons) 1850 Pressure ~ mbar Plasma density ~ cm -3 Ion energy ev Electron temperature ~ 1500 K Test on materials, Devices, etc

4 The Experiment Plasma I-V characteristics using Langmuir probes (4) plasma density electron temperature plasma potential Wake effect using a plate Fast ions (10-25 ev) emitted from the source can not reach the region behind the plate, Slow ions created by charge exchange reactions (CEX) are present in the whole tank LEO 4

5 Langmuir probe I-V characteristics interpretation Classical method, method 1 (M1) Plasma potential I Electron branch N e Floating potential φ s - φ p Classical handling of ion branch: linear interpolation to plasma potential Extra difficulty: separate fast and slow ions => need several probes (simultaneous interpretation) Spherical probe I + Planar probe (// or to the source) Plasma source (Fast ions) Slow ions S 2 S 1 Plasma source (Fast ions) Slow ions S 1 S 2 5

6 Guarded planar probes results without the plate (method M1) Fast ion density profiles at various distances from the source: 1/d 2 decay (m-3) 1,2E+13 1,0E+13 8,0E+12 6,0E+12 4,0E+12 2,0E+12 X=230mm X=800mm X=1230mm log(n+r) 13, , ,5 pente -2,03 0,0E Y (cm) Slow ion density profiles (noisy) 11-0,8-0,6-0,4-0,2 0 0,2 log(x) (m-3) 5,0E+12 4,0E+12 3,0E+12 2,0E+12 X=230mm X=800mm X=1230mm 1,0E+12 0,0E Y (cm) 6

7 Guarded planar probes results WITH the plate (method M1) No fast ions in the plate wake 3,0E+11 2,5E+11 2,0E+11 X=38mm de la plaque X=200mm de la plaque X=510mm de la plaque (m-3) 1,5E+11 1,0E+11 5,0E+10 0,0E Y (cm) Slow ions in the plate wake (m-3) 4,0E+12 3,0E+12 2,0E+12 X=38mm de la plaque X=200mm de la plaque X=510mm de la plaque 1,0E+12 0,0E Y (cm) 7

8 Discussion of LP data interpretation Ion branch linear interpolation to plasma potential: Only an approximation Quite valid : fast ions: small influence of potential, and not far from linear in OML conditions: theory => linear for a sphere But not really: in non-oml conditions (larger r / λ d ratio) fast + slow ions: more complicated Improvements: General idea: use a realistic ion branch model(ling) Other ~ analytical theory when available: Langmuir-Blodgett instead of Langmuir-Mott-Smith (OML): cf. below, in the wake Numerical method, interesting in more complicated situations (SPIS), as e.g. fast + slow ions 8

9 Spherical probe in a non-drifting plasma (method M2) Application = wake: slow ions only, far from linear Only slow ion current collection S In a Maxwellian non-drifting plasma, sheath size S (Langmuir et Blodgett Parker 1980) : S S = = D D where D is 1D Child-Langmuir sheath size Then current = D D H ( 0,2) ev D = 1.26 D kt I = en 4πS for for D 3 D 3 19 > ε 0 λ λ D = 2 2 kbt 2πm + k B T Ne total current (A) 2,0E-07 1,5E-07 1,0E-07 5,0E-08 0,0E+00-5,0E-08-1,0E-07-1,5E-07-2,0E-07 measurements Te = Ti model Probe potential (V) 9

10 Other approach: probe modelling with SPIS (not used here) spherical probe 15 mm in diameter Maxwellian plasma at rest. N = m -3, Te = Ti =1eV OML theory valid total current (A) 2,0E-07 1,0E-07 0,0E+00-1,0E-07 adial motion model for hot ions SPIS simulation OML model 10 spherical probe 15 mm in diameter Maxwellian plasma at rest N = m -3, Te = Ti =0.09eV Langmuir-Blodget theory valid total current (A) -2,0E Probe potential (V) 2,0E-07 adial motion model for hot ions 1,0E-07 SPIS simulation OML model 0,0E+00-1,0E-07-2,0E-07-3,0E Probe potential (V)

