Pattern Distributions of Legendre Sequences

Size: px
Start display at page:

Download "Pattern Distributions of Legendre Sequences"

Transcription

1 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY [9] J. E. Savage, Some imle elf-ychoizig digial daa camble, Bell Sy. Tech. J., vol., o.,. 9 87, Feb [10] A. Paouli, Pobabiliy, Radom Vaiable, ad Sochaic Pocee, d ed. ew Yok McGaw-Hill, 198. [11] J. G. Kemey ad J. L. Sell, Fiie Makov Chai. ew Yok Va oad, [1] W. R. Bee, Saiic of egeeaive digial amiio, Bell Sy. Tech. J., vol. 37, , ov [13] G. L. Caiolao ad G. P. Toca, Seca of block coded digial igal, IEEE Ta. Commu., vol. COM-, , Oc liea a of he Legede equece ake o oe of f 01 ; +1 ; 0 1; g, deedig o he value of mod 8. I hi coeodece, we develo lowe ad ue boud o he umbe of ae diibued i a cycle of a Legede equece, which i much ueio o kow boud. Ou eul how ha Legede equece have a ideal diibuio of ae of mall legh. We alo eablih he elaiohi bewee he weigh diibuio of quadaic eidue (Q.R.) code ad he ae diibuio of Legede equece. We ove ha evey biay eiodic equece wih kow ae diibuio give a cyclic code wih kow weigh diibuio; by kow ae diibuio we mea ha he umbe of all ae ee i a cycle of he equece ae kow. Pae Diibuio of Legede Sequece Cuheg Dig Abac Legede equece have a umbe of ieeig adome oeie ad ae cloely elaed wih quadaic eidue code. I hi coeodece we give lowe ad ue boud o he umbe of ae diibued i a cycle of he Legede equece ad eablih he elaiohi bewee he weigh diibuio of quadaic eidue code ad he ae diibuio of Legede equece. Ou eul how ha Legede equece have a ideal diibuio of ae of legh, whe i o lage comaed wih log, whee i he ime ued o defie he equece. Idex Tem Liea code, ae diibuio, equece, weigh diibuio. I. ITRODUCTIO Peudoadom equece have wide alicaio i agig yem, global oiioig yem, code-diviio mulile-acce yem, ada yem, ead-ecum commuicaio yem [6], [10], ad eam cihe []. Oe adome aec of equece i he ae diibuio. Oe of he hee oulae fo he adome of equece made by Golomb i abou he diibuio of ome ecial ae []. Le be a ime. The Legede equece l 1 wih eec o he ime i defied by l i 1+ i ; if i 6 0mod 0; ohewie fo each i 0, whee ( i ) i he Legede ymbol. Hee ad heeafe we ae dealig wih he f0; 1g veio of Legede equece. Legede equece have oimal balace bewee 1 ad 0. I i well kow ha he eiodic auocoelaio fucio of he Legede equece i wo-valued if 3 (mod ) ad heevalued if 1 (mod ). They have hu oimal auocoelaio oey. Dig, Helleeh, ad Sha [3] oved ha he Mauci eceived Febuay 17, 1997; evied Jue 8, The auho i wih he Deame of Ifomaio Syem ad Comue Sciece, he aioal Uiveiy of Sigaoe, Sigaoe ( digc@ic.u.edu.g). Publihe Iem Ideifie S (98)0383-X. II. PATTER DISTRIBUTIOS Le w 1 be a biay equece of eiod. Hee i o eceaily he lea eiod. Le Z f0; 1; 111; 0 1g be he eidue ig wih eec o iege addiio ad mulilicaio modulo. Defie he e C i fj Z w j ig fo each i 0; 1. Le i 1;i ; 111;i 01 f0; 1g ad 0; 1; 111; 01 be aiwie diic eleme of Z. Defie D i 111i ( 0; 111; 01) d i 111i ( 0 ; 111; 01 ) 01 k0 01 k0 (C i + k ) (C i + k ) The fo a fixed ad a e of fixed 0; 111; 01 he e fd i 111 i ( 0; 111; 01) i 0; 111;i 01 f0; 1gg (1) fom a aiio of Z. The above aamee d i 111 i ( 0 ; 111; 01 ) meaue he umbe of ae diibued i a cycle of he equece. A ae i defied o be a ig i i i 01 whee i 0; 111;i 01 ae fixed bi, hoe 3 ae do-o-cae bi ha could be eihe 0 ad 1, ad he diace amog i 0 ;i 1 ; 111;i 01 ae fixed. The diibuio of ecial ae of maximum-legh equece, i.e., block ad ga, wa udied by Golomb []. I wha follow we develo lowe ad ue boud o he aamee d i 111 i ( 0; 111; 01) fo Legede equece. By he defiiio of Legede equece, C 1 i he e of quadaic eidue modulo, ad C 0 Z C 1. Thu ae diibuio of Legede equece ae acually he diibuio of ae of quadaic eidue ad oeidue. Fo he diibuio of ae of legh wo i Legede equece we have he followig exac eul, which mea ha Legede equece have he be oible diibuio of ae of legh wo /98$ IEEE

