Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle

Size: px
Start display at page:

Download "Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle"

Transcription

1 Coucio of Malliavi diffeeiable og oluio of SD ude a iegabiliy codiio o he dif wihou he Yamada-Waaabe icile David R. Baño davidu@mah.uio.o Side Duedahl ided@mah.uio.o Thilo Meye-Badi Meye-Badi@mah.lmu.de ad Fak Poke oke@mah.uio.o Abac: I hi ae we aim a emloyig a comace cieio of Da Pao, Malliavi, Nuala 3] fo uae iegable Bowia fucioal o couc uiue og oluio of SD ude a iegabiliy codiio o he dif coefficie. The obaied oluio u ou o be Malliavi diffeeiable ad ae ued o deive a Bimu-lwohy-Li fomula fo oluio of he Kolmogoov euaio. MSC 21 ubjec claificaio: 6H1, 6H7, 6H4, 6J6.. Keywod ad hae: Sog oluio of SD, Malliavi calculu, Kolmogoov euaio, Bimu-lwohy-Li fomula, igula dif coefficie.. 1. Ioducio The objec of udy of hi ae i he ochaic diffeeial euaio SD X = x b, X x d B, T, x R d, 1 whee B i a d-dimeioal Bowia moio o ome comlee obabiliy ace Ω, F, µ wih eec o a µ-comleed Bowia filaio {F } T ad whee b :, T ] R d R d i a Boel-meauable fucio. I hi aicle we ae ieeed i he aalyi of og oluio X of he SD 1, ha i a {F } T -adaed oluio ocee o Ω, F, µ whe he dif coefficie i iegula, e.g. o-lichizia o dicoiuou. A widely ued coucio mehod fo og oluio i hi cae i he lieaue i baed o he o-called Yamada-Waaabe icile. Uig hi icile, a oce couced weak oluio, ha i a oluio which i o eceaily a fucioal of he divig oie, combied wih ahwie uiuee give a uiue og oluio. So Weak oluio Pahwie uiuee Uiue og oluio. 2 Hee, ahwie uiuee mea he followig: If X 1 ad X 2 ae {F 1 } T - ad eecively {F 2 } T -adaed weak oluio o a obabiliy ace, he hee oluio mu 1

2 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio2 coicide a.. See 31]. I he mileoe ae fom ], A.K. Zvoki ued he Yamada- Waaabe icile i he oe-dimeioal cae i coecio wih PD echiue o couc a uiue og oluio o 1, whe b i meely bouded ad meauable. Subeuely, he lae eul wa geealied by A.Y. Veeeikov 3] o he mulidimeioal cae. Imoa ohe ad moe ece eul i hi diecio ae e.g. 15], 9] ad 14]. See alo he ikig wok 2] i he Hilbe ace eig, whee he auho ue oluio of ifiie-dimeioal Kolmogoov euaio o obai uiue og oluio of ochaic evoluio euaio wih bouded ad meauable dif fo a.e. iiial value. I hi aicle we wa o emloy a coucio icile fo og oluio develoed i 22]. Thi mehod which elie o a comace cieio fom Malliavi Calculu fo uae iegable fucioal of he Bowia moio 3] i i diameical ooiio o he Yamada- Waaabe icile 2 i he ee ha Sog exiece Uiuee i law Sog uiuee, ha i he exiece of a og oluio o 1 ad uiuee i law of oluio imly he exiece of a uiue og oluio. A cucial coeuece of hi aoach i he addiioal iigh ha he couced oluio ae egula i he ee of Malliavi diffeeiabiliy. We meio ha hi mehod ha bee ecely alied i a eie of ohe ae. See e.g. 2], whee he auho obai Malliavi diffeeiable oluio whe he dif coefficie i R d i bouded ad meauable. Ohe alicaio eai o he ochaic ao euaio wih igula coefficie 23], 24] o ochaic evoluio euaio i Hilbe ace wih bouded Hölde-coiuou dif 8]. See alo 1] i he cae of ucaed α-able ocee a divig oie ad 1] i he cae of facioal Bowia moio fo Hu aamee H < 1/2, which i a o-makovia divig oie. Uig he above meioed ew aoach, oe of he objecive of hi ae i o couc Malliavi diffeeiable uiue og oluio o 1 ude he iegabiliy codiio fo 2, > 2 uch ha b L, T ], L R d, R d 3 d 2 < 1. The idea fo he oof e o a mixue of echiue i 2] ad 6]. Moe eciely, we aoximae i he fi e he dif coefficie b by mooh fucio b wih comac o ad aly he Iô-Taaka-Zvoki ick by afomig he oluio X,x of 1 aociaed wih he coefficie b o ocee whee he ocee Y,x Y,x := X,x U, X,x, aify a euaio wih moe egula coefficie ha 1 give by dy,x = λu, X,x fo oluio U o he backwad PD U d I d U, X,x db 1 2 U b U = λu b, U T, x =. 4 I he ecod e we ue he comace cieio fo L 2 Ω i 3] alied o he euece Y,x, 1 i coecio wih Schaude-ye of eimae of oluio of 4 ad echiue fom whie oie aalyi o how ha Y,x Y x i L 2 Ω fo all ad ha X x = ϕ, Y x,

3 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio3 whee ϕ, i he ivee of he fucio x x U, x fo all ad U a oluio of 4, i a Malliavi diffeeiable uiue og oluio of 1. Ou ae i ogaied a follow: I Secio 2 we ee ou mai eul o he coucio of og oluio Theoem 2.1 ad Theoem A a alicaio of he eul obaied i Secio 2 we eablih i Secio 3 a Bimu-lwohy-Li fomula fo he eeeaio of fi ode deivaive of oluio of Kolmogoov euaio. 2. Mai eul I hi ecio, we wa o fuhe develo he idea ioduced i 6] ad 22] o deive Malliavi diffeeiable og oluio of ochaic diffeeial euaio wih iegula coefficie. Moe eciely, we aim a aalyzig he SD of he fom dx = b, X d db, 1, X = x R d, 5 whee he dif coefficie b :, T ] R d R d i a Boel meauable fucio aifyig ome iegabiliy codiio ad B i a d-dimeioal Bowia moio wih eec o he ochaic bai Ω, F, µ, {F } T 6 fo he µ augmeed filaio {F } T geeaed by B. A he ed of hi ecio we hall alo aly ou echiue o euaio wih moe geeal diffuio coefficie Theoem Coide he ace L := L, T ], L R d, R d fo, R aifyig he followig codiio > 2, > 2 ad d 2 < 1 7 ad deoe by he uclidea om i R d. The Baach ace L i edowed wih he om / 1/ f L = f, x dx d < 8 R d fo f L. The mai goal of he ae i o how ha SD of he ye 5 wih dif coefficie b aifyig he iegabiliy codiio give i 8 admi og oluio ha ae uiue ad i addiio, Malliavi diffeeiable. So, ou mai eul i he followig heoem: Theoem 2.1. Suoe ha he dif coefficie b :, T ] R d R d i 5 belog o L. The hee exi a uiue global og oluio X o euaio 5 uch ha X i Malliavi diffeeiable fo all T. A imoa e of he oof of Theoem 2.1 i diecly baed o he udy of he egulaiy of oluio o he followig aociaed PD o euaio SD 5. U, x b, x U, x 1 U, x λu, x b =,, T ], UT, x =, 9 2 whee U :, T ] R d R d, λ > ad b L. The followig eul i due o 5] ad ablihe he well-oede of he above PD oblem i a ceai ace.