11 JONAS tank numerical modelling (SPIS) CAD model and mesh using Gmsh Pump orifice Tank nodes tetra Source plate Collecting sphere 11

12 Numerical simulations (SPIS Model) Plasma volume - Electrons : Boltzmann distribution - CEX reaction Supposes a uniform neutral density (SPIS improvement) obtained by exp. Enables the prediction of slow ion production Pump orifice (Plasma boundary) Ion source φ= 3 cm I = 1 ma E = 15 ev PIC method Satellite 12

13 Numerical simulations (SPIS) Parameter Simulation time Fast ion current esidual gas pressure CEX cross section σ Tank voltage Electron temperature Electron density N 0 Value s 1,1 ma Pa m 2-2 V 0,09 ev m -3 Numerical results Fast ion density : m -3 ealistic decrease of ion density (~ 1/r 2 for fast ions) Wake effect clearly demonstrated for fast ions Important amount of slow ions > m -3, which is in agreement with measurements 13

14 Numerical simulations (SPIS) Parameter Simulation time Fast ion current esidual gas pressure CEX cross section σ Tank voltage Electron temperature Electron density N 0 Value s 1,1 ma Pa m 2-2 V 0,09 ev m -3 Numerical results Electron density and potential : Boltzmann distribution N e N 0 exp((v-v 0 )/k B T) Quasi neutral plasma 14

15 Comparison of simulations to experimental data Fast ion density Drifting ion density (m-3) 1,4E+13 1,2E+13 1,0E+13 8,0E+12 6,0E+12 4,0E+12 2,0E+12 Experiments Method M1 Numerical results Drifting ion density (m-3) 1,0E+14 1,0E+13 1,0E+12-2,03 slope Exp. method M1 Numerical results 1,0E+11-0,8-0,6-0,4-0,2 0 0,2 Log. of distance to the source (m) 0,0E Distance from the source axis (cm) 15

16 Comparison of simulations to experimental data Slow ion density 1,0E+13 Exp. OML model (M1) Exp. radial motion models (M2) Numerical results CEX ion density (m-3) 1,0E+12 1,0E+11 plate location 1,0E ,5 1 1,5 2 2,5 3 distance to the source (m) Much better agreement with M2 method 16

17 Conclusions and perspectives Validation of the numerical approach for plasma tank modelling The final model will help to simulate the experiments to be conducted in the ONEA tank Future possible improvements of the approach Using SPIS for generic LP I-V characteristics interpretation Improved tank model: a DSMC for CEX would allow predicting the neutral pressure, and possible inhomogeneities (here taken from measurements) 17

SPIS-MAINTENANCE. SPINE Meeting ESTEC, Noordwijk, NL, 19 th of March 2013

SPIS-MAINTENANCE. SPINE Meeting ESTEC, Noordwijk, NL, 19 th of March 2013 SPIS-MAINTENANCE SPINE Meeting ESTEC, Noordwijk, NL, 19 th of March 2013 J.-C. Mateo-Velez 1, B. Rivière 1, P. Sarrailh 1, J. Forest 2, B. Jeanty-Ruard 2, B. Thiébault 2 (2) (1) Context CCN 1 to ESA/ESTEC

More information

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces J. P. Sheehan1, I. Kaganovich2, E. Barnat3, B. Weatherford3, H. Wang2, 4 1 2 D. Sydorenko, N. Hershkowitz, and Y. Raitses

More information

ESD RELATED R&D STUDIES AT CNES AND ONERA

ESD RELATED R&D STUDIES AT CNES AND ONERA ESD RELATED R&D STUDIES AT CNES AND ONERA Denis PAYAN (1), Virginie INGUIMBERT (2), Jean-Charles MATEO-VELEZ (2), Daniel SARRAIL (2), Thierry PAULMIER (2), Jean-François ROUSSEL (2), Bernard DIRASSEN (2),

More information

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma J. P. Sheehan*, Y. Raitses**, N. Hershkowitz*, I. Kaganovich**, and N. J. Fisch** *University of

More information

Optical Pumping of Rubidium

Optical Pumping of Rubidium Optical Pumping of Rubidium Janet Chao, Dean Henze, Patrick Smith, Kent Lee April 27, 2013 Abstract 1 INTRODUCTION Irving Langmuir coined the term plasma in a paper in 1928, ushering a whole new and exciting

More information

Modeling of current characteristics of segmented Langmuir probe on DEMETER

Modeling of current characteristics of segmented Langmuir probe on DEMETER Modeling of current characteristics of segmented Langmuir probe on DEMETER Nadia Imtiaz, Richard Marchand, Jean-Pierre Lebreton To cite this version: Nadia Imtiaz, Richard Marchand, Jean-Pierre Lebreton.

