26. Non-linear effects in plasma

Size: px
Start display at page:

Download "26. Non-linear effects in plasma"

Transcription

1 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks Non-linear effects in plasma Collisionless shocks ([1], p , [6], p , ; [4], p ) Collisionless shocks A typical example of collisionless shocks is the Earth s bow shock. When the supersonic solar-wind flow meets the Earth s atmosphere, a shock is launched upstream of the magnetosphere. A shock represents a discontinuous jump in the bulk parameters of the flow. At the shock the solar-wind plasma is slowed down and heated as it passes through the shock layer, transforming a supersonic flow to subsonic flow. The subsonic flow is then deflected around the magnetosphere. The bow shock represents a collisionless shock because the Coulomb

2 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 2 mean free path is about 1 AU (Earth-Sun distance) but the shock thickness is about 100 km. Figure1: SchematicpictureoftheEarth sbowshock, andtwotypesofshocks: parallel and perpendicular.

3 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 3 Figure 2: Variations of magnetic field in the parallel (top panel) and perpendicular (bottom panel) shocks.

4 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 4 We consider the structure of the perpendicular shock with B in the z-direction, and the upstream velocity v 1 in the x-direction. The structure can be described in the two-fluid model. It is adequate for describing the shock structure but unable to provide the necessary dissipation, which we will treat by adding an effective damping. Figure 3: Variables in the perpendicular shock model, v 1 is upstream velocity of electrons and ions, B 1 is upstream magnetic field.

5 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 5 The two-fluid equations in the shock wave frame are: v x,α v α x = q α m α x (n α v α ) = 0 ( E + v α B c where α is the species index i or e; q e = e,q i = e,m e = m,m i = M. B = 4π c j ) In our geometry E = 1 c B = 0 E = 0 B = (0,0,B) B t v = (v x,v y,0)

6 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 6 E = (E x,e y,0) and all parameters depend only on x (plane wave). In Maxwell equation we neglected the displacement current because we are dealing with low frequency phenomena. We consider a hydrogen plasma with n e n i. Then, from the continuity equations we get: dn e v xe dn i v xi = 0 = 0 v xi = v xe = v 1 and nv x = n 1 v 1 where n 1 and v 1 are the upstream density and velocity (the same for

7 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 7 electrons and ions). The y components of the momentum equations are: dv ey v x = e ( E y v ) xb m c dv iy v x = e ( E y v ) xb M c Adding these equations we obtain: Hence, dv ey mv x +Mv dv iy x = 0 mv ey = Mv iy v iy = m M v ey Since the ion velocity in the y direction is much smaller than the electron velocity this results in a large transverse current j y which supports the change in B across the shock front.

8 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 8 The x components of the momentum equations are dv x v x = e ( E x + v ) eyb m c dv x v x = e ( E x + v ) iyb = e ( E x m M c M M Subtracting and neglecting terms of order m/m) we get: E x = v eyb c v ey B c This means that the electrons are in the force balance in the x-direction. Substituting this in the x-component of the momentum equation for ions we obtains v x dv x = eb Mc v ey This shows that the Lorentz force on electrons ( ev y B/c) is transferred to the ions through the electric field. )

9 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 9 The y-component of the Ampere s law in Maxwell equations: gives db = 4π c j y = 4π c env ey v ey = c 4πen Thus the x-component of the momentum equation for ions becomes: db or using the continuity equation nv x dv x = 1 4πM BdB = 1 8πM db 2 n 1 v 1 dv x = 1 8πM and integrating over x from to x: v x = v 1 db 2 1 8πMn 1 v 1 (B 2 B 2 1)

10 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 10 d Finally, we apply operator: v x to the y-component of the Ampere s law: 1 db n = 4πe c v ey ( ) d 1 db v x = 4πe n c v dv ey x Using n = n 1 v 1 /v x dv ey and the equation for v x we obtain: ( ) d db v x v x = 4πe2 n 1 v 1 mc ( E y + v ) xb c For the electric field E y, from the induction equation E = 0 we have de y = 0