4 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio4 ad Fi, ecall he defiiio of he followig fucioal ace H α, = L, T ], W α, R d, The om i H α, ca be ake o be H α, = H α, H 1,. u H α, u H α, u L. H β, = W β,, T ], L R d Theoem 2.2. Le, be uch ha 2, > 2 ad d 2 < 1 ad λ >. Coide wo veco field b, Φ L. The hee exi a uiue oluio of he backwad aabolic yem belogig o he ace u 1 u b u λu Φ =,, T ], ut, x = 1 2 H 2, := L, T ], W 2, R d W 1,, T ], L R d, i.e. hee exi a coa C > deedig oly o d,,, T, λ ad b L uch ha u H 2, C Φ L. 11 The followig eul i a a of 15, Lemma 1.2] ha give u ome oeie o he egulaiy of u H 2, ha we will eed fo he oof of Theoem 2.1. Lemma 2.3. Le, 1, uch ha d 2 < 1 ad u H 2,, he u i Hölde coiuou i, x, T ] R d, amely fo ay ε, 1 aifyig ε d 2 < 1 hee exi a coa C > deedig oly o, ad ε uch ha fo all,, T ] ad x, y R d, x y u, x u, x C ε/2 u 1 1/ ε/2 H 2, u, x whee deoe ay om i R d d u 1/ε/2, 12 u, x u, y x y ε CT 1/ u H 2, T u L, 13 Ou mehod o couc og oluio i acually moivaed by he followig obevaio i 17] ad 21] ee alo 22]. Pooiio 2.4. Suoe ha he dif coefficie b :, T ] R d R d i 5 i bouded ad Lichiz coiuou. The he uiue og oluio X = X 1,..., X d of 5 ha he exlici eeeaio ϕ, Xω i = µ ϕ, ] ω i T b 14 fo all ϕ :, T ] R R uch ha ϕ, B i L 2 Ω fo all T, i = 1,..., d,. The adom eleme T b i give by T bω, ω := ex d 1 2 L W j ω b j, ω d ω j W j ω b j, ω 2 d. 15

5 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio5 Hee Ω, F, µ, i a coy of he uadule Ω, F, µ, B i 6. Fuhe µ deoe a Pei iegal of adom eleme Φ : Ω S wih eec o he meaue µ. The Wick oduc i he Wick exoeial of 15 ee 6 i ake wih eec o µ ad W j i he whie oie of B j i he Hida ace S ee 57. The ochaic iegal φ, ωd ω j i 15 ae defied fo edicable iegad φ wih value i he couclea ace S. See e.g. 12] fo defiiio. The ohe iegal ye i 15 i o be udeood i he ee of Pei. Remak 2.5. Le = 1 < 2 <... < m = T be a euece of aiio of he ieval, T ] wih max m 1 i=1 i1 i. The he ochaic iegal of he whie oie W j ca be aoximaed a follow: W j ωd j ω = lim i=1 m j ω j i1 ωw j i ω i i L 2 λ µ; S. Fo moe ifomaio abou ochaic iegaio o couclea ace he eade i efeed o 12]. I he euel we hall ue he oaio Y i,b fo he execaio o he igh had ide of 14 fo ϕ, x = x, ha i fo i = 1,..., d. We e Y i,b Y b = ] := µ i T b Y 1,b,..., Y d,b. 16 The fom of Fomula 14 i Pooiio 2.4 acually give ie o he cojecue ha he execaio o he igh had ide of Y b i 16 may alo defie oluio of 5 fo dif coefficie b lyig i L. Ou mehod o couc og oluio o SD 5 which ae Malliavi diffeeiable i eeially baed o hee e. Fi, we coide a euece of comacly oed mooh fucio b :, T ] R d R d, uch ha b := b ad b L < aoximaig b L a.e. wih eec o he Lebegue meaue ad he we ove ha he euece of og oluio X = Y b, 1, i elaively comac i L 2 Ω; R d Coollay 2.9 fo evey, T ]. The mai ool o veify comace i he boud i Lemma 2.6 i coecio wih a comace cieio i em of Malliavi deivaive obaied i 3] ee Aedix B. Thi e i oe of he mai coibuio of hi ae. Secodly, give a meely meauable dif coefficie b i he ace L, we how ha Y b,, T ] i a geealized oce i he Hida diibuio ace ad we ivoke he S- afom 58 o ove ha fo a give euece of a.e. aoximaig, mooh coefficie b wih comac o uch ha b L, a ubeuece of he coeodig og oluio X j = Y b j fulfil Y b j Y b i L 2 Ω; R d fo T Lemma Fially, uig a ceai afomaio oey fo Y b Lemma 2.14 we diecly how ha Y b i a Maaliavi diffeeiable oluio o 5. We u ow o he fi e of ou ocedue. The ucceful comleio of he fi e elie o he followig eeial lemma: Lemma 2.6. Le b :, T ] R d R d, 1 be a euece of fucio i C R d ace of ifiiely ofe diffeeiable fucio wih comac o aoximaig b L a.e. uch ha b := b ad b L <. Deoe by X,x he og oluio of SD 5 wih dif

6 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio6 coefficie b fo each. The fo evey, T ], hee exi a < δ < 1 ad a fucio C : R, deedig oly o,, d, δ ad T uch ha wih D X,x Hee deoe ay om i R d d. Moeove, fo all 2. D X,x 2] C b L, δ 17 C b L <. 1 1,T ] D X,x ] < 18 Poof. Thoughou he oof we will deoe by C : R, ay fucio deedig o he aamee. We will alo ue he ymbol o deoe le o eual u o a oiive eal coa ideede of. We will ove he above eimae by coideig he oluio of he aociaed PD eeed i 9 wih b, i lace of b which we deoe by U, ad he uig he eul ioduced a he begiig of hi ecio o he egulaiy of i oluio. Fi, le u ioduce a ew oce ha will be ueful fo hi uoe. Coide fo each ad, T ] he fucio γ, : R d R d defied a γ, x = x U, x. I u ou, ee 5, Lemma 3.5], ha he fucio γ,,, T ], defie a family of C 1 -diffeomohim o R d. Fuhemoe, coide he auxiliay oce := γ, X,x,, T ], 1. Oe check,x uig Iô fomula ad 9 ha X aifie he followig SD,x d X = λu, γ, 1,x X d I d U, γ, 1,x X db, X,x = x U, x 19 which i euivale o SD 5 if we elace b by b, 1. Uig he chai ule fo Malliavi deivaive ee e.g. 25] we ee ha fo, D X,x X,x = γ, X,x D X,x.,x Becaue of Lemma B.4 i uffice o ove he eimae 17 ad 18 fo he oce X. Sice b ae ow mooh we have ha 19 admi a uiue og oluio which ake he fom X,x = x U, x λ The he Malliavi deivaive of X,x D X,x U, γ, 1,x X d = I d U, γ 1 λ I d U, γ, 1,x X db. fo, which exi ee e.g. 25], i, U, γ 1, 2 U, γ 1, X,x,x X γ, 1,x X γ, 1 X,x D X,x d,x X D X,x db.

7 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio7 Deoe fo imliciy, Z, := D X,x. The fo < we ca wie Z, Z, = U, γ 1 λ λ, U, γ 1, U, γ 1, 2 U, γ 1, 2 U, γ 1, = Z, Z, λ U, γ 1, 2 U, γ 1,,x X U, γ 1,x, X,x X γ, 1,x X Z,d,x X γ, 1,x X Z, Z, d,x X γ, 1,x X Z,dB,x X γ, 1,x X Z, Z, db,x X γ, 1,x X Z, Z, d,x X γ, 1,x X Z, Z, db. By di of Lemma B.3 we kow ha U i bouded uifomly i ad Lemma B.2 how ha 2 U belog, a lea, o L uifomly i. Thi imlie ha he ochaic iegal i he exeio fo Z, Z, i a ue maigale, which we hee deoe my M. A a eul, ice he iiial codiio Z, Z, i F -meauable fo each, fo a give α 2, by Iô fomula we have Z, Z, α Z, Z, α Z, Z, α 2 T 2 U, γ, 1 Z, Z, α d M 2 U, γ 1,x X γ, 1,,x X γ, 1 ],x X Z, Z, d,x X Z, Z, 2 whee hee T ad fo he ace ad fo he aoiio of maice. We oceed he uig he fac ha he ace of he maix aeaig i 2 ca be bouded by a coa C,d ideede of, ime Z, Z, 2 2 U, γ, 1,x X γ, 1,x X 2. Alogehe, Z, Z, α Z, Z, α Coide hu he oce Z, Z, α d M Z, Z, α 2 U, γ 1,,x X γ, 1,x X 2 d 21 The oce V V := 2 U, γ 1, The Lemma B.2 i coecio wih Theoem 2.2 we have ha The Iô fomula yield,x X γ, 1,x X 2 d. 22 i a coiuou o-deceaig ad {F },T ] -adaed oce uch ha V =. V ] <.

