Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Size: px
Start display at page:

Download "Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003"

Transcription

1 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 Uing the concept dicued in the peceding pape ( ), I will now deive a fomula fo gavity. The fomula will educe to Newton fo object in cloe poximity and to the MOND fomula fo object elative to the cente of the galaxy. If the eade i unfamilia with MOND, a quick intenet each would be helpful. MOND theoy baically alte the gavitational field fom one ove quaed to one ove when the field tength i vey mall. It ha been enomouly ucceful in pedicting the motion of ta elative to the cente of galaxie without the aumption of dak matte. It i an empiical fomula with no bai in phyic. Aume we have two lage object and that thei time both ead at the ame time, which i the tat of the obevation, in an obeve efeence pace. We will aume that ou cyclic ytem i vey lage, (the Milky Way galaxy fo example) and ou object ae the eath and moon. Unde thee containt we can conclude that the pace time adiue K and K both cale, when caled to a efeence pace, to eentially the ame value which we hall call K. We wite the following equation fo both. Object Object Pc + mc eq Pc + mc eq c T K eq c T K eq. 4.3 Whee we ue the Univeal Invaiant dicued peviouly ( ). Now we take the quae oot of each equation uing the Diac matice.

2 α Pc+ βm c eq. 4.4 α Pc+ βm c eq 4.5 α ct K + β eq 4.6 α β + ct K eq. 4.7 P and ae vecto in geneal, but we can implify them to one dimenion. ince we only have two object we make one axi lie on the line connecting the object. We aume that thee two object ae at et elative to ou obeve at time, o we need only concen ouelve with one component of P which alo will lie on the ame axi. i imply the ditance between the object in thei epected pace. Now we multiply equation 4.4 by equation 4.7. If we aume that the total enegy fo both object emain contant ove the length of any meauement, then thi i no diffeent then aying x 4. The eult of the multiplication i: P c+ T mc K Thee object ae maive object and T emain mall ove the time of ou obevation. Fom ou peviou dicuion, thi could liteally be million of yea. K i eentially We will eliminate the tem Tma it i vey mall compaed to K. Thi leave P c K. We can evaluate the change in P to get: K P c Now fom equation 4.7 α β T We can now vapoize the matice by quaing and then taking the quae oot to get: ± T but T T

3 Thi leave u with: K T P whee we ae uing T c Now we convet eveything to ou common efeence fame (ee peviou pape) uing the following elation. Remembe that K imply become K by the etiction we et. P m V m m m V ef ef ef T Tef ef t ef t and time ae ditinguihed ince they may be diffeent. ef. The efeence enegy fo pace ef t Tef T and ef ef ubtituting yield V K m T ef ef t ef ef ef Fma dividing by 4 c and ubtituting Newton definition of Foce, mm We get F whee k K and ef K i a contant. K i the pace time ditance fom the oigin of the otating ytem. In the above dicuion I abitaily ued T but I could have ued + T and got the oppoite foce. Uing the oppoite ign would yield anti-gavity. Quantum mechanic i jut a eult of the ame cyclic natue of pace/time and a deciption of a quantum object mut include thee anti-gavity tate. Fo all object in cloe poximity ( a ditance that could be atonomical elative to the adiu of a galaxy), K i eentially contant and we ee that the gavity equation educe to Newton fomula. When decibing the motion of a ta elative to the cente of ma of a galaxy, i the patial adiu, and K i the pace/time ditance.

4 Aume that K i equal to. It cetainly won t be le than. Then the gavitational fomula become: mm F k which i functionally equivalent to the MOND fomula. We can get a value fo k, by conideing ou own ola ytem. k K. i jut ou local gavitational contant 8 3 cm g in cg unit ec If we aume Then k.55 K i the ditance to the cente of the galaxy (85 pc) o 3 The MOND gavitational field equation can be witten:.6 cm, am a whee a i the field tength, a i the MOND contant (detemined empiically) i the local gavitational contant, M i the ma of the galaxy and i the ditance to the cente. Conveting my gavitational fomula to a field equation yield: km a quating to MOND: am k M implifying yield: a k M o a km We know, we etimated k and g M (the viible ma of the galaxy) i about We calculate that:

5 a a i an eluive value becaue of the numbe of unknown, howeve all the liteatue 8 etimate it to be on the ode of, jut a we calculated. ummay Although thee may vey well be a fom o fom of dak matte, the exitence of dak matte in t neceay to explain the motion of ta in a galaxy. Thee definately in t a need fo 9 % of the matte in a galaxy to be dak. The value of the local gavitational contant deceae with deceaing ditance to the cente of the galaxy, appoaching zeo at the cente. One would expect then a egion of emptine at the cente, thee i nothing to hold matte thee. The nuclea funace inide ta i diven by the foce of gavity. If gavity i le nea the cente of the galaxy, it would be eaonable to expect ta to bun coole (given the ame ma) nea the cente. Mot ta do in fact bun cool nea the cente. The peent explanation i that they ae old ta having eentially buned out. With thi theoy they could vey well be young ta buning lowe.