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

Experimental Studies of Ion Beam Neutralization: Preliminary Results

Experimental Studies of Ion Beam Neutralization: Preliminary Results Experimental Studies of Ion Beam Neutralization: Preliminary Results N. Ding, J. Polansky, R. Downey and J. Wang Department of Astronautical Engineering University of Southern California Los Angeles, CA

More information

Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber

Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber Particle Simulation of Hall Thruster Plumes in the 12V Vacuum Chamber IEPC-2005-138 Presented at the 29 th International Electric Propulsion Conference, Princeton University, Iain D. Boyd 1, Quanhua Sun

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

Particle-In-Cell Simulations of a Current-Free Double Layer

Particle-In-Cell Simulations of a Current-Free Double Layer Particle-In-Cell Simulations of a Current-Free Double Layer S. D. Baalrud 1, T. Lafleur, C. Charles and R. W. Boswell American Physical Society Division of Plasma Physics Meeting November 10, 2010 1Present

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum (Dated: 11 December 2015) This experiment aimed to measure velocity of ion acoustic waves propagating

More information

DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES

DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES 1 DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES Bob Merlino Department of Physics and Astronomy The University of Iowa Iowa City, IA 52242 October 15, 2009 The design

More information

Kinetic Simulations of Ion Beam Neutralization

Kinetic Simulations of Ion Beam Neutralization Kinetic Simulations of Ion Beam Neutralization O. Chang and J. Wang Astronautical Engineering Department University of Southern California Los Angeles, CA 90089-1192, USA Abstract. Full particle PIC simulations

More information

16.55 Ionized Gases Problem Set #5

16.55 Ionized Gases Problem Set #5 16.55 Ionized Gases Problem Set #5 Problem 1: A probe in a non-maxellian plasma The theory of cold probes, as explained in class, applies to plasmas with Maxwellian electron and ion distributions. However,

More information

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments IEC:! IEC at UIUC modified into a space thruster.! IEC has

More information

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Kent Lee, Dean Henze, Patrick Smith, and Janet Chao University of San Diego (Dated: May 1, 2013)

More information

Electrostatic charging A. Hilgers European Space Agency (ESTEC/TEC-EES)

Electrostatic charging A. Hilgers European Space Agency (ESTEC/TEC-EES) Electrostatic charging A. Hilgers European Space Agency (ESTEC/TEC-EES) 1. Introduction 2. Contamination by charged particles 3. Surface charge effects 4. Space charge effects 5. Quantitative assessments

More information

LANGMUIR PROBE MEASUREMENTS IN THE IONOSPHERE

LANGMUIR PROBE MEASUREMENTS IN THE IONOSPHERE LANGMUIR PROBE MEASUREMENTS IN THE IONOSPHERE by Aroh Barjatya A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Electrical Engineering Approved:

More information

Computational tools for spacecraft electrostatic cleanliness and payload accomodation analysis - SPIS Science - Verification Test Report (VTR)

Computational tools for spacecraft electrostatic cleanliness and payload accomodation analysis - SPIS Science - Verification Test Report (VTR) T E C H N I C A L R E P O R T Computational tools for spacecraft electrostatic cleanliness and payload accomodation analysis - SPIS Science - Verification Test Report (VTR) Authors : J.-C. Mateo Velez

More information

Accurately Determining the Plasma Potential Using Emissive Probes

Accurately Determining the Plasma Potential Using Emissive Probes Accurately Determining the Plasma Potential Using Emissive Probes IEPC-2013-313 Presented at the 33 rd International Electric Propulsion Conference, The George Washington University, Washington, D.C.,