11 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 11 E y = const = v 1B 1 c because dv iy / = 0 at x =. For simplicity we now assume that B 1 is small and neglect it. Then, we obtain: ( ) d db v x v x = 4πe2 n 1 v 1 mc 2 v x B ω2 p c 2 v 1v x B and substituting the equation for v x we get: ( ) ( d db v x v x = ω2 p c 2 v2 1B 1 Defining a new variable τ by ω2 p c 2 v2 1B ( 1 λb 2) dτ = v x v 1 B 2 8πMn 1 v 2 1 )

12 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 12 and using we get where d v x = v d 1 dτ d 2 B dτ 2 = ω2 p c 2 B( 1 λb 2) dφ db Φ = ω2 p B 2 c 2 2 ) (1 λb2 2 We can make analogy with a particle moving along coordinate B with velocity db/dτ in potential Φ.

13 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 13 Figure 4: Potential function Φ(B).

14 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 14 Figure 5: Soliton solution. We can see that the particle coming to this potential is reflected back and never comes back. The solution of this equation represents a solitary pulse, soliton.

15 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 15 To obtain a shock-like solution we have to add a dissipative term into the momentum equation due to microturbulence. v x d ( ) db v x = 4πen 1v 1 c Then the final equation has the form: d 2 B dτ 2 = dφ db ν e db v 1 dτ ( ee y m + ev ) xb mc ν ev y The last term corresponds to a loss of energy of our hypothetical particle due to friction. Thus, this particle will be trapped and move to the bottom of the potential well. This corresponds to the collisionless shock.

16 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 16 Figure 6: The damped solution corresponding to collisionless shock.

17 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 17 Figure 7: The structure and particle motion in a perpendicular shock.

18 Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 18 The structure and particle motion in collisionless shocks is quite complicated. In the absence of collisions to provide a deceleration of the upstream solar-wind ions, electric field must be responsible for their slowing down and deflection. Some ions suffer reflection from the sharp gradient and gyrate back into the upstream region before passing downstream. These reflected ions sometimes cause a broad foot in the magnetic profile about an ion gyro-radius in width.

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Collisions and transport phenomena

Collisions and transport phenomena Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Space Physics. ELEC-E4520 (5 cr) Teacher: Esa Kallio Assistant: Markku Alho and Riku Järvinen. Aalto University School of Electrical Engineering

Space Physics. ELEC-E4520 (5 cr) Teacher: Esa Kallio Assistant: Markku Alho and Riku Järvinen. Aalto University School of Electrical Engineering Space Physics ELEC-E4520 (5 cr) Teacher: Esa Kallio Assistant: Markku Alho and Riku Järvinen Aalto University School of Electrical Engineering The 6 th week: topics Last week: Examples of waves MHD: Examples

More information

12. MHD Approximation.

12. MHD Approximation. Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169-183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

LABORATORY SIMULATION OF MAGNETOSPHERIC PLASMA SHOCKS

LABORATORY SIMULATION OF MAGNETOSPHERIC PLASMA SHOCKS LABORATORY SIMULATION OF MAGNETOSPHERIC PLASMA SHOCKS R. PRESURA 1,V.V.IVANOV 1,Y.SENTOKU 1,V.I. SOTNIKOV 1,P.J. LACA 1,N.LE GALLOUDEC 1,A.KEMP 1,R.MANCINI 1,H.RUHL 1, A.L. ASTANOVITSKIY 1,T.E. COWAN 1,T.DITMIRE

More information

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange A Multi-ion Model of the Heliosphere with Secondary Charge Exchange Matthew Bedford, University of Alabama in Huntsville, Department of Space Science Nikolai Pogorelov, faculty advisor The heliosphere

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Hybrid Simulation Method ISSS-10 Banff 2011

Hybrid Simulation Method ISSS-10 Banff 2011 Hybrid Simulation Method ISSS-10 Banff 2011 David Burgess Astronomy Unit Queen Mary University of London With thanks to Dietmar Krauss-Varban Space Plasmas: From Sun to Earth Space Plasma Plasma is (mostly)

