Week 4. Gas Power Cycles IV. GENESYS Laboratory

Size: px
Start display at page:

Download "Week 4. Gas Power Cycles IV. GENESYS Laboratory"

Transcription

1 Week 4. Gas Power Cycles IV

2 Objecties. Ealuate the performance of gas power cycles for which the working fluid remains a gas throughout the entire cycle 2. Deelop simplifying assumptions applicable to gas power cycles 3. Discuss both approximate and exact analysis of gas power cycles 4. Reiew the operation of reciprocating engines 5. Sole problems based on the Otto, Diesel, Stirling, and Ericsson cycles 6. Sole problems based on the Brayton cycle; the Brayton cycle with regeneration; and the Brayton cycle with intercooling, reheating, and regeneration 7. Analyze jet-propulsion cycles 8. Identify simplifying assumptions for second-law analysis of gas power cycles 9. Perform second-law analysis of gas power cycles

3 Stirling And Ericsson Cycles II Stirling Cycle proposed by Robert Stirling in 828 Process 2 : isothermal expansion : heat addition from external source Process 2 3 : constant olume regeneration : internal heat transfer from the working fluid to the regenerator Process 3 4 : isothermal compression : heat rejection to the external sink Process 4 : constant olume regeneration : internal heat transfer from the regenerator back to the working fluid Stirling Engine

4 Stirling And Ericsson Cycles I Stirling Engine (Video Clips). How a Stirling engine works 2. Laminar Flow Stirling Engine 3. The Stirling Motor 4. Solar powered Stirling Engine with Fresnel Lens

5 Solar Dish/Stirling Power Systems ) 2) ) California Edison 25 kw dish/stirling system 3) 2) Adnco/Vanguard 25 kw dish/stirling system installed at Rancho Mirage, California 3) 25 kw power conersion system under test at Sandia National Laboratories

6 Stirling And Ericsson Cycles III Thermal efficiency of Stirling cycle q = c ( T T ) 4 4 q = c ( T T ) T = T, T = T q = q Supplied heat Emitted heat th,stirling 2 in out 3 4 th,stirling ln 2 ln Process 2 3, 4 are isometric process =, = η is η q q = = RT H = RT L q 3 4 out = = q in T T L H 4 2 3

7 Stirling And Ericsson Cycles IV The Ericsson cycle is ery much like the Stirling cycle, except that the two constantolume processes are replaced by two constant-pressure processes Process 2 : isothermal expansion : heat addition from external source Process 2 3 : constant pressure regeneration : internal heat transfer from the working fluid to the regenerator Process 3 4 : isothermal compression : heat rejection to the external sink Process 4 : constant pressure regeneration : internal heat transfer from the regenerator back to the working fluid A steady-flow Ericsson engine

8 Stirling And Ericsson Cycles V Thermal efficiency of Ericson cycle q = c ( T T ) 4 P 4 q = c ( T T ) 23 P 2 3 T = T, T = T q = q P RT ln q P T η th,ericsson = = = T Process 2; T = T, P = P 4 L out 3 q P in RTH ln P Process 3 4; T = T, P = P P = P P = P L H

9 Ex 4) Thermal Efficiency of the Ericsson Cycle Using an ideal gas as the working fluid, show that the thermal efficiency of an Ericsson cycle is identical to the efficiency of a Carnot cycle operating between the same temperature limits.

10 Brayton Cycle: The ideal Cycle for Gas-Turbine Engines Proposed by George Brayton in 870s It is an open cycle, but it can be modeled as a closed cycle by utilizing the air-standard assumptions The two major application areas of gasturbine engines are aircraft propulsion and electric power generation It is made up of four internally reersible processes: Process 2 : Isentropic compression (in a compressor) Process 2 3 : Constant pressure heat addition Process 3 4 : Isentropic expansion (in a turbine) Process 4 : Constant-pressure heat rejection An open-cycle gas-turbine engine A closed-cycle gas-turbine engine