8 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio8 e V Z, Z, α Z, Z, α The akig execaio e V Z, Z, α] Z, Z, α] e V Z, Z, α d e V dm. 23 e V Z, Z, α] d. 24 The Gowall ieualiy give e V Z, Z, α] Z, Z, α]. 25 A hi oi, i i eay o ee, followig imila e, ha fo he oce Z, oe ha e V Z, α] Z, α], whee Z, = I d U, γ 1,T ] e V,,x X. So Z, α] 1,T ] becaue of Lemma B.3 ii fo a ufficiely lage λ R. The, he Cauchy-Schwaz ieualiy ad Lemma B.5 give,t ] Z, α],t ] e 2V We coiue o ove he eimae 17. Recall ha Z, Z, = U, γ 1 λ, U, γ 1, 2 U, γ 1, U, γ, 1,x X α] < 26 Z, 2α] 1/2 ] 1/2 e 2V T <.,x X U, γ 1,x, X,x X γ, 1,x X Z,d 27,x X γ, 1,x X Z,dB. The akig om ad uig Bukholde-Davi-Gudy ieualiy we ge Z, Z, α] U, γ 1,x, X U, γ 1,x, X α] α ] 28 λ α U, γ, 1,x X γ, 1,x X Z, d ] α/2 2 U, γ, 1,x X γ, 1,x X Z, 2 d. =: i ii iii The aim ow i o fid Hölde boud i he ee of 17 fo he exeio aeaig i 28. Fo i we may wie i = U, γ 1, U, γ 1, U, γ 1,,x X U, γ 1,x, X α],x X U, γ 1,,x X α] X,x U, γ 1, X,x α].

9 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio9 The by Lemma 2.3 hee exi a ε, 1/α ad a coa C,,d,α > ideede of uch ha ] U, γ 1,x, X U, γ 1,x, X α α C,,d,α ε/2 U 1 1/ ε/2 U 1/ε/2 ad U, γ 1,,x X U, γ 1 C,,d,α T α/, γ 1, X,x α ],x X γ 1, H 2, L,x X αε] α U H T U 2, L. The above boud i coecio wih ieualiy 11 i Theoem 2.2 give i C,,d,α,T b L αε/2 γ 1,x, X γ 1,x, X αε] fo ome coiuou fucio C,,d,α,T ad hece C,,d,α,T b L <. Moeove, uig Giaov heoem, we obai ha ] γ 1,x, X γ 1,x, X = X,x X,x ] ] T b, x B d b u, x B u db u B B ] 1/2 1/2 ] 1/2 b, x B 2 d 1/2, whee we ued, Cauchy-Schwaz ieualiy ad boh ha 2 T b u, x B u db u < ad ] 1/2 b, x B 2 d <, ee 15, Lemma 3.2] o Lemma B.1. By Jee ieualiy fo cocave fucio ad he eviou eimae we have γ 1,x, X γ 1,x, X αε] αε γ 1,x, X γ 1,x, X ] αε/2. Alogehe, i C,,d,α,T b L δ fo a δ, 1. Fo he ecod em, ii, we ue Hölde ieualiy, Lemma B.3 ii fo a ufficiely lage λ R, Lemma B.4 ad he eimae 18 o obai

10 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 1 ii λ α α 1 C,,d,α,T δ,] U, γ 1,,x X γ, 1,x X 2α] d 1/2 fo a δ, 1. Fially, fo he hid em, fo α 2, we ue Hölde ieualiy o obai iii α 2 2 ] 2 U, γ, 1 X α γ, 1 X α Z, α d. The chooe α = 21 δ wih δ, 1/4 ad ue Lemma B.4 o ge ] iii δ 2 U, γ, 1 X 21δ Z, 21δ d. Z, 2α] 1/2 d The Fubii heoem, Hölde ieualiy oce moe wih eec o µdω, wih exoe 1δ, δ, 1/4 ad Cauchy-Schwaz yield ] 2 U, γ, 1 X 21δ Z, 21δ d = 2 U, γ, 1 X 21δ Z, 21δ] d 2 U, γ, 1 X ] 1/1δ 21δ1δ,] Z, 21δ 1δ δ ] δ 1δ Z 2 U, γ 1, X 21δ1δ ] 1/1δ d, 21δ 1δ δ ] δ 1δ d 2 U, γ, 1 X ] 21δ1δ 1/1δ d whee he la e follow fom 18. Fo he la faco, ice < 1/1 δ < 1, uig he ivee Jee ieualiy ad he fac ha 1 < 1 δ1 δ < 2 fo uiable δ, δ, 1/4 i coecio wih Lemma B.2 we have 2 U, γ 1, X 21δ1δ T 1 1/1δ fo evey, w... a coa M. A a ummay, i follow fom 25 ha ] 1/1δ d 2 U, γ 1, X 21δ1δ d ] 1/1δ M < e V Z, Z, 21δ] C,,d,α,T b L δ. The by Hölde ieualiy wih exoe 1δ, δ, 1 ogehe wih Lemma B.5 we obai Z, Z, 2] = e 1 1δ V e 1 1δ V Z, Z, 2] ] e 1 δ V δ 1δ e V Z, Z, 21δ] 1 1δ wih C,,d,α,T b L δ/1δ C,,d,α,T b L <.

11 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 11 Remak 2.7. The boud give i 18 i i fac uifom i x R d. Ideed, by Lemma B.3 iem ii we have ha he boud give i 26 i alo uifom i x R d. Moeove, ice U L fo all, he by Lemma B.3 iem iii i coecio wih Lemma B.1 we have ha fo ay k R e kv T ] <. Hece, fo ay α 1 x R d x R d,t ] D X,x α ] <. Remak 2.8. Oe alo check ha he ame hold fo he aial deivaive, ha i fo ay α 1 ] x X,x α < x R d,t ] by uig he fac ha x X,x olve he ame SD a D X,x, aig a =. A a eecuio of Lemma 2.6 we have he followig eul which i ceal i he oof of he exiece of og oluio of 5. Coollay 2.9. Le {b } be a euece of comacly oed mooh fucio aoximaig b i L. Deoe, a befoe, X x, he oluio o euaio 5 wih dif coefficie b. The fo each, T ] he euece of adom vaiable X,x, i elaively comac i L 2 Ω. Poof. Thi i a diec coeuece of he comace cieio ha ca be foud i Aedix C, Lemma C.1 ad C.2, which i due o 3], ogehe wih Lemma 2.6. Oe ca check ha he double iegal i Lemma C.2 i fiie. Namely fo ay < δ < 1 ad 2β 1 δ < 1. Z, Z, 2] 12β d d belog o he Hida dii- The followig lemma give a cieio ude which he oce Y b buio ace. Lemma 2.1. Suoe ha µ ex 36 b, B 2 d 1 2β1 δ d d < ] <, 29 whee he dif b :, 1] R d R d i meauable i aicula, 29 i valid fo b L becaue of Lemma B.1. The he coodiae of he oce Y b, defied i 16, ha i ] Y i,b ae eleme of he Hida diibuio ace. = µ i T b, 3 Poof. See 22] fo a imila oof. Lemma Le ε, 1 ad defie ε := 1 ε ad ε := 1ε ε. Le b :, T ] R d R d be a euece of Boel meauable fucio wih b = b uch ha ] ex 16 ε 8 ε 1 b, B 2 d < 31

12 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 12 hold. The SY i,b Y i,b φ co J ] 1 ε ex 28 ε 1 φ 2 d fo all φ S C, 1] d, i = 1,..., d, whee S deoe he S-afom ee Secio A.1 i Aedix A ad whee he faco J i defied by J = d 2 b, b, 2 d ε 2 b, 2 b, 2 d Hee S C, 1] i he comlexificaio of he Schwaz ace S, 1] o, 1], ee Secio A.1 i Aedix A. I aicula, if b aoximae b i he followig ee a, i follow ha a fo all 1, i = 1,..., d. Y b ε. 32 J ] 33 Y b i S Poof. Fo i = 1,..., d we obai by Pooiio 2.4 ad 59 ha { d SY i,b Y i,b i φ µ ex Re b, φ d 1 ] } b, φ 2 d 2 { d ex 1 2 b, b, φ b, b, 2 b, b, 2 d d d } ] 1. Sice ex{z} 1 z ex{ z } i follow fom Hölde ieualiy wih exoe ε = 1 ε ad ε = 1ε ε, fo a aoiae ε >, ha SY i,b Y i,b φ µ Q ε ] 1 ε µ 1 2 b, i ex { d Re b, φ d] } ] 1 ε ε 2 ex { ε Q }, φ d whee Q = d b, φ b, b, b, d 1 2 d. b, 2 b, 2 d

13 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 13 The uig he Cauchy-Schwaz ieualiy o he la iegal ad he fac ha x e x ad 1 e x fo x we may wie ε/2 T d T ε µ Q ε ] C ex φ 2 d µ b, b, d 1 T ε b, 2 b, 2 d 2 ε T 2 ] b, b, 2 d ε/2 T d ε T 2 = C ex φ 2 d µ 2 b, b, 2 d T ε ] b, 2 b, 2 d, whee i he la ieualiy we ued he Bukholde-Davi-Gudy ieualiy fo he ochaic iegal. The µ Q ε ] 1 ε ε/2 1 T C ex φ 2 d µ J ] 1 ε ε, whee J = d 2 b, b, 2 d ε 2 b, 2 b, 2 d ε. Fuhe we ge ha µ 1 2 i ex µ 1 2 { d b, i ex b, Re b, φ d φ 2 d] } ε ex { ε Q } { d Re b, ] } ] 1 2ε 2ε φ 2 d ] 1 ε φ d µ ex {2 ε Q } ] 1 2ε. The fo z C oe ha ex{ z } 1 2 ex{2re z} ex{ 2Re z} ex{2im z} ex{ 2Im z}. Thu µ ex {2 ε Q } ] 1 2ε ] 1 ] 1 µ 1 2ε 2ε ex {4 ε Re Q } µ ex { 4 ε Re Q } 2 2ε µ ex {4 ε Im Q } ] 1 ] 1 2ε 2ε µ ex { 4 ε Im Q }.

