Solutions Practice Test PHYS 211 Exam 2

Size: px
Start display at page:

Download "Solutions Practice Test PHYS 211 Exam 2"

Transcription

1 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following equation: F x =.5 + x = ma x F x =.5 + x = (1.7)(3.1) x = 7.77N F y =1.4 + y = ma y F y =1.4 + y = (1.7)(.5) y = 5.65N Since we now have the x and y component of the foce, we ue Pythagoean equation to get F = 9.61N

2 A A omewhat confuing poblem without the coect fee-body diagam, hown below: A alway, it bet to put all you foce vecto into thei x- and y-component (if they aen t aleady) o we hould beak apat the applied foce, F, into it y-component, Finθ, and it x-component, Fcoθ. Now, and hee the impotant pat, ince the book in t liding down (o moving anywhee eally) thee no net foce acting on it in eithe axi/dimenion. Thi baically mean that the um of all the foce pointing up mut equal the um of all thoe pointing down. And alo that the um of all the foce pointing left equal the um of thoe pointing ight. Fom that we get the following two equation: (1) f + F inq = mg () n = F coq The fit equation can be e-witten to how how fiction can be boken down into it contituent pat, and afte we ubtitute n fom the econd equation, we can then olve fo F: f + F inq = mg µ n + F inq = mg µ F coq + F inq = mg F( µ coq + inq ) = mg F = mg = 5.3N µ coq + inq

3 3D The 100N foce will be applied to the ytem (which ha total ma 10kg) cauing it to acceleate with a = F/m = 100/10 = 10 m/. Thu we know that the 6kg ma will be acceleating at 10 m/, and o the foce acting on it mut be given by F = ma = (6)(10) = 60N 4E All of the tatement could be tue: i. If the elevato wee acceleating in eithe diection the nomal foce would not be equal to the man weight, howeve ince they don t mention acceleation we mut aume the acceleation i zeo, and the upwad velocity i contant. ii. iii. The acceleation would have to be in the upwad diection fo nomal foce to be geate, which would mean that although the elevato i moving downwad it i lowing down due to an upwad acceleation. Thi i alway tue when acceleating downwad. 5B Since the cate i at et, we would need to ovecome the foce of tatic fiction in ode to get it moving. The maximum foce of tatic fiction i given by f = µn = (0.5)(40) = 0N Thu, it i clea that the 1N foce applied will not be geat enough to ovecome tatic fiction and the block will not move. In fact, the foce of tatic fiction will imply match the applied foce of 1N, enuing that the object emain till.

4 6C Looking at the pulley ytem, we can geneate the equation fo the entie ytem that ay the net foce acting on the pulley ytem i: F Net = m 3 g = (m 3 + m 9 )a a =.45 m / Now we have acceleation we can et up the equation fo net foce on eithe object to olve fo tenion. Fo the 3kg ma the equation become: F 3 = m 3 g T = ma T =.05N 7A Thi i actually a athe ticky quetion. Given the infomation povided we cannot actually calculate the aveage fictional foce, howeve we do know that ince the bea i able to pick up peed duing it decent, the weight mut be geate than the foce of fiction. The weight of the bea i mg = 45N, o the aveage fictional foce mut be le than 45N, and only one anwe obey that ule. 8A Since the ball motion i vetical, the weight component will not alway be in the ame diection elative to the tenion (which will alway point towad the cente). Fo example, at the top of the cicle both the tenion and weight will point down towad the cente, while at the bottom the tenion will point up and the weight vecto will point down. Ou goal i to figue out what i the laget contant peed that we can ue at all point along the cicle without the ting beaking. Expeience tell u that the bottom of the cicle i whee the tenion will mot be put to the tet ince it will have to contend with the weight component acting againt it, o that i likely whee we will have to calculate ou peed. At the bottom we get the following equation: F C = T mg = mv With the ma, tenion, and adiu aleady given, we can olve fo velocity and get v = 11.1 m/.