11 Summary

12 Brayton Cycle: Thermal Efficiency The energy balance for a steady-flow process, when ke pe 0 ( ) ( ) q q + w w = h h in out in out exit inlet heat transfers to and from the working fluid are ( ) ( ) q = h h = c T T in 3 2 p 3 2 q = h h = c T T out 4 p 4 The thermal efficiency of the ideal Brayton Cycle T T 4 ( ) wnet q c out p T4 T T ηth,brayton = = = = qin qin cp ( T3 T2 ) T T 3 2 T 2 Process -2 and 3-4 : isentropic process, and P = P, P = P p ( ) ( ) k k k k T 2 P 2 P 3 T3 = = = T P P4 T4 P2 Thus, η = - r ( k ) k p = P th,brayton rp where, r is the pressure ratio and k is the specific heat ratio T-s and P- diagrams for the ideal Brayton cycle

13 Summary Process 2 : isentropic compression Otto Cycle Process 2 3 : constant olume heat addition Process 3 4 : isentropic expansion Process 4 : constant olume heat rejection Process 2 : isentropic compression Diesel Cycle Process 2 3 : constant pressure heat addition Process 3 4 : isentropic expansion Process 4 : constant olume heat rejection Process 2 : isentropic compression Brayton Cycle Process 2 3 : constant pressure heat addition Process 3 4 : isentropic expansion Process 4 : constant pressure heat rejection

14 Brayton Cycle: Thermal Efficiency II The thermal efficiency of an ideal Brayton cycle depends on the pressure ratio of the gas turbine and the specific heat ratio of the working fluid. (The thermal efficiency increases with both of these parameters.) In most common designs, the pressure ratio of gas turbines ranges from about to 6 Back work ratio: the ratio of the compressor work to the turbine work w c ( T2 T ) c h2 h p bwr = = = w h h c T T t 3 4 ( ) Deelopment of Gas Turbines. Increasing the turbine inlet temperatures (new materials & innoatie cooling techniques) 2. Increasing the efficiencies of turbo machinery components 3. Adding modifications to the basic cycle (e.g. intercooling regeneration and reheating) p 3 4 Gas Turbine Thermal efficiency of the ideal Brayton cycle as a function of the pressure ratio with K=.4

15 Ex 5) The Simple Ideal Brayton Cycle A gas-turbine power plant operating on an ideal Brayton cycle has a pressure ratio of 8. The gas temperature is 300 K at the compressor inlet and 300 K at the turbine inlet. Utilizing the air-standard assumptions, determine (a) the gas temperature at the exits of the compressor and the turbine, (b) the back work ratio, and (c) the thermal efficiency.

16 Deiation of Actual Gas-Turbine Cycles from Idealized Ones Some pressure drop during the heat-addition and heat rejection processes is ineitable The actual work input to the compressor is more The actual work output from the turbine is less because of irreersibilities The deiation can be accounted for by using the isentropic efficiencies of the turbine and compressor η η c T = = w w w w s a a s h h h h 2 s 2 a 3 3 h h h h 4 a 4 s The deiation of an actual gas-turbine cycle from the ideal Brayton cycle as a result of irreersibilities

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226 The Carnot Gas Power Cycle Gas Power Cycles 1 2 : Reversible, isothermal expansion at T H 2 3 : Reversible, adiabatic expansion from T H to T L 3 4 : Reversible, isothermal compression at T L Dr. Md. Zahurul

More information

= 1 T 4 T 1 T 3 T 2. W net V max V min. = (k 1) ln ( v 2. v min

= 1 T 4 T 1 T 3 T 2. W net V max V min. = (k 1) ln ( v 2. v min SUMMARY OF GAS POWER CYCLES-CHAPTER 9 OTTO CYCLE GASOLINE ENGINES Useful Wor, Thermal Efficiency 1-2 Isentropic Compression (s 1=s 2 2-3 Isochoric Heat Addition (v 2= v 3 3-4 Isentropic Expansion (s 3=s

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 06 Ideal and Real Brayton Cycles Hello

More information

9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin

9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin Chapter 9 GAS POWER CYCLES 9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin Gas-power cycles vs. vapor-power cycles: T p 1 p 2 p 3 Vapor cycle Gas cycle

More information

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle ME 200 Thermodynamics I Spring 206 Lecture 40: Air standard cycle, internal combustion engines, Otto cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan

More information

OVERVIEW. Air-Standard Power Cycles (open cycle)