14 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 14 By he Cauchy-Schwaz ieualiy ad he emaigale oey of Doléa-Dade exoeial we ge ] µ µ ex {4 ε Re Q } { d ex 32ε 2 4 ε b, b, 2 b, 8 ε Re φ b, { } T L ex 2 ε φ 2 d, b, 2 d b, 2 d ] }] 1 2 d whee he la e follow fom he fac ha f, g 1 2 f 2 g 2, f, g L 2, T ] ad whee { d L = µ ex 4 ε 8 ε 1 b, b, 2 d 4 ε b, 2 b, ] }] d. Similaly, oe alo obai ] { } T µ ex { 4 ε Re Q } L ex 2 ε φ 2 d. I he ame way, oe alo obai he ame boud fo µ ex{4 ε Im Q }] ad µ ex{ 4 ε Im Q }]. Fially, fo he emaiig faco we ee ha µ 1 2 i ex { d b, Re b, φ d ] } ] 1 2ε 2ε φ 2 d { ] 1 i µ 4ε 4ε µ ex 4 ε 1 2 b, ] 1 i µ 4ε 4ε µ ex d ] }] 1 4ε φ 2 d { d Re b, 4 ε 8 ε 1 Re b, φ d φ 2 d }] 1 4ε Now, ice Re z 2 Re z 2, z C we have ha Re b φ 2 b Re φ 2 he uig Mikowki ieualiy, i.e. f g 2 1 f g fo ay 1 ad Cauchy-Schwaz ieualiy w... µ oe fially obai.

15 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 15 µ 1 2 i ex { d b, C µ ex { Alogehe, we obai SY i,b Y i,b Re b, φ d ] } ] 1 2ε 2ε φ 2 d 16 ε 8 ε 1 b, 2 d φ co J ] 1 }] 1 8ε 1ε ex {2 ex { 8 1 ε ε 28 ε 1 φ 2 d } 1 φ 2 d. }. Lemma Le b :, T ] R d R d be a euece of mooh fucio wih comac o wih b := b which aoximae he coefficie b :, T ] R d R d i L. The fo ay T hee exi a ubeuece of he coeodig og oluio X j, = Y b j, j = 1, 2..., uch ha Y b j Y b fo j i L 2 Ω. I aicula hi imlie Y b L 2 Ω, T. Poof. By Coollay 2.9 we kow ha hee exi a ubeuece Y b j, j 1, covegig i L 2 Ω. Fuhe, we eed o how ha J j ] a j wih J j a i 32. To hi ed, obeve ha fo a fucio f L oe ha ] T f, d = 2π d/2 f, ze z 2 /2 dzd. R d The by uig Hölde ieualiy wih eec o z ad he o we ee ha fo ay, 1, ] aifyig d 2 < 2, we have ] T f, d C f L, whee C i a coa deedig o T, d,,. The fom codiio 7, ice, > 2 we ca fid a δ, 1 mall eough o ha, > 21 δ. Fo hee, defie := 21δ 1 ad := 21δ > 1 ad aly he above eimae o f 21δ o obai ] T f, 21δ d C f L. 34 Now ice b b L fo evey j = 1,..., d ad < 1ε 2 < 1 we have b, b, 2 d 1ε 2 b, b, 2 d ] 1ε 2

16 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 16 which goe o zeo by he above eimae 34 by ju akig he cae whee δ =. Fially, fo he he ecod em i J j ] we have b, T ε b, T ε b, T ε b, 2 b, b, 2 d 1ε ] 1ε b, b, b, 21ε] 1/2 b, 1/2 b, d] 21ε The ice b b L fo evey we have b, 1ε d b, ] 21ε] 1/2 d 1/2 b, d] 21ε. b, 1/2 b, d] 21ε < fo a ufficiely mall ε, 1 by Lemma B.2 ad b, 1/2 b, d] 21ε a by eimae 34 fo a ufficiely mall ε >. Y b j Thu, by Lemma 2.11, Y b j Y b i L 2 Ω. Y b Remak I follow fom he above oof ha Y b ad x. a j i S. Bu he, by uiuee of he limi, alo Y b a i L 2 Ω; R d fo all I fac, Lemma 2.12 eable u ow o ae he followig afomaio oey fo Y b. Lemma Aume ha b :, T ] R d R d i i L. The ϕ i, Y b = µ ϕ i, ] T b a.e. fo all T, i = 1,..., d ad ϕ = ϕ 1,..., ϕ d uch ha ϕb L 2 Ω; R d. Poof. See 29, Lemma 16] o 21]. Uig he above auxiliay eul we ca fially give he oof of Theoem 2.1. Poof of Theoem 2.1. We wa o ue he afomaio oey 35 of Lemma 2.14 o how ha Y b i a uiue og oluio of he SD 5. To hoe oaio we e ϕ, ωdb := d ϕ, ωdb ad x =. Alo, le b, = 1, 2,..., be a euece of fucio a euied i Lemma We comme o ha Y b ha a coiuou modificaio. The lae ca be ee a follow: Sice each Y b i a og oluio of he SD 5 wih eec o he dif b we obai fom Giaov heoem ad ou aumio ha ] 4 4 ] T µ Y i,b Yu i,b = µ i i u b, d co u 2 35

17 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 17 { fo all u, T, 1, i = 1,..., d. The above coa come fom he fac ha b, d i bouded i L } 1 2 Ω; R d wih eec o he meaue µ, ee Lemma 3.2. i 15] o Lemma B.1. By Remak 2.13 we kow ha Y b Y b i L 2 Ω; R d ad hece we have almo ue covegece fo a fuhe ubeuece, T. So we ge ha by Faou lemma ] 4 µ Y i,b Yu i,b co u 2 36 fo all u, T, i = 1,..., d. The Kolmogoov lemma guaaee a coiuou modificaio of Y b. Sice i a weak oluio of 5 fo he dif b, x φ wih eec o he meaue dµ T = b, φ d dµ we ge ha SY i,b φ = µ i ] b, φ d ] = i µ = µ b i, φ i = µ b i, ] d Thu he afomaio oey 35 alied o b yield SY i,b φ = S ] bu, u φu d u d S b i u, Y i,b u The i follow fom he ijeciviy of he S-afom ha Y b = duφ SB i φ. b, Y b d B. B i φ. See Secio A i he Aedix. The Malliavi diffeeiabiliy of Y b come fom he fac ha Y i,b Y i,b i L 2 Ω ad Y i,b D 1,2 M < 1 fo all i = 1,..., d ad 1. See e.g. 25]. O he ohe had, uig uiuee i law, which i a coeuece of Lemma B.2 ad Pooiio 3.1, Ch. 5 i 13] we may aly, ude ou codiio, Giaov heoem o ay ohe oluio. The he oof of Pooiio 2.4 ee e.g. 28, Pooiio 1] how ha ay ohe oluio eceaily coicide wih Y b. We coclude hi ecio wih a geealiaio of Theoem 2.1 o a cla of o-degeeae d dimeioal Iô-diffuio. Theoem Aume he ime-homogeeou R d valued SD dx = bx d σx db, X = x R d, T, 37