2 169 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY 1998 Pooiio 1 If 3(mod), he d ij ( 0 ; 1 ) whee If 1 (mod ), he d 11( 0; 1) d 10 ( 0 ; 1 ) d 01( 0; 1) d 00 ( 0 ; 1 ) ( 0 3); fo (i; j) (1; 1) ( +1); fo (i; j) 6 (1; 1); 0 5 ; fo 0 1 eleme of Z 0 1 ; fo he ohe half eleme +3 ; fo 0 1 eleme of Z 0 1 ; fo he ohe half eleme +3 ; fo 0 1 eleme of Z 0 1 ; fo he ohe half eleme +3 ; fo 0 1 eleme of Z 0 1 ; fo he ohe half eleme whee Poof Le D 0 ad D 1 deoe he e of quadaic eidue ad oeidue modulo, eecively. Hee 0 i eihe a quadaic eidue o a quadaic oeidue. The cycloomic umbe of ode wo ae defied by (i; j) j(d i +1) \ D j j Thu hee ae a mo fou diffee cycloomic umbe of ode wo. By defiiio C 1 D 0 ad C 0 D 1 [f0g. oe ha D 0 i a mulilicaive gou. We have d 11 ( 0 ; 1 )j(d ) \ (D )j j(d 0 + ) \ D 0 j j(d j +1) \ D j j (j; j) whee , 01 D j fo ome j. Similaly, d 01 ( 0 ; 1 )j(d 1 [f0g + 0 ) \ (D )j j(d 1 [f0g + ) \ D 0 j j(d (j+1) mod + 1) \ D j j + jfg \D 0 j ((1 + j)mod;j)+jfg \D 0 j whee ad 01 D j fo ome j. Wih imila agume, we have ad d 10( 0; 1)(j; (1 + j) mod ) + jf0g \(D 0 + )j d 00( 0; 1)((j +1)mod; (j +1)mod) + jf0g \(D 1 + )j + jfg \D 1 j whee ad 01 D j fo ome j. If 1 (mod ), he cycloomic umbe of ode wo ae give by [11] (0; 0) 0 5 If 3 (mod ), hey ae give by (0; 0) (1; 0) (1; 1) 0 3 (0; 1) (1; 0) (1; 1) 0 1 (0; 1) +1 oe ha 01 D 0 if ad oly if 1 (mod ) ad D i if ad oly if 01 D i. The cocluio of hi ooiio he follow fom he cycloomic umbe of ode ad he above fou fomulae. I i oed ha he above ooiio ca alo be oved wih he followig Jacobhal fomula [1] 01 x0 01 x0 ax + bx + c ax + b b 1 0 a a ( 0 1) ; if b 0 ac 0 (mod ) 0 a ; if b 0 ac 6 0 (mod ) Thee have bee ome ae o he eimaio of d i 111 i ( 0 ; 111; 01 ) bu o igh boud i kow. The geeal lowe ad ue boud 6 (3 + ) o d i 111 i ( 0 ; 111; 01 ) wa develoed by Peala [8], which will be efeed o a Peala boud. Peala eaed zeo a a quadaic eidue, while we ake i a a oeidue. Thee wo kid of eame make lile diffeece. We ow deive a bee boud o d i 111 i ( 0 ; 1 ; 111; 01 ) To hi ed, we eed he calculaio ad eimaio of he chaace um 01 (a 1 ; 111;a ) x0 (x + a 1 ) 111 (x + a ) whee a 1; 111;a ae aiwie diic eleme of Z. The Peala boud ae baed maily o he followig eimae. Lemma 1 Le. The j (a 1 ; 111;a )j < ( 0 1) whee he a i ae aiwie diic eleme of Z. Thi eul i a ecial cae of a moe geeal eul abou mulilicaive chaace due o Weil [9, Theoem C,. 3]. Followig Peala [8], we call hi iequaliy he Weil boud.