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Magnetospheric Physics - Final Exam - Solutions 05/07/2008

Magnetospheric Physics - Final Exam - Solutions 05/07/2008 Magnetospheric Physics - Final Exam - Solutions 5/7/8. Dipole magnetic field a Assume the magnetic field of the Earth to be dipolar. Consider a flux tube with a small quadratic cross section in the equatorial

More information

Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project

Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 10. Collisionless shock wave acceleration in plasmas pas

More information

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17 Plasma Effects p.1/17 Plasma Effects Massimo Ricotti ricotti@astro.umd.edu University of Maryland Plasma Effects p.2/17 Wave propagation in plasma E = 4πρ e E = 1 c B t B = 0 B = 4πJ e c (Faraday law of

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

8.2.2 Rudiments of the acceleration of particles

8.2.2 Rudiments of the acceleration of particles 430 The solar wind in the Universe intergalactic magnetic fields that these fields should not perturb them. Their arrival directions should thus point back to their sources in the sky, which does not appear

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

Experiment V Motion of electrons in magnetic field and measurement of e/m

Experiment V Motion of electrons in magnetic field and measurement of e/m Experiment V Motion of electrons in magnetic field and measurement of e/m In Experiment IV you observed the quantization of charge on a microscopic bead and measured the charge on a single electron. In

More information

Planetary Magnetospheres: Homework Problems

Planetary Magnetospheres: Homework Problems Planetary Magnetospheres: Homework Problems s will be posted online at http://www.ucl.ac.uk/ ucapnac 1. In classical electromagnetic theory, the magnetic moment µ L associated with a circular current loop

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Earth s Bow Shock and Magnetosheath

Earth s Bow Shock and Magnetosheath Chapter 12 Earth s Bow Shock and Magnetosheath Aims and Learning Outcomes The Aim of this Chapter is to explore in more detail the physics of fast mode shocks and to introduce the physics of planetary

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Waves in plasmas. S.M.Lea

Waves in plasmas. S.M.Lea Waves in plasmas S.M.Lea 17 1 Plasma as an example of a dispersive medium We shall now discuss the propagation of electromagnetic waves through a hydrogen plasm an electrically neutral fluid of protons

More information

Simulation of the plasma environment of Titan in the magnetosheath flow of Saturn

Simulation of the plasma environment of Titan in the magnetosheath flow of Saturn Poster n 4 Simulation of the plasma environment of Titan in the magnetosheath flow of Saturn G. Chanteur & R. Modolo CETP IPSL Vélizy, France 1 Introduction It is assumed that Titan has no intrinsic magnetic

More information

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle. Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

More information

Lesson 3: MHD reconnec.on, MHD currents

Lesson 3: MHD reconnec.on, MHD currents Lesson3:MHDreconnec.on, MHDcurrents AGF 351 Op.calmethodsinauroralphysicsresearch UNIS,24. 25.11.2011 AnitaAikio UniversityofOulu Finland Photo:J.Jussila MHDbasics MHD cannot address discrete or single

More information

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Lj. Hadžievski, A. Mančić and M.M. Škorić Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 4,

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Collisionless Shocks and the Earth s Bow Shock

Collisionless Shocks and the Earth s Bow Shock Collisionless Shocks and the Earth s Bow Shock Jean-Luc Thiffeault AST 381 Gas Dynamics 17 November 1994 1 Introduction The mean free path for particle collisions in the solar wind at the boundary of the

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Part VIII. Interaction with Solids

Part VIII. Interaction with Solids I with Part VIII I with Solids 214 / 273 vs. long pulse is I with Traditional i physics (ICF ns lasers): heating and creation of long scale-length plasmas Laser reflected at critical density surface Fast

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Solutions to Merav Opher (2010) Problems

Solutions to Merav Opher (2010) Problems Solutions to Merav Opher 00 Problems. The normal of the shock is Since from the plot you can obtain all the three components of Bu and Bd, the normal can be easily found. The shock speed is: With the shock

More information

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions!