5 9E It impotant fo quetion like thi not to get too bogged down on the detail of the poblem. Thi quetion i imila to that of the man in the elevato acceleating down, except thi time we ve eplaced nomal foce with tenion. The ball peed i inceaing in the downwad diection, o it mut be acceleating downwad. We can calculate the acceleation eaily uing: a = DV/Dt = [(-4) (-)]/ = -1 m/ A alway we can et the net foce equal to ma x acceleation and then olve fo tenion. Since the weight vecto point down and the tenion point upwad, the weight mut be lage a we ae acceleating down, and we get: F = mg + T = ma T = 4400N 10E A dicued at the eview, we want to otate the fee-body diagam fo cenaio like thi to minimize the amount of algeba equied. In doing o, the nomal foce now point along the +y-axi, while fiction goe along the x-axi (up the incline) and only the weight vecto i now not aligned with eithe axi. A uch, the weight vecto (mg) i boken into it x- and y- component, with mgco40 diectly oppoing the nomal foce, and mgin40 diectly oppoing fiction (down the incline). Since thee i no net foce along the y-axi we olve fo nomal foce, n = mgco40, and plug it to the equation below. The eulting net foce along the incline (which i now the x-axi) become: F Net = mginθ f k = ma F Net = mginθ µ k n = ma F Net = mginθ µ k mgcoθ = ma a =.9 m / With acceleation now given, we can ue the kinematic equation to olve fo final velocity: V = V 0 + ad V = 6.03 m /

6 11B The fee-body diagam how the net foce along each axi would be a follow: F Net,y = n mg = 0 Thu : n = mg F Net,x = ma F f k = ma F µ k n = ma F µ k mg = ma F = ma + µ k mg Since we aleady have the ma, and the coefficient of fiction, all we need to olve fo the applied foce, F, i the acceleation, a. Auming the cate tat fom et, it initial kinetic enegy would be zeo, thu the final kinetic enegy mut be equal to 600J. Thi allow u to olve fo the final velocity, vf, uing the following equation: K final = 1 mv f v f = K final m = m / Uing the kinematic equation we can now olve fo acceleation: v i = 0 v f = m / a =? t = Δx = 75 m v f = v i + aδx a = 8 m/ Latly, we plug in the acceleation into the above equation to olve fo applied foce, F: F = ma + µ k mg = 9.96N

7 1A The only foce acting on the ca ae it weight (pointing down), and the nomal foce (pependicula to the incline). Thee no need to otate the diagam hee, jut plit the nomal foce into x- and y- component, with ncoq oppoite weight along the y-axi, and ninq pointing along the x-axi diectly towad the cente of the cicula tack, thu making it the centipetal foce. Since thee no net foce along the y-axi, we can et ncoq = mg, and then olve fo nomal foce, n = mg/coq, which i plugged into the equation below. We can now et up the equation fo centipetal foce: F C = ninθ = mv F C = mg mv inθ = coθ which implifie to: gtanθ = v v = g tanθ 13B Hee we e looking fo centipetal acceleation, which only equie velocity and adiu. We get velocity by conveting evolution pe econd to mete pe econd: (p ) (p 0.5) m v = = = p m t 1 And o we get acceleation: v ac = t (p ) = 0.5 = 8p m

8 14E Befoe we can olve fo the dag foce at 30 m/ we need to ecognize that the dag foce at teminal velocity i equal to the weight of the object, mg. Since dag foce i popotional to the quae of the velocity, and change the velocity mut be quaed befoe we can pedict the change to the dag foce. Let D epeent the dag foce at teminal velocity (v = 80 m/), and let D epeent the dag foce at 30 m/. Since D µ v, " D' $ 30 # 80 v % ' & Thu : " = 30 % $ ' v = 0.141v # 80 & D' = 0.141D = 0.141mg = 7.6N 15C Fo a quetion like thi we need to take all the foce acting on the object and put them into the x- and y- component, that way we can et up equation fo net foce along each axi. In thi paticula quetion, we ae only eally inteeted in the y-axi, ince that i whee we ll find the nomal foce: The foce pointing up will be the nomal foce, n, and the foce pointing down will be the weight, mg, and the vetical component of the 00N foce, 00in0 = 68.4N Since the y-axi ha no net foce, the um of foce pointing up equal the um of foce pointing down, thu we et up the equation fo the y-axi: F Net,y = 0 : n = mg + 00in0 0 n = 313 N