3 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY (a 1 ;a ) ca be evaluaed exacly, ice i ca be educed o he calculaio of 1(a). Thi ca be geealized io he fac ha educe o if i eve, ad o (a 1 ; 111;a ) 01 (0; 1; b 1 ; 111;b 03 ) (0; 1; b 1 ; 111;b 0 ) if i odd. The oof of he cae wa give by Daveo [1]. We ow geealize Daveo oof fo he cae io he geeal cae of beig eve. Lemma Le be eve, ad le a 1; 111;a be aiwie diic eleme of Z. The (a 1;a ; 111;a )01 + c(a 1; 111;a ) 01(d ; 111;d ) The alyig he above afomaio yield (a 1; 111;a ) x60a y60hg y60hg y60hg F (x) F uy + v gy + h (gy + h) 0 i1 c y60hg i1 [(a ig + u)y + a ih + v] [(a i g + u)y + a i h + v] i (y + d i ) whee hee d i ae aiwie diic ad d i (a i 0 a )(a 1 0 a 3 ) (a i 0 a 1 )(a 0 a 3 ) ; i c 01 y0 i (y + d i) 0 1 c(a 1 ; 111;a )(a 1 0 a )(a 1 0 a 3 ) i [(a i 0 a 1 )(a 0 a 3 )] Poof The key o uch a educio i he ue of he afomaio x uy + v gy + h wih uh 0 gv 6 0(mod ), which give x6ug F (x) y60hg F uy + v gy + h whee F (x) i a olyomial of Z [x]. We chooe ow I ou cae, defie u 0 a 1(a 0 a 3) v 0a (a 1 0 a 3) g a 0 a 3 h a 1 0 a 3 F (x) (x + a 1) 111 (x + a ) 01(d; 111;d) 01 + c I ca be eaily ove ha d ; 111;d ae aiwie diic. We will efe o hi eul a he Daveo educio heoem, which will lay a imoa ole i develoig he ew boud. The followig combiaoial eul ae eeded i he equel. Thei oof ae adad ad ca be foud i may exbook o combiaoic. Lemma 3 Le. The 1) ) i eve i1 i i odd i 01 i (i 0 1) 01 ( 0 ) + 1. I he equel we aume 3. To deive he boud, we make ue of he fucio 1 01 k0 The followig lemma i eeded lae. Lemma Defie B(; ; i 0; 111;i 01) 1+ i +1 x 0 k 0k < 111 <k 01 whee ad ae oiive iege wih ad i 0; 111;i 01 f0; 1g. The oe ha (x )1fo all x 6 0 (mod ). We have jb(; ; i 0; 111;i 01)j c i (0hg + d i ) 1 1 oe ha x x 0 The followig cocluio i obviou.