More information

SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA

SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA F. L. Johansson 1,2,4, P. Henri 1, A. Eriksson 2, X. Vallières 1, J-P Lebreton 1, C. Béghin 1, G. Wattieaux 3, and E. Odelstad 2,4 1

More information

Langmuir Probe Data Analysis

Langmuir Probe Data Analysis 5//22 Data Analysis Langmuir Probe Langmuir Probe Data Analysis A Langmuir probe is simply a wire (or disk) placed in the plasma. The probe collects mostly electrons when biased positively and mostly ions

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Spacecraft Charging Analysis Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp http://laseine.ele.kyutech.ac.jp

More information

Hybrid Monte Carlo - Particle-in-Cell Simulation of an Ion Thruster Plume

Hybrid Monte Carlo - Particle-in-Cell Simulation of an Ion Thruster Plume IEPC-97-182 1106 Hybrid Monte Carlo - Particle-in-Cell Simulation of an Ion Thruster Plume Douglas B. VanGilder: Gabriel I. Font+ and Iain D. Boydt Cornell University, Ithaca, NY 14853, U.S.A. Abstract

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES

ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES Brosse, S *; Chanrion, O. * ; Perrin, V. * * Alcatel Space, 100 Bd du Midi, 06156 Cannes La Bocca, France Phone : 33 (0)4 92 92 64 83, Fax : 33 (0)4

More information

Kinetic Simulations of Plasma Plume Potential in a Vacuum Chamber

Kinetic Simulations of Plasma Plume Potential in a Vacuum Chamber Missouri University of Science and Technology Scholars' Mine Mechanical and Aerospace Engineering Faculty Research & Creative Works Mechanical and Aerospace Engineering 10-1-2013 Kinetic Simulations of

More information

Lasers... the optical cavity

Lasers... the optical cavity Lasers... the optical cavity history principle, intuitive aspects, characteristics 2 levels systems Ti: Helium Al2O3 - Neon model-locked laser laser VCSEL bragg mirrors cleaved facets 13 ptical and/or

More information

Plasma Thruster Plume Simulation: Effect of the Plasma Quasi Neutrality Hypothesis

Plasma Thruster Plume Simulation: Effect of the Plasma Quasi Neutrality Hypothesis CENTROSPAZIO Plasma Thruster Plume Simulation: Effect of the Plasma Quasi Neutrality Hypothesis A. Passaro*, L.Biagioni*, and A.Vicini** * Centrospazio-CPR 56121 Pisa, Italy ** Alta S.p.A. 56121 Pisa,

More information

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory IEPC-2015-90161 Presented at Joint Conference of 30th International

More information

An introduction to Langmuir probe diagnostics of plasmas

An introduction to Langmuir probe diagnostics of plasmas An introduction to Langmuir probe diagnostics of plasmas Luis Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos 284 Madrid, Spain. May 28, 211 Abstract In this short review is introduced

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

Effect of Ion-Neutral Collisions on Sheath Potential Profile

Effect of Ion-Neutral Collisions on Sheath Potential Profile Effect of Ion-Neutral Collisions on Sheath Potential Profile IEPC-2013-346 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington, D.C. USA Samuel

More information

Cubesat Wakes in the Earth s Ionosphere

Cubesat Wakes in the Earth s Ionosphere Dissertations and Theses 1-2015 Cubesat Wakes in the Earth s Ionosphere Robert M. Albarran II Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt

More information

SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA

SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA S. GURLUI 1, D. G. DIMITRIU 1, C. IONITA 2, R. W. SCHRITTWIESER 2 1 Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., RO-700506

More information

Measurement of EEDF and Distribution of Primary Electron in a Bucket Ion Source

Measurement of EEDF and Distribution of Primary Electron in a Bucket Ion Source Fourth IAEA Technical Meeting on "Negative Ion Based NBIs" May 9-11 2005, Padova - Italy Measurement of EEDF and Distribution of Primary Electron in a Bucket Ion Source S. Miyamoto, F. Kanayama, T. Minami,