OVERVIEW. Air-Standard Power Cycles (open cycle) OVERVIEW OWER CYCLE The Rankine Cycle thermal efficiency effects of pressure and temperature Reheat cycle Regenerative cycle Losses and Cogeneration Air-Standard ower Cycles (open cycle) The Brayton cycle

More information

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications The study of the laws that govern the conversion of energy from one form to the other Energy Conversion Concerned

More information

Stirling Cycle. Ab Hashemi

Stirling Cycle. Ab Hashemi Stirling Cycle Ab Hashemi Stirling Cycle T-s and P-v Diagrams 3 Tmax =constant 3 4 2 T min =constant 4 1 2 1 Ab Hashemi 2 Stirling Cycle Stirling cycle is made up of four totally reversible processes:

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Lecture 43: Aircraft Propulsion

Lecture 43: Aircraft Propulsion Lecture 43: Aircraft Propulsion Turbojet Engine: 1 3 4 fuel in air in exhaust gases Diffuser Compressor Combustor Turbine Nozzle 43.1 T Ideal Ccle: w T,s = w C,s s 1 s w T,s w C,s 3 4 s s Processes: 1:

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

Minimizing and maximizing compressor and turbine work respectively

Minimizing and maximizing compressor and turbine work respectively Minimizing and maximizing compressor and turbine ork respectively Reversible steady-flo ork In Chapter 3, Work Done during a rocess as found to be W b dv Work Done during a rocess It depends on the path

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Chapter 7: The Second Law of Thermodynamics

Chapter 7: The Second Law of Thermodynamics Chapter 7: he Second Law of hermodynamics he second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity he first law places no

More information

In the next lecture...

In the next lecture... 16 1 In the next lecture... Solve problems from Entropy Carnot cycle Exergy Second law efficiency 2 Problem 1 A heat engine receives reversibly 420 kj/cycle of heat from a source at 327 o C and rejects

More information

Thermodynamics Fundamental for TKE

Thermodynamics Fundamental for TKE L/O/G/O EKNIK KONVERSI & KONSERVASI ENERGI F 091324 / 4 SKS / Smt. 6 Dosen : Syamsul Arifin syamsul@ep.its.ac.id K5 hermodynamics Fundamental for KE http://share.its.ac.id eknik Konversi Energi Fasilitator

More information

Part III: Planes, Trains, and Automobiles: Making Heat Work for You

Part III: Planes, Trains, and Automobiles: Making Heat Work for You Contents at a Glance Introduction... 1 Part I: Covering the Basics in Thermodynamics... 7 Chapter 1: Thermodynamics in Everyday Life...9 Chapter 2: Laying the Foundation of Thermodynamics...15 Chapter

More information

Thermodynamics. Mechanical Engineering. For

Thermodynamics. Mechanical Engineering.  For Thermodynamics For Mechanical Engineering By www.thegateacademy.com Syllabus Syllabus for Thermodynamics Zeroth, First and Second Laws of Thermodynamics, Thermodynamic System and rocesses, Carnot Cycle.

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Theory and Applica>on of Gas Turbine Systems

Theory and Applica>on of Gas Turbine Systems Theory and Applica>on of Gas Turbine Systems Part I: Ideal Sha- Power Cycles Munich Summer School at University of Applied Sciences Prof. Kim A. Shollenberger Outline for Theory of Gas Turbine Systems

More information

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams AME 46 Energy and ropulsion Lecture 7 Unsteady-flow (reciprocating) engines : Using - and -s diagrams Outline! Air cycles! What are they?! Why use - and -s diagrams?! Using - and -s diagrams for air cycles!!!!!!

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Entropy balance special forms. Quasiequilibrium (QE) process. QE process is reversible. dt Tk = = +

Entropy balance special forms. Quasiequilibrium (QE) process. QE process is reversible. dt Tk = = + Entropy balance Outline Closed systems Open systems Reversible steady flow wor Minimizing compressor wor Isentropic efficiencies Examples Entropy balance Sin Sout + Sgen = Ssys Entropy balance Entropy

More information

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM NAME: PUID#: ME 300 Thermodynamics II Spring 05 Exam 3 Circle your section (-5 points for not circling correct section): Son Jain Lucht 8:30AM :30AM :30PM Instructions: This is a closed book/note exam.