9 16A It i impotant to undetand that vetical cale, uch a thoe hown in the poblem, will have a tenion foce ditibuted evenly thoughout the length of the ping. The eult i imila to what we ee when any ma i hung fom a ting o ope, thee i a continuou tenion foce pulling it in both diection. The fact that thee ae two cale make no diffeence compaed to if thee wa only one cale. In both cae, thee i continuou tenion foce equal to the weight of the fih ditibuted along the ping. Thu each cale will ead 16 N. Note that even if thee wee 0 cale all in a ow, auming they wee all male (like in thi quetion) then they would all ead the ame value of 16 N. 17C Remembe that on flat uface the only foce eponible fo tuning a vehicle uch that it doen t lip i tatic fiction, which point along the adial axi and i equal to the centipetal foce. Along the vetical axi the weight vecto, mg, and the nomal foce, n, oppoe one anothe and cancel out, uch that we can wite n = mg. So, when etting up the equation fo centipetal foce we get: F C = f = µ n = µ mg = mv v = µ g =10 m/ 18B Accoding to dag foce, the equation fo dag foce i popotional to uface aea. Given the volume of each cube we can detemine the ide length of Cube A and Cube B ae 3 cm and 4 cm, epectively, meaning thei co-ectional aea ae 9 cm and 16 cm, epectively. Since all the othe vaiable ae contant fo both cube, the atio of Dag Foce fo Cube B to Dag Foce fo Cube A i DB / DA = 16 / 9.

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Force & Motion: Newton s Laws

Force & Motion: Newton s Laws oce & otion: Newton Law ( t Law) If no net foce act on a body then the body velocity cannot change. Zeo net foce implie zeo acceleation. The ma of an object detemine how difficult it i to change the object

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Chapter 5. Applying Newton s Laws. Newton s Laws. r r. 1 st Law: An object at rest or traveling in uniform. 2 nd Law:

Chapter 5. Applying Newton s Laws. Newton s Laws. r r. 1 st Law: An object at rest or traveling in uniform. 2 nd Law: Chapte 5 Applying Newton s Laws Newton s Laws st Law: An object at est o taveling in unifom motion will emain at est o taveling in unifom motion unless and until an extenal foce is applied net ma nd Law:

More information

Chapter 5 Applications of Newton s Laws

Chapter 5 Applications of Newton s Laws Chapte 5 Application of Newton Law Conceptual Poblem Detemine the Concept Becaue the object ae peeding up (acceleating), thee mut be a net foce acting on them. The foce acting on an object ae the nomal

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION 103 PHYS 1 1 L:\103 Phy LECTURES SLIDES\103Phy_Slide_T1Y3839\CH6Flah 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Add Impotant Rotational Kinetic Enegy Page: 353 NGSS Standad: N/A Rotational Kinetic Enegy MA Cuiculum Famewok (006):.1,.,.3 AP Phyic 1 Leaning Objective: N/A, but olling poblem have appeaed on peviou

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Honors Classical Physics I

Honors Classical Physics I Hono Claical Phyic I PHY141 Lectue 9 Newton Law of Gavity Pleae et you Clicke Channel to 1 9/15/014 Lectue 9 1 Newton Law of Gavity Gavitational attaction i the foce that act between object that have a

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vecto Vecto have Diection and Magnitude Mike ailey mjb@c.oegontate.edu Magnitude: V V V V x y z vecto.pptx Vecto Can lo e Defined a the oitional Diffeence etween Two oint 3 Unit Vecto have a Magnitude

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Motion along curved path *

Motion along curved path * OpenStax-CNX module: m14091 1 Motion along cuved path * Sunil Kuma Singh This wok is poduced by OpenStax-CNX and licensed unde the Ceative Commons Attibution License 2.0 We all expeience motion along a

More information

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet AP * PHYSICS B Cicula Motion, Gavity, & Obits Teache Packet AP* is a tademak of the College Entance Examination Boad. The College Entance Examination Boad was not involved in the poduction of this mateial.