More information

Studies of the cathode sheath of a low pressure hollow cathode discharge

Studies of the cathode sheath of a low pressure hollow cathode discharge Journal of Physics: onference Series Studies of the cathode sheath of a low pressure hollow cathode discharge To cite this article: G Petraconi et al 0 J. Phys.: onf. Ser. 370 004 View the article online

More information

Control of ion and electron distribution functions by the Electrical Asymmetry Effect. U. Czarnetzki

Control of ion and electron distribution functions by the Electrical Asymmetry Effect. U. Czarnetzki Control of ion and electron distribution functions by the Electrical Asymmetry Effect U. Czarnetzki 64t h GEC, Salt Lake City, 14-18 November 2011 Institute for Plasma and Atomic Physics 1 Ion energy:

More information

Cathode thermal effects in one-dimensional space-charge-limited electron flow

Cathode thermal effects in one-dimensional space-charge-limited electron flow Cathode thermal effects in one-dimensional space-charge-limited electron flow Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax:

More information

Numerical Simulation of Faraday Probe Measurements in a Multi-component Non-equilibrium Plasma

Numerical Simulation of Faraday Probe Measurements in a Multi-component Non-equilibrium Plasma Numerical Simulation of Faraday Probe Measurements in a Multi-component Non-equilibrium Plasma IEPC-005-85 Presented at the 9 th International Electric Propulsion Conference, Princeton University, Jeremiah

More information

Sheaths: More complicated than you think a

Sheaths: More complicated than you think a PHYSICS OF PLASMAS 12, 055502 2005 Sheaths: More complicated than you think a Noah Hershkowitz b University of Wisconsin-Madison, Madison, Wisconsin 53706 Received 7 December 2004; accepted 7 February

More information

Effect of a Magnetic Field in Simulating the Plume-Field of an Anode Layer Hall Thruster

Effect of a Magnetic Field in Simulating the Plume-Field of an Anode Layer Hall Thruster Effect of a Magnetic Field in Simulating the Plume-Field of an Anode Layer Hall Thruster Yongjun Choi 1 Uinversity of Michigan, Ann Arbor, MI 48109 Michael Keidar 2 The George Washington University, Washington

More information

CHAPTER 8. SUMMARY AND OUTLOOK 90 Under the operational conditions used in the present work the translation temperatures can be obtained from the Dopp

CHAPTER 8. SUMMARY AND OUTLOOK 90 Under the operational conditions used in the present work the translation temperatures can be obtained from the Dopp Chapter 8 Summary and outlook In the present work reactive plasmas have been investigated by comparing experimentally obtained densities with the results from a simple chemical model. The studies have

More information

Sheath stability conditions for PIC simulation

Sheath stability conditions for PIC simulation Plasma_conference (2011/11/24,Kanazawa,Japan) PIC Sheath stability conditions for PIC simulation Osaka Prefecture. University H. Matsuura, and N. Inagaki, Background Langmuir probe is the most old but

More information

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT Romanian Reports in Phisics, Vol. 56, No., P. 71-76, 004 CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT A. R. PETRE 1, M. BÃZÃVAN 1, V. COVLEA 1, V.V. COVLEA 1, ISABELLA IOANA OPREA, H. ANDREI

More information

A theory for formation of a low pressure, current-free double layer

A theory for formation of a low pressure, current-free double layer INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 39 (6) 394 334 doi:.88/-377/39/5/ A theory for formation of a low pressure, current-free double layer M A Lieberman,

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Effect of negative ions on the characteristics of plasma in a cylindrical discharge

Effect of negative ions on the characteristics of plasma in a cylindrical discharge Araghi and Dorranian Journal of Theoritical and Applied Physics 2013, 7:41 RESEARCH Open Access Effect of negative ions on the characteristics of plasma in a cylindrical discharge Farnaz Araghi and Davoud

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) 1 POSTER JP1.00100 [Bull. APS 51, 165 (2006)] DPP06 Meeting of The American Physical Society Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) Su-Hyun Kim, Robert Merlino,

More information

Increased ionization during magnetron sputtering and its influence on the energy balance at the substrate

Increased ionization during magnetron sputtering and its influence on the energy balance at the substrate Institute of Experimental and Applied Physics XXII. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen Mühlleithen, 10.-12. März, 2015 Increased ionization during magnetron