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Honors Classical Physics I

Honors Classical Physics I Hono Claical Phyic I PHY141 Lectue 9 Newton Law of Gavity Pleae et you Clicke Channel to 1 9/15/014 Lectue 9 1 Newton Law of Gavity Gavitational attaction i the foce that act between object that have a

More information

Solutions Practice Test PHYS 211 Exam 2

Solutions Practice Test PHYS 211 Exam 2 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

AE 245 homework #9 solutions

AE 245 homework #9 solutions AE 245 homewok #9 olution Tim Smith 13 Apil 2000 1 Poblem1 In the Apollo miion fom the Eath to the Moon, the Satun thid tage povided the tan-luna inetion bun that tanfeed the Apollo pacecaft fom a low

More information

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc. AP Phyic Gavity Si Iaac Newton i cedited with the dicovey of gavity. Now, of coue we know that he didn t eally dicove the thing let face it, people knew about gavity fo a long a thee have been people.

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Add Impotant Rotational Kinetic Enegy Page: 353 NGSS Standad: N/A Rotational Kinetic Enegy MA Cuiculum Famewok (006):.1,.,.3 AP Phyic 1 Leaning Objective: N/A, but olling poblem have appeaed on peviou

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4. ASTR 3740 Relativity & Comology Sping 019. Anwe to Poblem Set 4. 1. Tajectoie of paticle in the Schwazchild geomety The equation of motion fo a maive paticle feely falling in the Schwazchild geomety ae

More information

Precision Spectrophotometry

Precision Spectrophotometry Peciion Spectophotomety Pupoe The pinciple of peciion pectophotomety ae illutated in thi expeiment by the detemination of chomium (III). ppaatu Spectophotomete (B&L Spec 20 D) Cuvette (minimum 2) Pipet:

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam June 4, 18 Youngsub Yoon axiv:135.163v6 [g-qc] 7 Jul 13 Depatment of Physics and Astonomy Seoul National Univesity, Seoul 151-747, Koea Abstact We show that

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI Electomagnetim Aleande A. Ikanda, Ph.D. Phyic of Magnetim and Photonic Reeach Goup ecto Analyi CURILINEAR COORDINAES, DIRAC DELA FUNCION AND HEORY OF ECOR FIELDS Cuvilinea Coodinate Sytem Cateian coodinate:

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

PHYSICS 151 Notes for Online Lecture 2.6

PHYSICS 151 Notes for Online Lecture 2.6 PHYSICS 151 Note fo Online Lectue.6 Toque: The whole eaon that we want to woy about cente of ma i that we ae limited to lookin at point mae unle we know how to deal with otation. Let eviit the metetick.

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vecto Vecto have Diection and Magnitude Mike ailey mjb@c.oegontate.edu Magnitude: V V V V x y z vecto.pptx Vecto Can lo e Defined a the oitional Diffeence etween Two oint 3 Unit Vecto have a Magnitude

More information

Determining the Best Linear Unbiased Predictor of PSU Means with the Data. included with the Random Variables. Ed Stanek

Determining the Best Linear Unbiased Predictor of PSU Means with the Data. included with the Random Variables. Ed Stanek Detemining te Bet Linea Unbiaed Pedicto of PSU ean wit te Data included wit te andom Vaiable Ed Stanek Intoduction We develop te equation fo te bet linea unbiaed pedicto of PSU mean in a two tage andom

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam Abstact We show that Mannheim s confomal gavity pogam, whose potential has a tem popotional to 1/ and anothe tem popotional to, does not educe to Newtonian

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

How can you find the dimensions of a square or a circle when you are given its area? When you multiply a number by itself, you square the number.