4 1696 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY 1998 Lemma 5 Alyig Lemma 7 ad he Weil boud o he fomula above yield x0 k0 i x 0 k 0 x 0 + B(; ; i 0 ; 111;i 01 ) A we aume ha 0 ; 1 ; 111; 01 ae aiwie diic, he followig cocluio follow fom he ecod Jacobhal fomula decibed ealie. 01 Lemma 6 i +i x 0 k x0 0k <k 01 x 0 k 0B(; ;i 0; 111;i 01) 3 odd 3 1 ( 0 1) + ( 0 1) 0 ( 0 1) 0 1 ( 0 ) The followig lemma deive diecly fom he Daveo educio heoem. Lemma 7 Le 0 be eve. The 0k < 111 <k 01 (0 k ; 111; 0 k ) 0k < 111 <k 01 c( k ; 111; k ) 0 B(; ; i 0 ; 111;i 01 ) 01(0 0 k ; 111; 0 0 k ) whee c( k ; 111; k ) 6 0(mod ) ad ae defied i Lemma, ad whee k 0 ; 111;k 0 ae aiwie diic ad ae defied he ame a hoe d i i Lemma. By Lemma 5 ad 6 we obai ha x + 1 0k < 111 <k 01 (0 k ; 111; 0 k ) 0 B(; ;i 0 ; 111;i 01 ) + 3 0k < 111 <k 01 (0 k ; 111; 0 k ) 3 0k < 111 <k 01 odd (0 k ; 111; 0 k ) + 0k < 111 <k 01 (0 k ; 111; 0 k ) + 0 B(; ;i 0 ; 111;i 01 ) 1 ( 0 1) 0 0 ( 01 ( 0 ) ) ( 01 ( 0 3) + ) By Lemma B(; ; i 0; 111;i 01) 01+ Combiig he above wo fomula yield whee T 0 T x T () ( 01 ( 0 3) + ) ow le WH (i i 01) deoe he Hammig weigh of veco (i i 01 ), i.e., he umbe of 1 i he biay veco. Aume ha WH (i i 01) 0. oe ha j C i + j if ad oly if i j 0, o hee ae a mo eleme i f 0; 1; 111; 01g which belog o he e D i 111 i ( 0 ; 111; 01 ), whee. We ow aume ha hee ae exacly u uch eleme, ay 0; 1; 111; u01, whee u. Le ad The we have xa xb I follow ha B f 0 ; 1 ; 111; u01 g A D i 111 i ( 0 ; 111; 01 )B d i 111 i ( 0 ; 111; 01 ) 0 u u d i 111 i ( 0 ; 111; 01 ) 0 xd d i 111 i ( 0; 111; 01) xd

5 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY whee D i 111 i deoe D i 111 i ( 0 ; 111; 01 ). Hece, fo each (i i 01 ) we have d i 111 i ( 0; 111; 01) 0 xd d i 111 i ( 0 ; 111; 01 ) xd If he Hammig diace bewee he veco (j j 01) ad (i i 01) i geae ha o equal o wo, i i o difficul o ee xd ( ; 111; ) 0 Fuhemoe, if he Hammig diace bewee he wo veco (j j 01) ad (i i 01) i oe, i i clea ha oe ha i ; 111;i I follow ha 0 xd ( ; 111; ) 1 D i 111 i ( 0 ; 111; 01 )Z (3) f0; 1g d i 111 i ( 0 ; 111; 01 ) 0 xz d i 111 i ( 0; 111; 01)+ xz Combiig () ad () ove he followig eul. Pooiio Le he ymbol ad aumio be a befoe ad 3. We have 0W d i 111 i ( 0; 1; 111; 01) 0 W whee 0; 1; 111; 01 ae aiwie diic eleme of Z ad W ( 01 ( 0 3) + ) + 01 ( +1)0 1 oe ha W i eeially [( 0 3)] + ( +1). Ou ew boud ae much ueio o he Peala boud. The mai coibuio o he ew boud come fom he Daveo educio heoem ad eveal echique. Fo he cae 3, he above oof how ha d i i i ( 0 ; 1 ; ) umeical comuaio how ha hee lowe ad ue boud fo 3ae quie igh. I ca be ee fom he develome of he boud ha he ew boud ae uually igh fo mall. Pooiio how ha Legede equece have a ideal diibuio of ae of legh whe i mall. () I ummay, Legede equece have oimal balace bewee 0 ad 1, a lage liea a, he oimal auocoelaio oey, ad a ideal diibuio of ae of mall legh. III. PATTER DISTRIBUTIO AD WEIGHT DISTRIBUTIO I hi ecio we how a cloe elaio bewee he ae diibuio of Legede equece ad he weigh diibuio of Q.R. code. Thi i alo ue fo ome ohe equece ad code. Thu he imoace of he ae diibuio of equece i codig heoy follow. Le 61(mod8), ad le Q ad P deoe he e of quadaic eidue ad ha of quadaic oeidue modulo, eecively. The biay Q.R. code ae hoe wih idemoe Q x i P x i 1+ Q x i 1+ oe ha he idemoe Q xi above i he olyomial fom of he Legede equece defied i hi coeodece. I he equel we ue C o deoe he biay Q.R. code wih hi idemoe. The liea a of a equece i defied o be he legh of he hoe liea-feedback hif-egie ha oduce he equece [], [6], [7]. I i kow ha he Legede equece l 1 ha liea a ( +1) if 01 (mod 8) ad ( 01) if 1 (mod 8) [3]. Le l 0 l l 01 be he fi eiodic egme of he Legede equece, ad le L i deoe he i-e lef-hifed veio of he veco (l 0 ;l 1 ; 111;l 01 ) fo i 0; 1; 111;01. Sice l 1 ha liea a h, by he defiiio of liea a he veco L 0; 111;L h01 of GF () fom a bai of he Q.R. code C, whee h i eihe ( 01) o ( +1). Thu we have eached he followig cocluio. Pooiio 3 The Q.R. code C ha geeao maix G L 0 L 1.. L h01 whee L i ad h ae he ame a befoe. Thi eul, hough aighfowad, make a coecio bewee he Q.R. code ad he Legede equece. I allow u o eablih he elaiohi bewee he weigh diibuio of Q.R. code ad he ae diibuio of Legede equece. Le h deoe he liea a of he Legede equece. By Pooiio 3 evey codewod c of C i exeed a c L + L L whee 0 0 < 111 < 01 h 0 1. The Hammig weigh of c ad he ae diibuio of he Legede equece ae elaed a follow. Pooiio WH (c) i +111+i 1 P x i d i 111 i (0 0 ; 111; 0 01 ) (5) whee he addiio i i i 01 1i iege addiio modulo ad 0 i 0 i. Poof Le 0 ; 111; 01 be fixed ad he ame a befoe. Coide he e of (1). I i eay o ee ha D i 111 i ( 0 ; 111; 01 ) \ D j 111 j ( 0 ; 111; 01 );