More information

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution:

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution: Theoretical & Derivation based Questions and Answer Unit 01 1. Derive the condition for exact differentials. Solution: 2*. Derive the Maxwell relations and explain their importance in thermodynamics. Solution:

More information

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 5 Higher Nationals in Engineering (RQF) Unit 64: Thermofluids Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Vapour Power Cycles Page 1 of 26 2.1 Power Cycles Unit

More information

Equations P $UnitSystem K kpa. F luid$ = Air (1) Input data for fluid. $If Fluid$= Air. C P = [kj/kg K] ; k = 1.

Equations P $UnitSystem K kpa. F luid$ = Air (1) Input data for fluid. $If Fluid$= Air. C P = [kj/kg K] ; k = 1. P09-169 Equations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton cu regenerare (aer, heliu) cu comprimare si destindere in trepte, c p =ct.

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Analysis (a) Process 1-2: isentropic compression. p = 755K. R7] h87kpa.m 3/kg.K }30~ = O.906m 3/kg = V max

Analysis (a) Process 1-2: isentropic compression. p = 755K. R7] h87kpa.m 3/kg.K }30~ = O.906m 3/kg = V max ~ Chapter 8 Gas Power Cycles Analysis (a) Process 1-2: isentropic compression. p - f ii, f T2=1j ( - VI = (300KX8)0.4 = 689K k-l I V2 - ~..., I ~=~ T2 Process 2-3: v = constant heat addition. q23,in =U3

More information

Physical Fundamentals of Global Change Processes

Physical Fundamentals of Global Change Processes University of Applied Sciences Eberswalde Master Study Program Global Change Management Manfred Stock Potsdam Institute for Climate Impact Research Module: Physical Fundamentals of Global Change Processes

More information

Preface Acknowledgments Nomenclature

Preface Acknowledgments Nomenclature CONTENTS Preface Acknowledgments Nomenclature page xv xvii xix 1 BASIC CONCEPTS 1 1.1 Overview 1 1.2 Thermodynamic Systems 3 1.3 States and Properties 4 1.3.1 State of a System 4 1.3.2 Measurable and Derived

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot i AE04 Physics List of equations Made by: E. Bruins Slot Chapter Introduction and basic concepts Newton s second law Weight F = M a (N) W = m g J = N m (N) Density Specific volume ρ = m V m 3 v = V m =

More information

Chapter Five Applications of Thermodynamic Cycle

Chapter Five Applications of Thermodynamic Cycle Chapter Five Applications of hermodynamic Cycle Updated on 4// Power cycles: Power generation by converting heat to wor. Uses: Power generation, Propulsion. Cycles: Carnot cycle, Otto cycle, Diesel cycle,

More information

University of Engineering & Technology Lahore. (KSK Campus)

University of Engineering & Technology Lahore. (KSK Campus) Course File Session-2015 Semester: Fall 2016 MT-24: Thermodynamics for Technologists Department of Mechanical Engineering University of Engineering & Technology Lahore. (KSK Campus) Course File Contents

More information

Received: 16 December 2002 / Accepted: 18 June 2003 / Published: 31 December 2003

Received: 16 December 2002 / Accepted: 18 June 2003 / Published: 31 December 2003 Entropy 2003, 5, 377-390 377 Entropy ISSN 1099-4300 www.mdpi.org/entropy/ Full Paper Ecological Optimization and Parametric Study of an Irreversible Regenerative Modified Brayton Cycle with Isothermal

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:0 a.m. 8:0 a.m. 10:0 a.m. 11:0 a.m. Boregowda Boregowda Braun Bae :0 p.m. :0 p.m. 4:0 p.m. Meyer Naik Hess ME 00 Exam October, 015 6:0 p.m. to

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

ME 200 Thermodynamics 1 Fall 2016 Final Exam

ME 200 Thermodynamics 1 Fall 2016 Final Exam Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2016 Final Exam Circle your instructor s last name Ardekani Bae Fisher olloway Jackson Meyer Sojka INSTRUCTIONS This is a closed book and