18 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 18 whee he coefficie b : R d R d ad σ : R d R d R d ae Boel meauable. Suoe ha hee exi a bijecio Λ : R d R d, which i wice coiuouly diffeeiable. Le Λ x : R d L R d, R d ad Λ xx : R d L R d R d, R d be he coeodig deivaive of Λ ad aume ha Λ x yσy = id R d fo y a.e. a well a Λ 1 i Lichiz coiuou. Reuie ha he fucio b : R d R d give by b x := Λ x Λ 1 x bλ 1 x ] 1 2 Λ xx Λ 1 x d σλ 1 x e i ], i=1 ] d σλ 1 x e i ] aifie he codiio of Theoem 2.1, whee e i, i = 1,..., d, i a bai of R d. The hee exi a Malliavi diffeeiable oluio X o 37. Poof. The oof ca be diecly obaied fom Iô Lemma. See 22]. i=1 3. Alicaio 3.1. The Bimu-lwohy-Li fomula A a alicaio we wa o ue Theoem 2.1 o deive a Bimu-lwohy-Li fomula fo oluio v o he Kolmogoov euaio d v, x = b j, x x j v, x 1 2 d 2 x 2 i=1 i v, x 38 wih iiial codiio v, x = Φx, whee b :, T ] R d R d belog o L. I i kow ha, ee 15] o 7], ha whe Φ i coiuou ad bouded hee exi a oluio o 38 give by v, x = ΦX x ], 39 whee v i a oluio o he Kolmogoov uaio 38 which i uiue amog all bouded oluio i he ace H 2,, a ioduced i Theoem 2.2, wih, > 2 aifyig 7. Moeove, x v L, T ] R d. I he euel, we aim a fidig a eeeaio fo xv wihou uig deivaive of Φ. See 2] i he cae of b L, T ] R d. Theoem 3.1 Bimu-lwohy-Li fomula. Aume Φ C b R d ad le U be a oe, bouded ube of R d. The he deivaive of he oluio o 38 ca be eeeed a x v, x = ΦXx a x Xx db ] 4 fo almo all x U ad all, T ], whee a = a i ay bouded meauable fucio uch ha a d = 1 ad whee deoe he aoiio of maice. Poof. The oof i imila o Theoem 2 i 22] i he cae of b L, T ] R d. Fo he coveiece of he eade we give he full oof. Aume ha Φ Cb 2Rd he geeal cae of Φ C b R d ca be oved by aoximaio of Φ i elaio 42 ad le b ad X,x be a i he eviou ecio. If we elace b by b i 38 we have he uiue oluio give by v, x = ΦX,x ].

19 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 19 By uig Remak 2.13 we ee ha v, x v, x fo each ad x. By 25, Page 19] we have ha D X,x x X,x = x X,x, whee he above oduc i he uual maix oduc. So i follow ha x X,x = ad X,x x X,x d. 41 Iechagig iegaio ad diffeeiaio i coecio wih he chai ule we fid ha x v, x = Φ X,x x X,x ] = = ΦX,x ad ΦX,x a x X,x x X,x d] db ], whee we alied he chai ule ad he dualiy fomula fo he Malliavi deivaive o he la eualiy. Chooe ϕ C U. I wha follow, we will ove ha R d ϕxv, xdx = ϕxφx x x R d I fac, domiaed covegece combied wih Remak 2.13 give R d ϕxv, xdx = lim ϕxφx,x x R d = lim ϕxφx,x R d lim ϕxφx x R d = lim i lim ii. a x Xx db ] dx. 42 a ΦX x a x X,x a db ] dx x X,x db ] dx x X,x db ] dx A fo he fi em we ge i R d ϕx x Φ X,x X x L 2 Ω;R d a 1/2 k 1,,T ] x Xk,x 2 R d d] dx, which goe o zeo a ed o ifiiy by Lebeue domiaed covegece heoem, Remak 2.13 ad Remak 2.8. Fo he ecod em, ii ice X x i Malliavi diffeeiable ad Φ Cb 2Rd i follow fom he Clak-Ocoe fomula ha ee e.g. 25] ΦX x = ΦX x ] D ΦX x F ]db.

20 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 2 So ii = ϕxφx x R d = ϕx R d = a ΦX x ] a x X,x db ] dx 43 D ΦX x F ]db a x X,x db ] dx 44 R d ϕxd ΦX x x X,x ]dxd. 45 Oe check by mea of Lemma 2.6 ha ϕ D ΦX = ϕ Φ X D X belog o L 2 R d Ω; R d o ha fo each, he fucio g = ϕxd ΦX x R x X,x ]dx d covege o ϕxd R d ΦX x x Xx ]dx by he weak covegece of x X,x i L 2, T ] U Ω fo a ubeuece i viue of Remak 2.8. Fuhe, g ϕx D ΦX x L 2 Ω;R d R x X,x L 2 Ω;R dx d d D u ΦX y L2 Ω;R d y R d, u, k N x Xk,y u L2 Ω;R d ϕx dx R d o ha Lebegue domiaed covegece heoem give lim ii = a ϕxd ΦX x R x Xx ]dxd. d By eveig euaio 43, 44 ad 45 wih x Xx i lace of x X,x we obai he eul. Aedix A: Famewok I hi aedix we collec ome fac fom Gauia whie oie aalyi ad Malliavi calculu, which we hall ue i Secio 2 o couc og oluio of SD. See 11, 27, 16] fo moe ifomaio o whie oie heoy. A fo Malliavi calculu he eade may coul 25, 18, 19, 26]. A.1. Baic Fac of Gauia Whie Noie Theoy A cucial e i ou oof fo he coucio of og oluio ee Secio 3 elie o a geealied ochaic oce i he Hida diibuio ace which i how o be a SD oluio. Le u fi ecall he defiiio of hi ace which i due o T. Hida ee 11]. Fom ow o we fix a ime hoizo < T <. Le A be a oiive elf-adjoi oeao o L 2, T ] wih SecA > 1. Reuie ha A i of Hilbe-Schmid ye fo ome > ad le {e j } j be a comlee ohoomal bai of L 2, T ] i DomA ad le λ j >, j be he eigevalue of A uch ha 1 < λ λ Suoe ha each bai eleme e j i a coiuou fucio o, T ]. Fuhe le O λ, λ Γ, be a oe coveig of, T ] uch ha fo αλ. j λ αλ j e j < O λ

21 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 21 I he euel le S, T ] be he adad couably Hilbeia ace couced fom L 2, T ], A. See 27]. The S, T ] i a uclea ubace of L 2, T ]. The oological dual of S, T ] i deoed by S, T ]. The he Boche-Milo heoem eail he exiece of a uiue obabiliy meaue π o BS, T ] Boel σ algeba of S, T ] uch ha e i ω,φ πdω = e 1 2 φ 2 L 2,T ] S,T ] fo all φ S, T ], whee ω, φ ad fo he acio of ω S, T ] o φ S, T ]. Defie fo i = 1,..., d. The he oduc meaue Ω i = S, T ], F i = BS, T ], µ i = π, µ = d µ i 46 i=1 o he meauable ace d Ω, F := Ω i, i=1 i called d-dimeioal whie oie obabiliy meaue. Coide he Doléa-Dade exoeial ẽφ, ω = ex d i=1 F i ω, φ 1 2 φ 2 L 2,T ];R d, 47 fo ω = ω 1,..., ω d S, T ] d ad φ = φ 1,..., φ d S, T ] d, whee ω, φ := d i=1 ω i, φ i. Now le S, T ] d be he h comleed ymmeic eo oduc of S, T ] d wih ielf. Oe check ha ẽφ, ω i holomohic i φ aoud zeo. Hece, hee exi geealied Hemie olyomial H ω S, T ] d uch ha ẽφ, ω = 1 H ω, φ 48! fo φ i a ceai eighbouhood of zeo i S, T ] d. Oe ove ha { H ω, φ : φ S, T ] d, N } 49 i a oal e of L 2 Ω. Fuhe, i ca be how ha he geealied Hemie olyomial aify he ohogoaliy elaio H ω, φ H m ω, ψ m µdω = δ,m! φ, ψ 5 L 2,T ] ;R d S fo all, m N, φ S, T ] d, ψ m S, T ] d m whee δ,m = { 1 if = m ele. Deoe by L 2, T ] ; R d he ace of uae iegable ymmeic fucio fx 1,..., x wih value i R d. The i follow fom elaio 5 ha he maig φ H ω, φ

22 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 22 fom S, T ] d o L 2 Ω have uiue coiuou exeio I : L 2, T ] ; R d L 2 Ω fo all N. Thee exeio I φ ca be ideified a -fold ieaed Iô iegal of φ L 2, T ] ; R d wih eec o a d dimeioal Wiee oce o he whie oie ace B = B 1,..., B d 51 Ω, F, µ. 52 We meio ha uae iegable fucioal of B admi a Wiee-Iô chao eeeaio which ca be egaded a a ifiie-dimeioal Taylo exaio, ha i L 2 Ω = I L 2, T ] ; R d. 53 The defiiio of he Hida ochaic e fucio ad diibuio ace i baed o he Wiee- Iô chao decomoiio 53: Se A d := A,..., A. 54 Uig a ecod uaiaio agume, he Hida ochaic e fucio ace S i defied a he ace of all f = H, φ L 2 Ω uch ha f 2, :=! A d φ 2 < 55 L 2,T ] ;R d fo all. I fac, he ace S i a uclea Féche algeba wih eec o mulilicaio of fucio ad i oology i iduced by he emiom,,. Fuhe oe how ha ẽφ, ω S 56 fo all φ S, T ] d. O he ohe had, he oological dual of S, deoed by S, i called Hida ochaic diibuio ace. Uig hee defiiio we oai he Gel fad ile S L 2 Ω S. I u ou ha he whie oie of he coodiae of he d dimeioal Wiee oce B, ha i he ime deivaive W i := d d Bi, i = 1,..., d, 57 belog o S. We alo ecall he defiiio of he S-afom. See 28]. The S afom of a Φ S, deoed by SΦ, i defied by he dual aiig SΦφ = Φ, ẽφ, ω 58 fo φ S C, T ] d. Hee S C, T ] he comlexificaio of S, T ]. The S afom i a moomohim fom S o C. I aicula, if SΦ = SΨ fo Φ, Ψ S he Φ = Ψ.