How can you find the dimensions of a square or a circle when you are given its area? When you multiply a number by itself, you square the number. 7. Finding Squae Root How can you find the dimenion of a quae o a cicle when you ae given it aea? When you multiply a numbe by itelf, you quae the numbe. Symbol fo quaing i the exponent. = = 6 quaed i

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

AE 423 Space Technology I Chapter 2 Satellite Dynamics

AE 423 Space Technology I Chapter 2 Satellite Dynamics AE 43 Space Technology I Chapte Satellite Dynamic.1 Intoduction In thi chapte we eview ome dynamic elevant to atellite dynamic and we etablih ome of the baic popetie of atellite dynamic.. Dynamic of a

More information

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by Poblem Pat a The nomal distibution Gaussian distibution o bell cuve has the fom f Ce µ Calculate the nomalization facto C by equiing the distibution to be nomalized f Substituting in f, defined above,

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Geometry Contest 2013

Geometry Contest 2013 eomety ontet 013 1. One pizza ha a diamete twice the diamete of a malle pizza. What i the atio of the aea of the lage pizza to the aea of the malle pizza? ) to 1 ) to 1 ) to 1 ) 1 to ) to 1. In ectangle

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Static Electric Fields. Coulomb s Law Ε = 4πε. Gauss s Law. Electric Potential. Electrical Properties of Materials. Dielectrics. Capacitance E.

Static Electric Fields. Coulomb s Law Ε = 4πε. Gauss s Law. Electric Potential. Electrical Properties of Materials. Dielectrics. Capacitance E. Coulomb Law Ε Gau Law Electic Potential E Electical Popetie of Mateial Conducto J σe ielectic Capacitance Rˆ V q 4πε R ρ v 2 Static Electic Field εe E.1 Intoduction Example: Electic field due to a chage

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Lecture No. 6 (Waves) The Doppler Effect

Lecture No. 6 (Waves) The Doppler Effect Lectue No. 6 (Wave) The Dopple Eect 1) A ound ouce i moving at 80 m/ towad a tationay litene that i tanding in till ai. (a) Find the wavelength o the ound in the egion between the ouce and the litene.

More information

Force & Motion: Newton s Laws

Force & Motion: Newton s Laws oce & otion: Newton Law ( t Law) If no net foce act on a body then the body velocity cannot change. Zeo net foce implie zeo acceleation. The ma of an object detemine how difficult it i to change the object

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 18

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 18 .65, MHD Theoy of Fuion Sytem Pof. Feidbeg Lectue 8. Deive δw fo geneal cew pinch. Deive Suydam citeion Scew Pinch Equilibia μ p + + ( ) = μ J = μ J= Stability ( ) m k ξ=ξ e ι +ι ξ=ξ e +ξ e +ξ e =ξ +ξ

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Simulation of Spatially Correlated Large-Scale Parameters and Obtaining Model Parameters from Measurements

Simulation of Spatially Correlated Large-Scale Parameters and Obtaining Model Parameters from Measurements Simulation of Spatially Coelated Lage-Scale Paamete and Obtaining Model Paamete fom PER ZETTERBERG Stockholm Septembe 8 TRITA EE 8:49 Simulation of Spatially Coelated Lage-Scale Paamete and Obtaining Model

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

( ) rad ( 2.0 s) = 168 rad

( ) rad ( 2.0 s) = 168 rad .) α 0.450 ω o 0 and ω 8.00 ω αt + ω o o t ω ω o α HO 9 Solution 8.00 0 0.450 7.8 b.) ω ω o + αδθ o Δθ ω 8.00 0 ω o α 0.450 7. o Δθ 7. ev.3 ev π.) ω o.50, α 0.300, Δθ 3.50 ev π 7π ev ω ω o + αδθ o ω ω

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

Momentum and the Flow of Mass Challenge Problems Solutions

Momentum and the Flow of Mass Challenge Problems Solutions Poblem 1: Steam Bouncing off Wall Momentum and the Flow of Ma Challenge Poblem Solution A team of paticle of ma m and epaation d hit a pependicula uface with peed v. The team ebound along the oiginal line

More information

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems CHAPTER 3: One-Dimenional Steady-State Conduction one pimay diection in which heat tanfe (geneally the mallet dimenion) imple model good epeentation fo olving engineeing poblem 3. Plane Wall 3.. hot fluid

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Mon , (.12) Rotational + Translational RE 11.b Tues.

Mon , (.12) Rotational + Translational RE 11.b Tues. Mon..-.3, (.) Rotational + Tanlational RE.b Tue. EP0 Mon..4-.6, (.3) Angula Momentum & Toque RE.c Tue. Wed..7 -.9, (.) Toque EP RE.d ab Fi. Rotation Coue Eval.0 Quantization, Quiz RE.e Mon. Review fo Final

More information

PHYS833 Astrophysics of Compact Objects Notes Part 12

PHYS833 Astrophysics of Compact Objects Notes Part 12 1 PHYS833 Atophyic of Compact Object Note Pat 1 Black Hole If the coe of a maive ta gow too lage to fom a neuton ta then thee i nothing that can top it collaping to vey high denity The gavitational field