More information

Unit WorkBook 2 Level 4 ENG U13 Fundamentals of Thermodynamics and Heat Engines UniCourse LTD. All Rights Reserved. Sample

Unit WorkBook 2 Level 4 ENG U13 Fundamentals of Thermodynamics and Heat Engines UniCourse LTD. All Rights Reserved. Sample Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 13: Fundamentals of Thermodynamics and Heat Engines Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Plant Equipment Page

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

BME-A PREVIOUS YEAR QUESTIONS

BME-A PREVIOUS YEAR QUESTIONS BME-A PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT-1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasi-static process,

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 9 Heat Engines

More information

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory Week 8. Steady Flow Engineering Devices Objectives 1. Solve energy balance problems for common steady-flow devices such as nozzles, compressors, turbines, throttling valves, mixers, heaters, and heat exchangers

More information

Fundamentals of Thermodynamics Applied to Thermal Power Plants

Fundamentals of Thermodynamics Applied to Thermal Power Plants Fundamentals of Thermodynamics Applied to Thermal Power Plants José R. Simões-Moreira Abstract In this chapter it is reviewed the fundamental principles of Thermodynamics aiming at its application to power

More information

Given A gas turbine power plant operating with air-standard Brayton cycle

Given A gas turbine power plant operating with air-standard Brayton cycle ME-200 Fall 2017 HW-38 1/4 Given A ga turbine power plant operating with air-tandard Brayton cycle Find For ientropic compreion and expanion: (a) Net power (kw) produced by the power plant (b) Thermal

More information

Compression and Expansion of Fluids

Compression and Expansion of Fluids CH2303 Chemical Engineering Thermodynamics I Unit V Compression and Expansion of Fluids Dr. M. Subramanian 26-Sep-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

LECTURE NOTE THERMODYNAMICS (GEC 221)

LECTURE NOTE THERMODYNAMICS (GEC 221) LETURE NOTE ON THERMODYNAMIS (GE ) Thermodynamics is the branch of science that treats the arious phenomena of energy and related properties of matter especially the relationship between heat, work and

More information

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature.

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature. AME 5053 Intermediate Thermodynamics Examination Prof J M Powers 30 September 0 0 Calorically perfect ideal air at 300 K, 00 kpa, 000 m/s, is brought to rest isentropically Determine its final temperature

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.21 Fall 2011 Physics of Energy October 4, 2011 Quiz 1 Instructions Problem Points 1 30 2 45 3 25 4 (+ 20) Total 100 You must do problems

More information

5.2. The Rankine Cycle

5.2. The Rankine Cycle Figure 5.1. Illustration of a Carnot cycle based on steam in T-S coordinates. The Carnot cycle has a major advantage over other cycles. It operates at the highest temperature available for as long as possible,

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

More information

MECHANICAL ENGINEERING

MECHANICAL ENGINEERING MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

Earlier Topics. Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering.

Earlier Topics. Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering. 8 1 Earlier Topics Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering. Properties of Cryogenic Fluids Properties of Cryogens, T s diagram, Hydrogen, Helium. Properties

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

CHAPTER 8 THERMODYNAMICS. Common Data For Q. 3 and Q.4. Steam enters an adiabatic turbine operating at steady state with an enthalpy of 3251.

CHAPTER 8 THERMODYNAMICS. Common Data For Q. 3 and Q.4. Steam enters an adiabatic turbine operating at steady state with an enthalpy of 3251. CHAPER 8 HERMODYNAMICS YEAR 0 ONE MARK MCQ 8. MCQ 8. Steam enters an adiabatic turbine operating at steady state with an enthalpy of 35.0 kj/ kg and leaves as a saturated mixture at 5 kpa with quality

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 00 ME 440 Aerospace Engineering Fundamentals Propulsion Examples Example: Compressor Turbine Determine the outlet temperature and pressure for a turbine whose purpose is to power the compressor described

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

ES 202 Fluid and Thermal Systems

ES 202 Fluid and Thermal Systems ES Fluid and Thermal Systems Lecture : Power Cycles (/4/) Power cycle Road Map of Lecture use Rankine cycle as an example the ideal Rankine cycle representation on a T-s diagram divergence of constant

More information

Earlier Lecture. A Cryocooler is a mechanical device operating in a closed cycle, which generates low temperature.