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions! Zach Meeks Office: Ford ES&T 2114 Email: zachary.meeks@gatech.edu Phone: (918) 515-0052 Please let me know if you have any questions! The scope of space physics Solar-Terrestrial Relations Solar-Terrestrial

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Expansion of a plasma cloud into the solar. wind

Expansion of a plasma cloud into the solar. wind Expansion of a plasma cloud into the solar 1 wind L. Gargaté, R. A. Fonseca, R. Bingham, L. O. Silva Abstract Three-dimensional (3D) hybrid particle-in-cell (PIC) simulations, with kinetic ions and fluid

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

Plasma Interactions with Electromagnetic Fields

Plasma Interactions with Electromagnetic Fields Plasma Interactions with Electromagnetic Fields Roger H. Varney SRI International June 21, 2015 R. H. Varney (SRI) Plasmas and EM Fields June 21, 2015 1 / 23 1 Introduction 2 Particle Motion in Fields

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

Particle-In-Cell Simulations of a Current-Free Double Layer

Particle-In-Cell Simulations of a Current-Free Double Layer Particle-In-Cell Simulations of a Current-Free Double Layer S. D. Baalrud 1, T. Lafleur, C. Charles and R. W. Boswell American Physical Society Division of Plasma Physics Meeting November 10, 2010 1Present

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G. Toth, T.I. Gombosi, M.K. Dougherty Magnetospheres

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford Cosmic Accelerators 2. Pulsars, Black Holes and Shock Waves Roger Blandford KIPAC Stanford Particle Acceleration Unipolar Induction Stochastic Acceleration V ~ Ω Φ I ~ V / Z 0 Z 0 ~100Ω P ~ V I ~ V 2 /Z

More information

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Junseong Park, Dongsu Ryu Dept. of Physics, Ulsan National Institute of Science and Technology. Ulsan, Korea 2016 KNAG meeting

More information

Single Particle Motion

Single Particle Motion Single Particle Motion Overview Electromagnetic fields, Lorentz-force, gyration and guiding center, drifts, adiabatic invariants. Pre-requisites: Energy density of the particle population smaller than

More information

Wave-particle interactions in dispersive shear Alfvèn waves

Wave-particle interactions in dispersive shear Alfvèn waves Wave-particle interactions in dispersive shear Alfvèn waves R. Rankin and C. E. J. Watt Department of Physics, University of Alberta, Edmonton, Canada. Outline Auroral electron acceleration in short parallel

More information

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation Mathematics and Computers in Simulation 76 (2007) 3 7 Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation S. Baboolal a,, R. Bharuthram

More information

Nasser S. Alzayed.

Nasser S. Alzayed. Lecture #4 Nasser S. Alzayed nalzayed@ksu.edu.sa ELECTRICAL CONDUCTIVITY AND OHM'S LAW The momentum of a free electron is related to the wavevector by mv = ћk. In an electric field E and magnetic field

More information

ICMs and the IPM: Birds of a Feather?

ICMs and the IPM: Birds of a Feather? ICMs and the IPM: Birds of a Feather? Tom Jones University of Minnesota 11 November, 2014 KAW8: Astrophysics of High-Beta Plasma in the Universe 1 Outline: ICM plasma is the dominant baryon component in

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR JUSTIN C. KASPER HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS GYPW01, Isaac Newton Institute, July 2010

More information

1.2 Which parameters are used to characterize a plasma? Briefly discuss their physical meaning.

1.2 Which parameters are used to characterize a plasma? Briefly discuss their physical meaning. Solutions to Exercises 3 rd edition Space Physics 1 Chapter 1 1.1 Define a plasma. Discuss the importance of the density. Is there a limit for the relative or the absolute size of the neutral component?