6 1698 IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY 1998 whee (j 0 ;j 1 ; 111;j 01) GF () ad (i 0 ;i 1 ; 111;i 01) ae diffee biay veco. The by (3) ad defiiio WH (c) i Z 01 j0 i +111+i 1 l +i 1 D i 111 i (0 0 ; 111; 0 01) jd i 111 i (0 0 ; 111; 0 01)j i +111+i 1 d i 111 i (0 0 ; 111; 0 01) i +111+i 1 oe ha hee d i 111 i ( 0 ; 111; 01) ae acually he umbe of ae ha aea i a cycle of he Legede equece. By Pooiio, he weigh diibuio of he Q.R. code i deemied if he ae diibuio of he Legede equece i deemied. Howeve, he covee may o be ue. I fac, (5) idicae ha he deemiaio of he ae diibuio of he Legede equece i much hade ha he weigh diibuio oblem of he Q.R. code. oe ha d i i ( 0; 1) ae give by Pooiio 1. Wih he hel of Pooiio hee d i i ( 0 ; 1 ) ca be ued o deemie ome weigh of he Q.R. code C. Fo 3 hee ae o kow fomula fo d i 111i ( 0; 111; 01), hough may well-kow mahemaicia have aacked hi oblem fo huded of yea. While calculaig d i 111 i ( 0 ; 111; 01) i had, we may hoe o develo igh boud o hem. Such igh boud ca be ued o ay omehig abou he weigh diibuio of Q.R. code. To illuae hi, we ake ou boud of Pooiio a a examle. Pooiio 5 The Q.R. code C ha a lea h 0 01 W WH (c) +01 W whee W ad h ae he ame a befoe. Poof Thee ae h e of iege 0 0 < 111< 01 h 0 1 Each e of uch iege defie a codewod c L L codewod c wih whee L i ae he ame a befoe, ad diffee e defie diffee codewod by he defiiio of liea a. oe ha x 0 + x x 01 1 ove GF ()[x 0 ; 111;x 01] ha 01 oluio (x 0; 111;x 01). The cocluio he follow fom Pooiio ad. The boud of Pooiio 5 ae ueful oly whe i mall. Whe h 3, i ay ha C ha a lea codewod c wih If we had bee boud WH (c) d i 111 i ( 0; 111; 01) 1 he oof of Pooiio 5 would alo ove ha hee ae a lea h codewod c wih Remak oe ha he above obevaio alo alie o ome ohe biay cyclic code ad biay equece. Le w 1 be a biay equece of eiod (o eceaily he lea eiod). Le h deoe he liea a of hi equece. The all he hifed veio of he fi eiodic egme of hi equece geeae a [; h] cyclic code. If he ae diibuio of hi equece i kow, he weigh diibuio of he cyclic code i kow, a Pooiio i alo ue i hi geeal cae. Hece, evey biay eiodic equece wih kow ae diibuio give a biay cyclic code wih kow weigh diibuio. Helleeh ha exeed he weigh of codewod of Q.R. code i em of Legede um [5], while we do i i em of he umbe of ae of ceai legh ee i a cycle of he Legede equece. I i oible o bidge he wo aoache o ge ome ieeig eul. IV. COCLUSIOS We have develoed ew boud o he umbe of ae aeaig i a cycle of Legede equece, which i much ueio o kow boud. We have alo howed a alicaio of uch boud i Q.R. code. We have exeed he weigh of codewod of a cla of biay cyclic code i em of he umbe of ae of ceai legh ee i a cycle of he equece. Thu he ae diibuio oblem i alo ieeig i codig heoy. ACKOWLEDGMET The auho wihe o hak he wo aoymou efeee fo oiig ou ome eo i he oigial veio of hi coeodece ad makig a umbe of uggeio ad comme ha gealy imoved he eeaio. REFERECES [1] H. Daveo, O he diibuio of quadaic eidue (mod ), J. Lodo Mah. Soc., vol. 6,. 9 5, [] C. Dig, G. Xiao, ad W. Sha, The Sabiliy Theoy of Seam Cihe. Heidelbeg, Gemay Sige-Velag, [3] C. Dig, T. Helleeh, ad W. Sha, O he liea comlexiy of Legede equece, IEEE Ta. Ifom. Theoy, vol., , May [] S. W. Golomb, Shif Regie Sequece. Lagua Hill, CA Aegea Pak, 198. [5] T. Helleeh, Legede um ad code elaed o Q.R. code, Dic. Al. Mah., vol. 35, , 199. [6] T. Helleeh ad P. V. Kuma, Sequece wih low coelaio, i Hadbook of Codig Theoy, Ple, Bualdi, ad Huffma, Ed. Amedam, The ehelad Elevie, [7] E. L. Key, A aalyi of he ucue ad comlexiy of oliea biay equece geeao, IEEE Ta. Ifom. Theoy, vol. IT-, , [8] R. Peala, O he diibuio of quadaic eidue ad oeidue modulo a ime umbe, Mah. Com., vol. 58,. 33 0, 199. [9] W. M. Schmid, Equaio ove Fiie Field A Elemeay Aoach (Lecue oe i Mahemaic, vol. 536). Beli, Gemay Sige- Velag, [10] D. V. Sawae ad M. B. Puley, Cocoelaio oeie of eudoadom ad elaed equece, Poc. IEEE, vol. 68, , May [11] T. Soe, Cycloomy ad Diffeece Se. Chicago, IL Maham, WH (c) 01 1 Theefoe, ay imoveme o he boud o d i 111 i ( 0; 111; 01) (6) would ehace ou kowledge abou Q.R. code.