Earlier Lecture. A Cryocooler is a mechanical device operating in a closed cycle, which generates low temperature. 7 arlier Lecture A Cryocooler is a mechanical device operating in a closed cycle, which generates low temperature. It eliminates cryogen requirement, offers reliable operation and is also cost effective.

More information

Turbine D P. Example 5.6 Air-standard Brayton cycle thermal efficiency

Turbine D P. Example 5.6 Air-standard Brayton cycle thermal efficiency Section 5.6 Engines 5.6 ENGINES ombustion Gas Turbine (Brayton ycle) The typical approach for analysis of air standard cycles is illustrated by the Brayton ycle in Fig. S-5.. To understand the cycle, the

More information

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1 In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Civil aeroengines for subsonic cruise have convergent nozzles (page 83): 120 Civil aeroengines for subsonic cruise have convergent nozzles (page 83): Choked convergent nozzle must be sonic at the exit A N. Consequently, the pressure (p 19 ) at the nozzle exit will be above

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

FUNDAMENTALS OF THERMODYNAMICS

FUNDAMENTALS OF THERMODYNAMICS FUNDAMENTALS OF THERMODYNAMICS SEVENTH EDITION CLAUS BORGNAKKE RICHARD E. SONNTAG University of Michigan John Wiley & Sons, Inc. PUBLISHER ASSOCIATE PUBLISHER ACQUISITIONS EDITOR SENIOR PRODUCTION EDITOR

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Thermodynamics of solids 5. Unary systems Kwangheon ark Kyung Hee University Department of Nuclear Engineering 5.1. Unary heterogeneous system definition Unary system: one component system. Unary heterogeneous

More information

d dt T R m n p 1. (A) 4. (4) Carnot engine T Refrigerating effect W COPref. = 1 4 kw 5. (A)

d dt T R m n p 1. (A) 4. (4) Carnot engine T Refrigerating effect W COPref. = 1 4 kw 5. (A) . (A). (C) 5. (C) 7. ( to 5) 9. (C) 6. (C). (C). (D) 6. (A) 8. (0.6 to 0.66) 50. (D) 6. (C). (A) 5. (C) 7. (A) 9. (C) 5. (D) 6. (C). () 6. (C) 8. (600) 0. (D) 5. (B) 6. (D) 5. (A) 7. (A) 9. (D). (C) 5.

More information

PART 2 POWER AND PROPULSION CYCLES

PART 2 POWER AND PROPULSION CYCLES PAR 2 POWER AND PROPULSION CYCLES PAR 2 POWER AND PROPULSION CYCLES 2A Gas Power and Propulsion Cycles [SB&VW -.8,.9,.,.,.2,.3,.4] In this section we analyze several gas cycles used in practical applications

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Lect-19. In this lecture...

Lect-19. In this lecture... 19 1 In this lecture... Helmholtz and Gibb s functions Legendre transformations Thermodynamic potentials The Maxwell relations The ideal gas equation of state Compressibility factor Other equations of

More information

Lecture 22. Mechanical Energy Balance

Lecture 22. Mechanical Energy Balance Lecture 22 Mechanical Energy Balance Contents Exercise 1 Exercise 2 Exercise 3 Key Words: Fluid flow, Macroscopic Balance, Frictional Losses, Turbulent Flow Exercise 1 It is proposed to install a fan to

More information

FINITE TIME THERMODYNAMIC EVALUATION OF IRREVERSIBLE ERICSSON AND STIRLING HEAT PUMP CYCLES

FINITE TIME THERMODYNAMIC EVALUATION OF IRREVERSIBLE ERICSSON AND STIRLING HEAT PUMP CYCLES IV Minsk International Seminar eat Pipes, eat Pumps, Refrigerators Minsk, Belarus, September 47, 2000 FINIE IME ERMODYNAMIC EVAUAION OF IRREVERSIBE ERICSSON AND SIRING EA PUMP CYCES S. C. Kaushik, S. Kumar

More information

An introduction to thermodynamics applied to Organic Rankine Cycles

An introduction to thermodynamics applied to Organic Rankine Cycles An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information