23 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 23 A a examle oe fid ha SW i φ = φ i, i = 1,..., d 59 fo φ = φ 1,..., φ d S C, T ] d. Fially, we ecall he coce of he Wick o Wick-Gama oduc. The Wick oduc defie a eo algeba mulilicaio o he Fock ace ad i ioduced a follow: The Wick oduc of wo diibuio Φ, Ψ S, deoed by Φ Ψ, i he uiue eleme i S uch ha SΦ Ψφ = SΦφSΨφ 6 fo all φ S C, T ] d. A a examle, we ge H ω, φ H m ω, ψ m = H m ω, φ ψ m 61 fo φ S, T ] d ad ψ m S, T ] d m. The lae i coecio wih 48 imlie ha ẽφ, ω = ex ω, φ 62 fo φ S, T ] d. Hee he Wick exoeial ex X of a X S i defied a ex X = 1! X, 63 whee X = X... X, ovided ha he um o he igh had ide covege i S. A.2. Baic eleme of Malliavi Calculu I hi ecio we a i eview ome baic defiiio fom Malliavi calculu. Fo coveiece we coide he cae d = 1. Le F L 2 Ω. The we kow fom 53 ha F = H, φ 64 fo uiue φ L 2, T ]. Suoe ha! φ 2 1 L 2,T ] <. 65 The he Malliavi deivaive D of F i he diecio of B ca be defied a D F = H 1, φ, We deoe by D 1,2 he ace of all F L 2 Ω uch ha 65 hold. The Malliavi deivaive D i a liea oeao fom D 1,2 o L 2, T ] Ω. We meio ha D 1,2 i a Hilbe ace wih he om 1,2 give by F 2 1,2 := F 2 L 2 Ω,µ D F 2 L 2,T ] Ω,λ µ. 67 We ge he followig chai of coiuou icluio: whee D 1,2 i he dual of D 1,2. S D 1,2 L 2 Ω D 1,2 S, 68

24 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 24 Aedix B: Techical eul We give a li if echical eul eeded fo he oof of Secio 2 ad 3. Lemma B.1. Le {f } be a bouded euece of fucio i L. The, fo evey k R { }] x R d ex k I aicula, hee exi a weak oluio o SD 5. Poof. See 15, Lemma 3.2] f, x B 2 d <. Lemma B.2. Le {f } a euece of eleme i L, ha covege o ome f L,. The hee exi ε > 1 uch ha ] f, φ 2ε d <. 69 Hee φ : x X x, deoe he ochaic flow aociaed o he oluio of he SD 5 wih dif coefficie b Cb Rd. Poof. See 6, Lemma 15]. We alo eed he followig cucial lemma, which ca be foud i 5], Lemma 3.4. Lemma B.3. Le U be he oluio of he PD 1 wih Φ = b = b Cb R. Le X x, be he oluio of he SD 5 wih dif coefficie b Cb Rd. The he followig hold ue i Fo each > hee exi a fucio f wih lim f = uch ha ad x B,T ] x B,T ] ii Thee exi a λ R fo which,t ] x R d U, x U, x f U, x U, x f U, x iii U, x L, <. iv A a coeuece of he boudede of U ad U we have 1 2. γ x a ] C 1 x a.,t ] The followig lemma give a boud fo he deivaive of he ivee of he family of diffeomohim γ. See 5], Lemma 3.5 fo i oof. Lemma B.4. Le γ, : R d R d be he C 1 -diffeomohim defied a γ, x := x U, x fo x R d aociaed o X x, he oluio of SD 5 wih dif coefficie b C b Rd. The,T ] The ex eul wa how i 4], Coollay 13. Lemma B.5. Le V γ 1, CRd 2. be he oce defied i 22. The fo evey α R ] e αv T C. Obeve ha he ame eimae hold fo ay, T ] ice V i a iceaig oce.

25 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 25 Aedix C The followig eul which i due o 3, Theoem 1] give a comace cieio fo ube of L 2 Ω; R d uig Malliavi calculu. Theoem C.1. Le {Ω, A, P ; H} be a Gauia obabiliy ace, ha i Ω, A, P i a obabiliy ace ad H a eaable cloed ubace of Gauia adom vaiable of L 2 Ω, which geeae he σ-field A. Deoe by D he deivaive oeao acig o elemeay mooh adom vaiable i he ee ha Dfh 1,..., h = i fh 1,..., h h i, h i H, f Cb R. i=1 Fuhe le D 1,2 be he cloue of he family of elemeay mooh adom vaiable wih eec o he om F 1,2 := F L 2 Ω DF L 2 Ω;H. Aume ha C i a elf-adjoi comac oeao o H wih dee image. The fo ay c > he e G = {G D 1,2 : G L 2Ω C 1 D G } c L2Ω;H i elaively comac i L 2 Ω. A ueful boud i coecio wih Theoem C.1, baed o facioal Sobolev ace i he followig ee 3]: Lemma C.2. Le v, be he Haa bai of L 2, T ]. Fo ay < α < 1/2 defie he oeao A α o L 2, T ] by A α v = 2 kα v, if = 2 k j fo k, j 2 k ad A α T = T. The fo all β wih α < β < 1/2, hee exi a coa c 1 uch ha T A α f c 1 f L 2,T ] f f 2 1/2 d d 12β. A diec coeuece of Theoem C.1 ad Lemma C.2 i ow he followig comace cieio which i eeial fo he oof of Coollay 2.9. Coollay C.3. Le a euece of F T -meauable adom vaiable X D 1,2, = 1, 2..., be uch ha hee exi coa α > ad C > wih fo T ad X 2 ] C, D X D X 2] C α T D X 2] C. The he euece X, = 1, 2..., i elaively comac i L 2 Ω.