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise Hi ue Hi ue -ay Deecio Pole Coide he ole of decidig which of hyohei i ue aed o oevig a ado vaiale (veco). he efoace cieia we coide i he aveage eo oailiy. ha i he oailiy of decidig ayhig ece hyohei H whe

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

On Approximation of Conjugate of Signals (Functions) Belonging to the Generalized Weighted. of Conjugate Series of Fourier Series

On Approximation of Conjugate of Signals (Functions) Belonging to the Generalized Weighted. of Conjugate Series of Fourier Series I Joual of Mah Aalyi, Vol 6,, o 35, 73-75 O Aoximaio of ojugae of Sigal (Fucio Belogig o he Geealized Weighed ( x W L, (, ( ³ -la y Poduc Summailiy Mea of ojugae Seie of Fouie Seie Vihu Naaya Miha, Huzoo

More information

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems Tish Joal of Aalysis ad Nmbe Theoy 27 Vol 5 No 4 26-3 Available olie a hp://pbssciepbcom/ja/5/4/2 Sciece ad Edcaio Pblishig DOI:269/ja-5-4-2 Relaios o he Aposol Type (p -Fobeis-Ele Polyomials ad Geealizaios

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables ScieceAsia 8 () : 55-6 The Ceal Limi Theoems fo Sums of Poes of Fucio of Idepede Radom Vaiables K Laipapo a ad K Neammaee b a Depame of Mahemaics Walailak Uivesiy Nakho Si Thammaa 86 Thailad b Depame of

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle Coucio of Malliavi diffeeiable og oluio of SD ude a iegabiliy codiio o he dif wihou he Yamada-Waaabe icile David R. Baño e-mail: davidu@mah.uio.o Side Duedahl e-mail: ided@mah.uio.o Thilo Meye-Badi e-mail:

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle Coucio of Malliavi diffeeiable og oluio of SD ude a iegabiliy codiio o he dif wihou he Yamada-Waaabe icile David R. Baño e-mail: davidu@mah.uio.o Side Duedahl e-mail: ided@mah.uio.o Thilo Meye-Badi e-mail:

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

Degree of Approximation of Fourier Series

Degree of Approximation of Fourier Series Ieaioal Mahemaical Foum Vol. 9 4 o. 9 49-47 HIARI Ld www.m-hiai.com h://d.doi.og/.988/im.4.49 Degee o Aoimaio o Fouie Seies by N E Meas B. P. Padhy U.. Misa Maheda Misa 3 ad Saosh uma Naya 4 Deame o Mahemaics

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors Lecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: Geeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shckley uai Quai-eualiy i cducive maeial C 35 Sig 2005

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Crosscorrelation of m-sequences, Exponential sums and Dickson

Crosscorrelation of m-sequences, Exponential sums and Dickson Cosscoelatio o m-equeces, Epoetial sums ad Dicso polyomials To Helleseth Uiesity o Bege NORWAY Joit wo with Aia Johase ad Aleade Kholosha Itoductio Outlie m-sequeces Coelatio o sequeces Popeties o m-sequeces

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 8 Compuer Orgaizaio Chaper. Overview of Pipeliig Chau Yu Laudry Example Laudry Example A, Bria, Cahy, Dave each have oe load of clohe o wah, dry, ad fold Waher ake 0 miue A B C D Dryer ake 0 miue Folder

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Fameal Joal of Mahemaic a Mahemaical Sciece Vol. 7 Ie 07 Page 5- Thi pape i aailable olie a hp://.fi.com/ Pblihe olie Jaa 0 07 CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Caolo

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Supplementary Information

Supplementary Information Supplemeay Ifomaio No-ivasive, asie deemiaio of he coe empeaue of a hea-geeaig solid body Dea Ahoy, Daipaya Saka, Aku Jai * Mechaical ad Aeospace Egieeig Depame Uivesiy of Texas a Aligo, Aligo, TX, USA.

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Effect of Graph Structures on Selection for a Model of a Population on an Undirected Graph

Effect of Graph Structures on Selection for a Model of a Population on an Undirected Graph Effect of Gah Stuctue o Selectio fo a Model of a Poulatio o a Udiected Gah Watig Che Advio: Jao Schweibeg May 0, 206 Abtact Thi eeach focue o aalyzig electio amlifie i oulatio geetic. Sice the tuctue of

More information

Basic propositional and. The fundamentals of deduction

Basic propositional and. The fundamentals of deduction Baic ooitional and edicate logic The fundamental of deduction 1 Logic and it alication Logic i the tudy of the atten of deduction Logic lay two main ole in comutation: Modeling : logical entence ae the

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Congruences for sequences similar to Euler numbers

Congruences for sequences similar to Euler numbers Coguece fo equece iila to Eule ube Zhi-Hog Su School of Matheatical Sciece, Huaiyi Noal Uiveity, Huaia, Jiagu 00, Peole Reublic of Chia Received July 00 Revied 5 Augut 0 Couicated by David Go Abtact a

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Minimal order perfect functional observers for singular linear systems

Minimal order perfect functional observers for singular linear systems Miimal ode efect fuctioal obseves fo sigula liea systems Tadeusz aczoek Istitute of Cotol Idustial lectoics Wasaw Uivesity of Techology, -66 Waszawa, oszykowa 75, POLAND Abstact. A ew method fo desigig

More information

CSE 202: Design and Analysis of Algorithms Lecture 16

CSE 202: Design and Analysis of Algorithms Lecture 16 CSE 202: Desig ad Aalysis of Algorihms Lecure 16 Isrucor: Kamalia Chaudhuri Iequaliy 1: Marov s Iequaliy Pr(X=x) Pr(X >= a) 0 x a If X is a radom variable which aes o-egaive values, ad a > 0, he Pr[X a]

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN Iteatioal Joual of Mathematical Achive-5(3, 04, 7-75 Available olie though www.ijma.ifo ISSN 9 5046 ON THE OSCILLATOY BEHAVIO FO A CETAIN CLASS OF SECOND ODE DELAY DIFFEENCE EQUATIONS P. Mohakuma ad A.