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds S. Nagataki Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho Kitashirakawa Sakyo-ku,

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. WEDNESDAY, January 3, :00 12:00

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. WEDNESDAY, January 3, :00 12:00 Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I WEDNESDAY, January 3, 2018 10:00 12:00 ROOM 245 PHYSICS RESEARCH BUILDING INSTRUCTIONS: This examination consists

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere P. Song Center for Atmospheric Research University of Massachusetts Lowell V. M. Vasyliūnas Max-Planck-Institut

More information

Three-fluid Ohm s law

Three-fluid Ohm s law Three-fluid Ohm s law P. Song Department of Environmental, Earth & Atmospheric Sciences, Center for Atmospheric Research, University of Massachusetts, Lowell, Massachusetts T. I. Gombosi and A. J. Ridley

More information

SOLAR MHD Lecture 2 Plan

SOLAR MHD Lecture 2 Plan SOLAR MHD Lecture Plan Magnetostatic Equilibrium ü Structure of Magnetic Flux Tubes ü Force-free fields Waves in a homogenous magnetized medium ü Linearized wave equation ü Alfvén wave ü Magnetoacoustic

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas! The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas! Single particle motion

More information

Single particle motion

Single particle motion Single particle motion Plasma is a collection of a very large number of charged particles moving in, and giving rise to, electromagnetic fields. Before going to the statistical descriptions, let us learn

More information

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Tentamen för Rymdfysik I 2006-08-15 Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Please write your name on all papers, and on the first page your address, e-mail and phone

More information

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 1 PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 2 Overview Why do we need plasmas? For fusion, among other things

More information

Shocks in the ICM and the IPM

Shocks in the ICM and the IPM Shocks in the ICM and the IPM Tom Jones (University of Minnesota) 1 Outline Setting the stage for following talks The Interplanetary and Intracluster Media as Collisionless Plasmas Basic Introduction to

More information

Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos

Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos Progress in Plasma Physics by Numerical Simulation: Collisionless Shocks Manfred Scholer Max-Planck-Institut

More information

Lecture 12 The Importance of Accurate Solar Wind Measurements

Lecture 12 The Importance of Accurate Solar Wind Measurements Lecture 12 The Importance of Accurate Solar Wind Measurements The Approach Magnetospheric studies usually are based on a single solar wind monitor. We propagate the solar wind from the observation point

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

Problem Fig

Problem Fig Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the

More information

Charged particle motion in external fields

Charged particle motion in external fields Chapter 2 Charged particle motion in external fields A (fully ionized) plasma contains a very large number of particles. In general, their motion can only be studied statistically, taking appropriate averages.

More information

Magnetically Induced Transparency and Its Application as an Accelerator

Magnetically Induced Transparency and Its Application as an Accelerator Magnetically Induced Transparency and Its Application as an Accelerator M.S. Hur, J.S. Wurtele and G. Shvets University of California Berkeley University of California Berkeley and Lawrence Berkeley National

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Plasma heating in stellarators at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 7, NUMBER FEBRUARY 000 Plasma heating in stellarators at the fundamental ion cyclotron frequency V. A. Svidzinski and D. G. Swanson Department of Physics, Auburn University, Auburn,

More information

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas S. Mahmood Theoretical Plasma Physics Division, PINSTECH Islamabad Collaborators: H. Saleem National Center for Physics,

More information

Series Lecture on Laser Plasma Physics

Series Lecture on Laser Plasma Physics Series Lecture on Laser Plasma Physics at Shanghai Jiao Tong University June 27&28, July 4&5, 2009 H. Takabe (Aki) Professor, Institute of Laser Engineering and School for Physics and School for Space

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Physics Dec The Maxwell Velocity Distribution

Physics Dec The Maxwell Velocity Distribution Physics 301 7-Dec-2005 29-1 The Maxwell Velocity Distribution The beginning of chapter 14 covers some things we ve already discussed. Way back in lecture 6, we calculated the pressure for an ideal gas

More information

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves Electromagnetic Theory: PHA3201, Winter 2008 5. Maxwell s Equations and EM Waves 1 Displacement Current We already have most of the pieces that we require for a full statement of Maxwell s Equations; however,

More information