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Understanding the Concepts

Understanding the Concepts Chistian Bache Phsics Depatment Bn Maw College Undestanding the Concepts PHYSICS 101-10 Homewok Assignment #5 - Solutions 5.7. A cclist making a tun must make use of a centipetal foce, one that is pependicula

More information

AP Physics Centripetal Acceleration

AP Physics Centripetal Acceleration AP Phyic Centipetal Acceleation All of ou motion tudie thu fa hae dealt with taight-line tuff. We haen t dealt with thing changing diection duing thei tael. Thi type of motion i called angula motion. A

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 http://membe.titon.net/daveb Uing the concept dicued in the peceding pape ( http://membe.titon.net/daveb ), I will now deive

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc. AP Phyic Gavity Si Iaac Newton i cedited with the dicovey of gavity. Now, of coue we know that he didn t eally dicove the thing let face it, people knew about gavity fo a long a thee have been people.

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position Announcement In the lectue link Look o tet 1 beakdown liting the topic o the quetion. Look o m umma o topic o the eam. We ll ue it on the eiew net Tueda. Look o a lit o baic phic act eleant o thi eam.

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

HRW 7e Chapter 13 Page 1 of 5

HRW 7e Chapter 13 Page 1 of 5 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

PHYSICS 151 Notes for Online Lecture 2.6

PHYSICS 151 Notes for Online Lecture 2.6 PHYSICS 151 Note fo Online Lectue.6 Toque: The whole eaon that we want to woy about cente of ma i that we ae limited to lookin at point mae unle we know how to deal with otation. Let eviit the metetick.

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4. ASTR 3740 Relativity & Comology Sping 019. Anwe to Poblem Set 4. 1. Tajectoie of paticle in the Schwazchild geomety The equation of motion fo a maive paticle feely falling in the Schwazchild geomety ae

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Geometry Contest 2013

Geometry Contest 2013 eomety ontet 013 1. One pizza ha a diamete twice the diamete of a malle pizza. What i the atio of the aea of the lage pizza to the aea of the malle pizza? ) to 1 ) to 1 ) to 1 ) 1 to ) to 1. In ectangle

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

PHYSICS 1050 Mid-term Test 1 University of Wyoming 8 February 2007

PHYSICS 1050 Mid-term Test 1 University of Wyoming 8 February 2007 Name: PHYSICS 1050 Mid-tem Test 1 Univesity of Wyoming 8 Febuay 2007 This test is open-note and open-book. This means that any efeence mateial is pemitted duing the test. Calculatos also ae pemitted. Howeve,

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle)

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle) VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS NON-UNIFORM CIRCULAR MOTION Equation of a cicle x y Angula displacement [ad] Angula speed d constant t [ad.s -1 ] dt Tangential velocity v v [m.s -1 ]

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

RE 7.a. RE 7.b Energy Dissipation & Resonance RE 7.c EP7, HW7: Ch 7 Pr s 31, 32, 45, 62 & CP

RE 7.a. RE 7.b Energy Dissipation & Resonance RE 7.c EP7, HW7: Ch 7 Pr s 31, 32, 45, 62 & CP Wed. Lab Fi. Mon. Tue. 7.-.4 Macocopic Enegy Quiz 6 4pm, hee Math & Phy Reeach L6 Wok and Enegy 7.5-.9 Enegy Tanfe RE 7.a RE 7.b 7.0-. Enegy Diipation & Reonance RE 7.c EP7, HW7: Ch 7 P 3, 3, 45, 6 & CP

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information

AE 245 homework #9 solutions

AE 245 homework #9 solutions AE 245 homewok #9 olution Tim Smith 13 Apil 2000 1 Poblem1 In the Apollo miion fom the Eath to the Moon, the Satun thid tage povided the tan-luna inetion bun that tanfeed the Apollo pacecaft fom a low

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

PROBLEM (page 126, 12 th edition)

PROBLEM (page 126, 12 th edition) PROBLEM 13-27 (page 126, 12 th edition) The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic fiction between block B and the inclined plane is 0.4. A and B ae eleased

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Chapter 1: Mathematical Concepts and Vectors

Chapter 1: Mathematical Concepts and Vectors Chapte : Mathematical Concepts and Vectos giga G 9 mega M 6 kilo k 3 centi c - milli m -3 mico μ -6 nano n -9 in =.54 cm m = cm = 3.8 t mi = 58 t = 69 m h = 36 s da = 86,4 s ea = 365.5 das You must know

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information