26 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 26 Refeece 1] D. R. Baño, T. Nile, ad F. Poke. Pahwie uiuee ad highe ode féche diffeeiabiliy of ochaic flow of facioal bowia moio dive de wih igula dif. wok i oge. 2] G. Da Pao, F. Fladoli,. Piola, ad M. Röcke. Sog uiuee fo ochaic evoluio euaio i hilbe ace wih bouded ad meauable dif. Aal of Pobabiliy, 415: , ] G. Da Pao, P. Malliavi, ad D. Nuala. Comac familie of wiee fucioal. C. R. Acad. Sci. Pai, 315Séie I: , ] G. Di Nuo, B. Økedal, ad F. Poke. Malliavi Calculu fo Lévy Pocee wih Alicaio o Fiace. Sige, 28. 5]. Fedizzi ad F. Fladoli. Pahwie uiuee ad coiuou deedece fo de wih oegula dif. Sochaic, 833: , ]. Fedizzi ad F. Fladoli. Hölde flow ad diffeeiabiliy fo de wih oegula dif. Sochaic Aalyi ad Alicaio, 314:78 736, ]. Fedizzi ad F. Fladoli. Noie eve igulaiie i liea ao euaio. Joual Of Fucioal Aalyi, 2646: , ] F. Fladoli. Radom Peubaio of PD ad Fluid Dyamic Model. École d Éé de Pobabiliié de Sai-Flou XL -21, Lecue Noe i Mahemaic, Sige, ] F. Fladoli, T. Nile, ad F. Poke. Malliavi diffeeiabiliy ad og oluio fo a cla of de i hilbe ace. ei, ] I. Gyögy ad N. V. Kylov. xiece of og oluio fo iô ochaic euaio via aoximaio. Pobab. Theoy Rela. Field, 15: , ] S. Haadem ad F. Poke. O he coucio ad malliavi diffeeiabiliy of oluio of levy oie dive de wih igula coefficie. Joual of Fucioal Aalyi, ] T. Hida, H.-H. Kuo, J. Pohoff, ad L. Sei. Whie Noie: A Ifiie Dimeioal Calculu. Kluwe Academic, ] G. Kalliau ad J. Xiog. Sochaic Diffeeial uaio i Ifiie Dimeioal Sace. IMS Lecue Noe. Moogah Seie, ] I. Kaaza ad S.. Sheve. Bowia Moio ad Sochaic Calculu. 2d d. Sige, ] N. V. Kylov. Some oeie of ace fo ochaic ad deemiiic aabolic weighed obolev ace. Joual of Fucioal Aalyi, 1831:1 41, ] N.V. Kylov ad M. Röcke. Sog oluio of ochaic euaio wih igula ime deede dif. Pob. Theoy Rel. Field, 1312: , ] H.-H. Kuo. Whie Noie Diibuio Theoy. Soch. Seie, Boca Rao, FL: CRC Pe, ] A. Lacoelli ad F. Poke. O exlici og oluio of iô-de ad he doke dela fucio of a diffuio. Aal. Qua. Pob. elaed Toic, 73, ] P. Malliavi. Sochaic calculu of vaiaio ad hyoelliic oeao. Poc. Ie. Sym. o Soch. Diff. uaio, Kyoo 1976, Wiley, age , ] P. Malliavi. Sochaic Aalyi, volume. Gudlehe de Mahemaiche Wiechafe. Sige-Velag, Beli, ] O. Meoukeu-Pame, T. Meye-Badi, T. Nile, F. Poke, ad T. Zhag. A vaiaioal aoach o he coucio ad malliavi diffeeiabiliy of og oluio of de. Mah. A., 3572: , ] T. Meye-Badi ad F. Poke. O he exiece ad exlici eeeabiliy of og oluio of lévy oie dive de. Commuicaio i Mahemaical Sciece, 41, ] T. Meye-Badi ad F. Poke. xlici eeeaio of og oluio of de dive by ifiie dimeioal lévy ocee. Joual of Theoeical Pobabiliy, 231:31 314, ] S-. A. Mohammed, T. Nile, ad F. Poke. Sobolev diffeeiable ochaic flow of de wih meauable dif ad alicaio. o aea i Aal of Pobabiliy ISSN , 215.

27 D. Baño, S. Duedahl, F. Poke ad T. Meye-Badi/Coucio of Malliavi diffeeiable og oluio 27 25] T. Nile. Oe-dimeioal de wih dicoiuou, ubouded dif ad coiuouly diffeeiable oluio o he ochaic ao euaio. ei,. 26] D. Nuala. The Malliavi Calculu ad Relaed Toic. 2d d. Sige, ] N. Obaa. Whie Noie Calculu ad Fock Sace. LNM 1577 Sige, ] J. Pohoff ad L. Sei. A chaaceizaio of hida diibuio. Joual of Fucioal Aalyi, 11: , ] F. Poke. Sochaic diffeeial euaio- ome ew idea. Sochaic, 79:563 6, 27. 3] A.Y. Veeeikov. O he og oluio of ochaic diffeeial euaio. Theoy Pobab. Al., 24: , ] T. Yamada ad S. Waaabe. O he uiuee of oluio of ochaic diffeeial euaio. J. Mah. Kyoo Uiv., II: , ] A.K. Zvoki. A afomaio of he ae ace of a diffuio oce ha emove he dif. Mah.USSR Sboik, 22: , 1974.

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle

Construction of Malliavin differentiable strong solutions of SDEs under an integrability condition on the drift without the Yamada-Watanabe principle Coucio of Malliavi diffeeiable og oluio of SD ude a iegabiliy codiio o he dif wihou he Yamada-Waaabe icile David R. Baño e-mail: davidu@mah.uio.o Side Duedahl e-mail: ided@mah.uio.o Thilo Meye-Badi e-mail:

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Pattern Distributions of Legendre Sequences

Pattern Distributions of Legendre Sequences IEEE TRASACTIOS O IFORMATIO THEORY, VOL., O., JULY 1998 1693 [9] J. E. Savage, Some imle elf-ychoizig digial daa camble, Bell Sy. Tech. J., vol., o.,. 9 87, Feb. 1967. [10] A. Paouli, Pobabiliy, Radom

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

On Approximation of Conjugate of Signals (Functions) Belonging to the Generalized Weighted. of Conjugate Series of Fourier Series

On Approximation of Conjugate of Signals (Functions) Belonging to the Generalized Weighted. of Conjugate Series of Fourier Series I Joual of Mah Aalyi, Vol 6,, o 35, 73-75 O Aoximaio of ojugae of Sigal (Fucio Belogig o he Geealized Weighed ( x W L, (, ( ³ -la y Poduc Summailiy Mea of ojugae Seie of Fouie Seie Vihu Naaya Miha, Huzoo

More information

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise Hi ue Hi ue -ay Deecio Pole Coide he ole of decidig which of hyohei i ue aed o oevig a ado vaiale (veco). he efoace cieia we coide i he aveage eo oailiy. ha i he oailiy of decidig ayhig ece hyohei H whe

More information

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables ScieceAsia 8 () : 55-6 The Ceal Limi Theoems fo Sums of Poes of Fucio of Idepede Radom Vaiables K Laipapo a ad K Neammaee b a Depame of Mahemaics Walailak Uivesiy Nakho Si Thammaa 86 Thailad b Depame of

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems Tish Joal of Aalysis ad Nmbe Theoy 27 Vol 5 No 4 26-3 Available olie a hp://pbssciepbcom/ja/5/4/2 Sciece ad Edcaio Pblishig DOI:269/ja-5-4-2 Relaios o he Aposol Type (p -Fobeis-Ele Polyomials ad Geealizaios

More information

Some Embedding Theorems and Properties of Riesz Potentials

Some Embedding Theorems and Properties of Riesz Potentials meica Joual o ahemaics ad Saisics 3 3(6) 445-453 DOI 593/jajms336 Some Embeddig Theoems ad Poeies o iesz Poeials ahim zaev * Fuad N liyev 3 Isiue o ahemaics ad echaics o Naioal cademy o Scieces o zebaija;

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

Degree of Approximation of Fourier Series

Degree of Approximation of Fourier Series Ieaioal Mahemaical Foum Vol. 9 4 o. 9 49-47 HIARI Ld www.m-hiai.com h://d.doi.og/.988/im.4.49 Degee o Aoimaio o Fouie Seies by N E Meas B. P. Padhy U.. Misa Maheda Misa 3 ad Saosh uma Naya 4 Deame o Mahemaics

More information

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS HENDRA GUNAWAN Absac. Associaed o a fucio ρ :(, ) (, ), le T ρ be he opeao defied o a suiable fucio space by T ρ f(x) := f(y) dy, R

More information

)(E,s)-summability mean of Fourier series

)(E,s)-summability mean of Fourier series Padha e al, Coge Mahemaic (06), 3: 50343 hp://dxdoiog/0080/338350650343 PURE MATHEMATICS RESEARCH ARTICLE Appoximaio of igal belogig o geealized Lipchiz cla uig (N, p )(E,)-ummabiliy mea of Fouie eie Receied:

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Fameal Joal of Mahemaic a Mahemaical Sciece Vol. 7 Ie 07 Page 5- Thi pape i aailable olie a hp://.fi.com/ Pblihe olie Jaa 0 07 CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Caolo

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

Optical flow equation

Optical flow equation Opical Flow Sall oio: ( ad ae le ha piel) H() I(++) Be foce o poible ppoe we ake he Talo eie epaio of I: (Sei) Opical flow eqaio Cobiig hee wo eqaio I he lii a ad go o eo hi becoe eac (Sei) Opical flow

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Supplementary Information

Supplementary Information Supplemeay Ifomaio No-ivasive, asie deemiaio of he coe empeaue of a hea-geeaig solid body Dea Ahoy, Daipaya Saka, Aku Jai * Mechaical ad Aeospace Egieeig Depame Uivesiy of Texas a Aligo, Aligo, TX, USA.