More information

Potential Barrier in the Electrostatic Sheath Around Geotail, Cluster and BepiColombo spacecraft

Potential Barrier in the Electrostatic Sheath Around Geotail, Cluster and BepiColombo spacecraft Potential Barrier in the Electrostatic Sheath Around Geotail, Cluster and BepiColombo spacecraft B. Thiébault, A. Hilgers, E. Sasot, Vincent Génot, C. P. Escoubet, H. Laakso, Julien Forest To cite this

More information

Special care was taken to realize an accurate measurement of the sheath. The theory for the use of collectors in gas discharges, developed by

Special care was taken to realize an accurate measurement of the sheath. The theory for the use of collectors in gas discharges, developed by 32 PHYSICS: W. UYTERHOEVEN PRoc. N. A. S. POSITIVE ION CURRENTS IN THE POSITIVE COLUMN OF THE GLOW-DISCHARGE IN THE NOBLE GASES' By W. UYTZRHOZVZN2 PALMER PHYSICAL LABORATORY, PRINCEMON UNIVERSITY Communicated

More information

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 7-1 Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

Computational Modeling of a High Power Plasma Source for Material Interaction Experiments

Computational Modeling of a High Power Plasma Source for Material Interaction Experiments Computational Modeling of a High Power Plasma Source for Material Interaction Experiments IEPC-2013-224 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

Mark Michael Santi. A u th or... Department of Aeronautics and Astronautics July/ 21, Certified by... lime Peraire Professor Thesis Supervisor

Mark Michael Santi. A u th or... Department of Aeronautics and Astronautics July/ 21, Certified by... lime Peraire Professor Thesis Supervisor Hall Thruster Plume Simulation Using a Hybrid-PIC Algorithm by Mark Michael Santi Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of

More information

Spatially resolved mass spectrometric sampling of inductively coupled plasmas using a movable sampling orifice

Spatially resolved mass spectrometric sampling of inductively coupled plasmas using a movable sampling orifice Spatially resolved mass spectrometric sampling of inductively coupled plasmas using a movable sampling orifice Xi Li a),b) and Gottlieb S. Oehrlein a),c) Materials Science and Engineering and Institute

More information

SPIS current status and achievements. S. Hess, J-C Matéo-Vélez, P Sarrailh

SPIS current status and achievements. S. Hess, J-C Matéo-Vélez, P Sarrailh 1 SPIS current status and achievements S. Hess, J-C Matéo-Vélez, P Sarrailh 2 Zoom on most recent activities SPIS GEO ESTEC/ESA contract SPIS-SCIENCE Technical officer: David Rodgers Consortium: Artenum,

More information

Plasma Diagnostics Introduction to Langmuir Probes

Plasma Diagnostics Introduction to Langmuir Probes Plasma Diagnostics Technical Information Sheet 531 Plasma Diagnostics Introduction to Langmuir Probes Introduction A Langmuir Probe is a powerful plasma diagnostic tool which capable of determining the

More information

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Fundamentals of Plasma Physics Transport in weakly ionized plasmas Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas

More information

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF Ion Energy Distributions in Pulsed Plasmas with Synchronous DC Bias: Effect of Noble Gas W. Zhu, H. Shin, V. M. Donnelly and D. J. Economou Plasma Processing Laboratory University of Houston Acknowledgements:

More information

The Role of Secondary Electrons in Low Pressure RF Glow Discharge

The Role of Secondary Electrons in Low Pressure RF Glow Discharge WDS'05 Proceedings of Contributed Papers, Part II, 306 312, 2005. ISBN 80-86732-59-2 MATFYZPRESS The Role of Secondary Electrons in Low Pressure RF Glow Discharge O. Brzobohatý and D. Trunec Department

More information

University of Washington

University of Washington Aerospace and Energetics Research Program University of Washington Seattle, WA 44th Annual Meeting of the Division of Plasma Physics of the American Physical Society November 11 - November 15, 2002 Orlando,

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1065 Design and Development of Langmuir Probe Sensor for Electron Temperature and Electron Density Measurement of

More information

Development of a Micro- Thruster Test Facility which fulfils the LISA requirements