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2) Ieaoal Reeach Joual of Egeeg ad Techology (IRJET) e-issn: 9 - Volume: Iue: May- www.e.e -ISSN: 9-7 O he Qua-Hyebolc Kac-Moody lgeba QH7 () Uma Mahewa., Khave. S Deame of Mahemac Quad-E-Mllah Goveme College

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Image Enhancement: Histogram-based methods

Image Enhancement: Histogram-based methods Image Enhancement: Hitogam-baed method The hitogam of a digital image with gayvalue, i the dicete function,, L n n # ixel with value Total # ixel image The function eeent the faction of the total numbe

More information

Generalized Fibonacci-Type Sequence and its Properties

Generalized Fibonacci-Type Sequence and its Properties Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

Several new identities involving Euler and Bernoulli polynomials

Several new identities involving Euler and Bernoulli polynomials Bull. Math. Soc. Sci. Math. Roumanie Tome 9107 No. 1, 016, 101 108 Seveal new identitie involving Eule and Benoulli polynomial by Wang Xiaoying and Zhang Wenpeng Abtact The main pupoe of thi pape i uing

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS HENDRA GUNAWAN Absac. Associaed o a fucio ρ :(, ) (, ), le T ρ be he opeao defied o a suiable fucio space by T ρ f(x) := f(y) dy, R

More information

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD Ie J Mh & Mh Sci Vol 8 No 2 (1985) 373-388 373 ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid 33620 USA (Received Mch 3, 1983) ABSTRACT

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Probabilistic number theory : A report on work done. What is the probability that a randomly chosen integer has no square factors?

Probabilistic number theory : A report on work done. What is the probability that a randomly chosen integer has no square factors? Pobabilistic numbe theoy : A eot on wo done What is the obability that a andomly chosen intege has no squae factos? We can constuct an initial fomula to give us this value as follows: If a numbe is to

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

9.1 The multiplicative group of a finite field. Theorem 9.1. The multiplicative group F of a finite field is cyclic.

9.1 The multiplicative group of a finite field. Theorem 9.1. The multiplicative group F of a finite field is cyclic. Chapte 9 Pimitive Roots 9.1 The multiplicative goup of a finite fld Theoem 9.1. The multiplicative goup F of a finite fld is cyclic. Remak: In paticula, if p is a pime then (Z/p) is cyclic. In fact, this

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Weighted BMO Estimates for Commutators of Riesz Transforms Associated with Schrödinger Operator Wenhua GAO

Weighted BMO Estimates for Commutators of Riesz Transforms Associated with Schrödinger Operator Wenhua GAO Alied Mechaic ad Material Olie: -- ISSN: 66-748, Vol -6, 6-67 doi:48/wwwcietificet/amm-66 Tra Tech Publicatio, Switzerlad Weighted MO Etimate for ommutator of Riez Traform Aociated with Schrödiger Oerator

More information

)(E,s)-summability mean of Fourier series

)(E,s)-summability mean of Fourier series Padha e al, Coge Mahemaic (06), 3: 50343 hp://dxdoiog/0080/338350650343 PURE MATHEMATICS RESEARCH ARTICLE Appoximaio of igal belogig o geealized Lipchiz cla uig (N, p )(E,)-ummabiliy mea of Fouie eie Receied:

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS Joa of Aed Mahema ad Comaoa Meha 4 3( 6-73 APPLCATON OF A Z-TRANSFORMS METHOD FOR NVESTGATON OF MARKOV G-NETWORKS Mha Maay Vo Nameo e of Mahema Ceohowa Uey of Tehoogy Cęohowa Poad Fay of Mahema ad Come

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 http://membe.titon.net/daveb Uing the concept dicued in the peceding pape ( http://membe.titon.net/daveb ), I will now deive

More information

This web appendix outlines sketch of proofs in Sections 3 5 of the paper. In this appendix we will use the following notations: c i. j=1.

This web appendix outlines sketch of proofs in Sections 3 5 of the paper. In this appendix we will use the following notations: c i. j=1. Web Appedix: Supplemetay Mateials fo Two-fold Nested Desigs: Thei Aalysis ad oectio with Nopaametic ANOVA by Shu-Mi Liao ad Michael G. Akitas This web appedix outlies sketch of poofs i Sectios 3 5 of the

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information