More information

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES M aheaical I equaliies & A pplicaios Volue 19, Nube 1 (216), 287 296 doi:1.7153/ia-19-21 ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES W. ŁENSKI AND B. SZAL (Couicaed by

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS

ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS OCKY MOUNTAIN JOUNAL OF MATHEMATICS Volume 43, Numbe 5, 213 ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PATIAL DIFFEENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS DEFEI ZHANG AND PING HE ABSTACT. In hi pape,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

On Interval Valued Generalized Difference Classes Defined by Orlicz Function

On Interval Valued Generalized Difference Classes Defined by Orlicz Function Tuih oua of Aayi ad Numbe Theoy, 03, Vo., No., 48-53 Avaiabe oie a hp://pub.ciepub.com/ja///0 Sciece ad ducaio Pubihig DOI:0.69/ja---0 O Ieva Vaued Geeaized Diffeece Cae Defied by Oicz Fucio Ayha i, Bipa

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors Lecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: Geeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shckley uai Quai-eualiy i cducive maeial C 35 Sig 2005

More information

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ )

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ ) Scieiae Mahemaicae Japoicae Olie, Vol., 24), 37 38 37 ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS ERIDANI, HENDRA GUNAWAN 2 AND EIICHI NAKAI 3 Received Augus 29, 23; evised Apil 7, 24 Absac. We pove he

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

Riesz Potentials, Riesz Transforms on Lipschitz Spaces in Compact Lie Groups

Riesz Potentials, Riesz Transforms on Lipschitz Spaces in Compact Lie Groups AEN eraioal Joural o Alied Mahemaic 4:3 JAM_4_3_ Rie Poeial Rie Traorm o ichi Sace i Comac ie rou Daig Che Jiecheg Che & Daha Fa Abrac Uig he hea erel characeriaio we eablih ome boudede roerie or Rie oeial

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

arxiv: v4 [math.pr] 20 Jul 2016

arxiv: v4 [math.pr] 20 Jul 2016 Submied o he Aals of Applied Pobabiliy ε-strong SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS axiv:1403.5722v4 [mah.pr] 20 Jul 2016 By Jose Blache, Xiyu Che

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3 Ieaioal Joual of Mode Noliea Theoy ad Applicaio, 5, 4, 7-6 Published Olie Jue 5 i SciRes. hp://www.scip.og/joual/ijma hp://dx.doi.og/.436/ijma.5.48 Exisece ad Smoohess of Soluio of Navie-Sokes Equaio o

More information

Supplemental Material

Supplemental Material Poof of Theoem Sulemetal Mateial Simila to the oof of Theoem, we coide the evet E, E, ad E 3 eaately. By homogeeity ad ymmety, P (E )=P (E 3 ). The aoximatio of P (E ) ad P (E 3 ) ae idetical to thoe obtaied

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2) Ieaoal Reeach Joual of Egeeg ad Techology (IRJET) e-issn: 9 - Volume: Iue: May- www.e.e -ISSN: 9-7 O he Qua-Hyebolc Kac-Moody lgeba QH7 () Uma Mahewa., Khave. S Deame of Mahemac Quad-E-Mllah Goveme College

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN Iteatioal Joual of Mathematical Achive-5(3, 04, 7-75 Available olie though www.ijma.ifo ISSN 9 5046 ON THE OSCILLATOY BEHAVIO FO A CETAIN CLASS OF SECOND ODE DELAY DIFFEENCE EQUATIONS P. Mohakuma ad A.

More information

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates Ge. Mah. Noes, Vol. 24, No. 2, Ocobe 24, pp. 85-96 ISSN 229-784; Copyigh ICSRS Publicaio, 24 www.i-css.og Available fee olie a hp://www.gema.i O a Z-Tasfomaio Appoach o a Coiuous-Time Maov Pocess wih Nofixed

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics Biod Prasad Dhaal / BIBCHANA 9 (3 5-58 : BMHSS,.5 (Olie Publicaio: Nov., BIBCHANA A Mulidisciliary Joural of Sciece, Techology ad Mahemaics ISSN 9-76 (olie Joural homeage: h://ejol.ifo/idex.h/bibchana

More information

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space It Joural of Math Aalyi, Vol 6, 202, o 3, 50-5 Fractioal Itegral Oerator ad Ole Ieuality i the No-Homogeeou Claic Morrey Sace Mohammad Imam Utoyo Deartmet of Mathematic Airlagga Uiverity, Camu C, Mulyorejo

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Basic propositional and. The fundamentals of deduction

Basic propositional and. The fundamentals of deduction Baic ooitional and edicate logic The fundamental of deduction 1 Logic and it alication Logic i the tudy of the atten of deduction Logic lay two main ole in comutation: Modeling : logical entence ae the

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

S, we call the base curve and the director curve. The straight lines

S, we call the base curve and the director curve. The straight lines Developable Ruled Sufaces wih Daboux Fame i iowsi -Space Sezai KIZILTUĞ, Ali ÇAKAK ahemaics Depame, Faculy of As ad Sciece, Ezica Uivesiy, Ezica, Tuey ahemaics Depame, Faculy of Sciece, Aau Uivesiy, Ezuum,

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Effect of Graph Structures on Selection for a Model of a Population on an Undirected Graph

Effect of Graph Structures on Selection for a Model of a Population on an Undirected Graph Effect of Gah Stuctue o Selectio fo a Model of a Poulatio o a Udiected Gah Watig Che Advio: Jao Schweibeg May 0, 206 Abtact Thi eeach focue o aalyzig electio amlifie i oulatio geetic. Sice the tuctue of

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations Ieraioal Mahemaical Forum, Vol 9, 4, o 9, 47-47 HIKRI Ld, wwwm-hikaricom h://dxdoiorg/988/imf4333 licaio of Fixed Poi Theorem of Covex-ower Oeraors o Noliear Volerra Tye Iegral Equaios Ya Chao-dog Huaiyi

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

CW SIMPLICIAL RESOLUTIONS OF SPACES WITH AN APPLICATION TO LOOP SPACES DAVID BLANC

CW SIMPLICIAL RESOLUTIONS OF SPACES WITH AN APPLICATION TO LOOP SPACES DAVID BLANC CW SIMPLICIAL RESOLUTIONS OF SPACES WITH AN APPLICATION TO LOOP SPACES DAVID BLANC Absac. We show how a ceai ye of CW simlicial esoluios of saces by wedges of shees may be cosuced, ad how such esoluios

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

A Fermionic ITO Product Formula

A Fermionic ITO Product Formula IJIET - Ieiol Joul of Iovive ciece Egieeig & Techolog Vol. Iue 3 Mch 5..ijie.com A Femioic ITO Poduc Fomul Cii Şeăecu Uivei Poliehic Buche Deme of Mhemic Buche 64 Romi Ac We ove Io oduc fomul fo ochic

More information

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de).

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de). SIAM J. CONROL OPIM. Vol. 54, No. 4, pp. 2090 2115 c 2016 Sociey for Idurial ad Applied Mahemaic A WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR COMBINED OPIMAL SOPPING/SOCHASIC CONROL WIH E f -EXPECAIONS ROXANA

More information

A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY

A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY Adance and Alicaion in Saiic Volume 6, Numbe,, Page 5-47 Thi ae i aailable online a h://hmj.com/jounal/ada.hm Puha Publihing Houe A GEOMETRIC ROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Prakash Chandra Rautaray 1, Ellipse 2

Prakash Chandra Rautaray 1, Ellipse 2 Prakash Chadra Rauara, Ellise / Ieraioal Joural of Egieerig Research ad Alicaios (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue, Jauar -Februar 3,.36-337 Degree Of Aroimaio Of Fucios B Modified Parial

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Research Article On Pointwise Approximation of Conjugate Functions by Some Hump Matrix Means of Conjugate Fourier Series

Research Article On Pointwise Approximation of Conjugate Functions by Some Hump Matrix Means of Conjugate Fourier Series Hidawi Publishig Copoaio Joual of Fucio Spaces Volue 5, Aicle ID 475, 9 pages hp://dx.doi.og/.55/5/475 Reseach Aicle O Poiwise Appoxiaio of Cojugae Fucios by Soe Hup Maix Meas of Cojugae Fouie Seies W.

More information

Mathematical Models and the Soil Hydraulic Properties

Mathematical Models and the Soil Hydraulic Properties Bullei UASVM Hoiculue 66/9 Pi ISSN 843-554; Elecoic ISSN 843-5394 Maeaical Model ad e Soil Hydaulic Popeie Floica MATEI Macel IRJA Ioaa POP Vioel BUIU Maia MICULA Faculy of Hoiculue Uiveiy of Agiculual

More information

Some inequalities for q-polygamma function and ζ q -Riemann zeta functions

Some inequalities for q-polygamma function and ζ q -Riemann zeta functions Aales Mahemaicae e Iformaicae 37 (1). 95 1 h://ami.ekf.hu Some iequaliies for q-olygamma fucio ad ζ q -Riema zea fucios Valmir Krasiqi a, Toufik Masour b Armed Sh. Shabai a a Dearme of Mahemaics, Uiversiy

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information