More information

SIMPLE LOW-ORDER AND INTEGRAL-ACTION CONTROLLER SYNTHESIS FOR MIMO SYSTEMS WITH TIME DELAYS

SIMPLE LOW-ORDER AND INTEGRAL-ACTION CONTROLLER SYNTHESIS FOR MIMO SYSTEMS WITH TIME DELAYS Appl. Comput. Math., V.10, N.2, 2011, pp.242-249 SIMPLE LOW-ORDER AND INTEGRAL-ACTION CONTROLLER SYNTHESIS FOR MIMO SYSTEMS WITH TIME DELAYS A.N. GÜNDEŞ1, A.N. METE 2 Abtact. A imple finite-dimenional

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

HRW 7e Chapter 13 Page 1 of 5

HRW 7e Chapter 13 Page 1 of 5 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Our Universe: GRAVITATION

Our Universe: GRAVITATION Ou Univese: GRAVITATION Fom Ancient times many scientists had shown geat inteest towads the sky. Most of the scientist studied the motion of celestial bodies. One of the most influential geek astonomes

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Orbits. Newton suggested that an object could be put into orbit if it were launched from a high hill at a high speed

Orbits. Newton suggested that an object could be put into orbit if it were launched from a high hill at a high speed Satellites & Obits Obits Newton suggested that an object could be put into obit if it wee launched fom a high hill at a high speed If the launch speed was high enough, the object would fall aound Eath

More information

Gravity Notes for PHYS Joe Wolfe, UNSW

Gravity Notes for PHYS Joe Wolfe, UNSW Gavity Notes fo PHYS 111-1131. Joe Wolfe, UNSW 1 Gavity: whee does it fit in? Gavity [geneal elativity] Electic foce* gavitons photons Weak nuclea foce intemediate vecto bosons Stong nuclea foce Colou

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

γ from B D(Kπ)K and B D(KX)K, X=3π or ππ 0

γ from B D(Kπ)K and B D(KX)K, X=3π or ππ 0 fom and X, X= o 0 Jim Libby, Andew Powell and Guy Wilkinon Univeity of Oxfod 8th Januay 007 Gamma meeting 1 Outline The AS technique to meaue Uing o 0 : intoducing the coheence facto Meauing the coheence

More information

Above Flux Estimation Issues in Induction Generators with Application at Energy Conversion Systems

Above Flux Estimation Issues in Induction Generators with Application at Energy Conversion Systems Acta Polytechnica Hungaica Vol. 3, No. 3, 2006 Above Flux Etimation Iue in Induction Geneato with Application at Enegy Conveion Sytem Ioif Szeidet, Octavian Potean, Ioan Filip, Vaa Citian Depatment of

More information

Physics 312 Introduction to Astrophysics Lecture 7

Physics 312 Introduction to Astrophysics Lecture 7 Physics 312 Intoduction to Astophysics Lectue 7 James Buckley buckley@wuphys.wustl.edu Lectue 7 Eath/Moon System Tidal Foces Tides M= mass of moon o sun F 1 = GMm 2 F 2 = GMm ( + ) 2 Diffeence in gavitational

More information

KR- 21 FOR FORMULA SCORED TESTS WITH. Robert L. Linn, Robert F. Boldt, Ronald L. Flaugher, and Donald A. Rock

KR- 21 FOR FORMULA SCORED TESTS WITH. Robert L. Linn, Robert F. Boldt, Ronald L. Flaugher, and Donald A. Rock RB-66-4D ~ E S [ B A U R L C L Ii E TI KR- 21 FOR FORMULA SCORED TESTS WITH OMITS SCORED AS WRONG Robet L. Linn, Robet F. Boldt, Ronald L. Flaughe, and Donald A. Rock N This Bulletin is a daft fo inteoffice

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information

Deflection of light due to rotating mass a comparison among the results of different approaches

Deflection of light due to rotating mass a comparison among the results of different approaches Jounal of Physics: Confeence Seies OPEN ACCESS Deflection of light due to otating mass a compaison among the esults of diffeent appoaches Recent citations - Gavitational Theoies nea the Galactic Cente

More information

10. Universal Gravitation

10. Universal Gravitation 10. Univesal Gavitation Hee it is folks, the end of the echanics section of the couse! This is an appopiate place to complete the study of mechanics, because with his Law of Univesal Gavitation, Newton

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Theorem 2: Proof: Note 1: Proof: Note 2:

Theorem 2: Proof: Note 1: Proof: Note 2: A New 3-Dimenional Polynomial Intepolation Method: An Algoithmic Appoach Amitava Chattejee* and Rupak Bhattachayya** A new 3-dimenional intepolation method i intoduced in thi pape. Coeponding to the method

More information