Development of a Micro- Thruster Test Facility which fulfils the LISA requirements Development of a Micro- Thruster Test Facility which fulfils the LISA requirements Franz Georg Hey 1,2, A. Keller 1, J. Ulrich 1, C. Braxmaier 3,4, M. Tajmar 2, E. Fitzsimons 1, and D. Weise 1 1 Airbus

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP-1210 Oct. 2012 Electrical Engineering Department Los Angeles, California

More information

Resonant Microwave Heating. of a Gun Plasma in a Toroidal Octupo1e. J. C. Sprott. and. Glenn Kuswa. June, 1969

Resonant Microwave Heating. of a Gun Plasma in a Toroidal Octupo1e. J. C. Sprott. and. Glenn Kuswa. June, 1969 Resonant Microwave Heating of a Gun Plasma in a Toroidal Octupo1e by J. C. Sprott and Glenn Kuswa June, 1969 PLP 286 Plasma Studies University of Wisconsin These PLP Reports are informal and preliminary

More information

Plasma parameter evolution in a periodically pulsed ICP

Plasma parameter evolution in a periodically pulsed ICP Plasma parameter evolution in a periodically pulsed ICP V. Godyak and B. Alexandrovich OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915, USA The electron energy probability function (EEPF) has been

More information

4 Modeling of a capacitive RF discharge

4 Modeling of a capacitive RF discharge 4 Modeling of a capacitive discharge 4.1 PIC MCC model for capacitive discharge Capacitive radio frequency () discharges are very popular, both in laboratory research for the production of low-temperature

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Multiple reflections of solar radiation and photoelectron emission in satellite interaction with space environment. Roghaiya Omar

Multiple reflections of solar radiation and photoelectron emission in satellite interaction with space environment. Roghaiya Omar Multiple reflections of solar radiation and photoelectron emission in satellite interaction with space environment by Roghaiya Omar A thesis submitted in partial fulfillment of the requirements for the

More information

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Chunshi Cui, John Trow, Ken Collins, Betty Tang, Luke Zhang, Steve Shannon, and Yan Ye Applied Materials, Inc. October 26, 2000 10/28/2008

More information

Experimental investigation of double layers in expanding plasmas

Experimental investigation of double layers in expanding plasmas PHYSICS OF PLASMAS 14, 013506 2007 Experimental investigation of double layers in expanding plasmas N. Plihon, a P. Chabert, and C. S. Corr Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique,

More information

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract Plasma Chamber Fortgeschrittenes Praktikum I Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot Abstract The aims of this experiment are to be familiar with a vacuum chamber, to understand what

More information

XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen. Mühlleithen / Vogtland

XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen. Mühlleithen / Vogtland UNIVERSITY OF APPLIED SCIENCES XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen Mühlleithen / Vogtland Status Report: Numerical 3D Ion Extraction Code incorporated

More information

Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 299 304 Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas MD NURUJJAMAN

More information

Simulation of the Interaction Between Two Counterflowing Rarefied Jets

Simulation of the Interaction Between Two Counterflowing Rarefied Jets Simulation of the Interaction Between Two Counterflowing Rarefied Jets Cyril Galitzine and Iain D. Boyd Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 Abstract. A preliminary

More information

Physical Performance Analysis And The Progress Of The Development Of The Negative Ion RF Source For The ITER NBI System

Physical Performance Analysis And The Progress Of The Development Of The Negative Ion RF Source For The ITER NBI System Physical Performance Analysis And The Progress Of The Development Of The Negative Ion RF Source For The ITER NBI System U. Fantz, P. Franzen, W. Kraus, M. Berger, S. Christ-Koch, H. Falter, M. Fröschle,

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

The Invalidity of a Mach Probe Model

The Invalidity of a Mach Probe Model The Invalidity of a Mach Probe Model I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA, USA Abstract Despite its recent application to the interpretation

More information

OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C.

OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C. 1 OVERVIEW OF ASTRIUM MODELLING TOOL FOR PLASMIC THRUSTER FLOW FIELD SIMULATION C. Theroude, S. Provost, P. Chèoux-Damas Astrium SAS, 31 avenue des Cosmonautes, 31402 Toulouse Cedex 4 (France) Phone :

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory The Floating Potential o Cylindrical Langmuir Probes Francis F. Chen and Donald Arnush Electrical Engineering Department LTP-15 May, 1 Electrical Engineering

More information

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Claudia LAZZARONI Antoine ROUSSEAU Pascal CHABERT LPP Ecole Polytechnique, Palaiseau, FRANCE Nader SADEGHI LSP Grenoble, FRANCE I-V

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

MASTER'S THESIS. Spacecraft-Plasma Interaction Modelling of Future Missions to Jupiter. Tobias Rudolph

MASTER'S THESIS. Spacecraft-Plasma Interaction Modelling of Future Missions to Jupiter. Tobias Rudolph MASTER'S THESIS Spacecraft-Plasma Interaction Modelling of Future Missions to Jupiter Tobias Rudolph Master of Science Space Engineering - Space Master Luleå University of Technology Department of Computer

More information

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany INVESTIGATION OF ELECTRIC CONDITIONS IN THE VICINITY OF CARBON NANOTUBES GROWN IN A DC PLASMA SHEATH J. Blažek a, P. Špatenka b, Ch. Taeschner c, A. Leonhardt c a University of South Bohemia, Department

More information

Equilibrium model for two low-pressure electronegative plasmas connected by a double layer

Equilibrium model for two low-pressure electronegative plasmas connected by a double layer PHYSICS OF PLASMAS 13, 093504 2006 Equilibrium model for two low-pressure electronegative plasmas connected by a double layer P. Chabert, a N. Plihon, C. S. Corr, and J.-L. Raimbault Laboratoire de Physique

More information

Plasma-Wall Interaction Controlled by Secondary Electron Emission

Plasma-Wall Interaction Controlled by Secondary Electron Emission Plasma-Wall Interaction Controlled by Secondary Electron Emission IEPC-0-/ISTS-0-b- Presented at Joint Conference of 0th International Symposium on Space Technology and Science, th International Electric

More information

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract Umeå University October 7, 2009 Department of physics Space physics 7.5 ECTS. Project report Spacecraft Charging and Mitigation Methods By Muhammad Azam Muhammad.azam1@yahoo.com Supervisor Kjell Rönnmark

More information

Capacitive Probe for Plasma Potential Measurements in a Vacuum diode and Polywell Device

Capacitive Probe for Plasma Potential Measurements in a Vacuum diode and Polywell Device Capacitive Probe for Plasma Potential Measurements in a Vacuum diode and Polywell Device Scott Cornish, Matt Carr, David Gummersall, Joe Khachan Fusion Studies Group Introduction This presentation will

More information

Plasma Density Analysis of CubeSat Wakes in the Earth s Ionosphere

Plasma Density Analysis of CubeSat Wakes in the Earth s Ionosphere Publications 2016 Plasma Density Analysis of CubeSat Wakes in the Earth s Ionosphere Robert M. Albarran II Aroh Barjatya Embry-Riddle Aeronautical University, barjatya@erau.edu Follow this and additional

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

8 Measurement of Ion Density Electron Temperature JAXA RR 8 JAXA Research Development Report JAXA-RR-1-1E Electron Eensity (1 7 cm -3 ) Fig. 1 Fig. 3

8 Measurement of Ion Density Electron Temperature JAXA RR 8 JAXA Research Development Report JAXA-RR-1-1E Electron Eensity (1 7 cm -3 ) Fig. 1 Fig. 3 7 Measurement of Ion Density Electron Temperature by Double-Probe Method to Study Critical Phenomena in Kazuo TAKAHASHI *1, Satoshi ADACHI *, Hiroo TOTSUJI *3 Abstract: A dusty plasma research was performed

More information

Thermionic Emission. A. Goode Student and A. Finicky Professor. Abstract. φ 2 kt

Thermionic Emission. A. Goode Student and A. Finicky Professor. Abstract. φ 2 kt Thermionic Emission A. Goode Student and A. Finicky Professor Abstract Thermionic emission of electrons by a hot filament is observed in a space charge limited regime and temperature limited regime. From

More information