Congruences for sequences similar to Euler numbers

Size: px
Start display at page:

Download "Congruences for sequences similar to Euler numbers"

Transcription

1 Coguece fo equece iila to Eule ube Zhi-Hog Su School of Matheatical Sciece, Huaiyi Noal Uiveity, Huaia, Jiagu 00, Peole Reublic of Chia Received July 00 Revied 5 Augut 0 Couicated by David Go Abtact a E a a 0,,,..., Fo a 0 we defie {E a } by [/] whee [/] / o / accodig a o. I the ae we etablih odulo ie owe, ad how that thee i a et X ad a a T : X X uch that E a i the ube of fixed oit of T. ay coguece fo E a MSC: Piay B68, Secoday A07 Keywod: Eule olyoial, equece, coguece, -egula fuctio. Itoductio The Eule ube {E } ad Eule olyoial {E x} ae defied by. e t e t + 0 t E! t < π ad e xt e t + E x t t < π, 0! E-ail adde: zhihogu@yahoo.co URL: htt:// The autho i uoted by the Natioal Natual Sciece Foudatio of Chia No

2 which ae equivalet to ee [6]. E 0, E 0, ad E x + E 0 E x x 0. Eule ube {E } i a iotat equece of itege ad it ha ay oetie ad alicatio. Fo exale, accodig to [] we have E / h 4 od, whee i a ie of the fo 4 + ad hd i the cla ube of the fo cla gou coitig of clae of iitive, itegal biay quadatic fo of diciiat d. I 005, Aia de Reya[] howed that thee i a et X ad a a T : X X uch that E i the ube of fixed oit of T. I [] the autho itoduced the equece S 4 E 4 ad howed that h 8 S od fo ay odd ie. I [4] the autho yteatically tudied the equece U E. Iied by the oetie of {E }, {S } ad {U }, we ty to itoduce oe equece of itege iila to Eule ube. Fo thi uoe, we itoduce the equece {E a } fo a 0 give by [/] a E a a 0,,,..., whee [x] i the geatet itege ot exceedig x. Actually, E a a E a, E E, E S ad {E a } i a equece of itege. I the ae we aily tudy the oetie of E a. We how that thee i a et X ad a a T : X X uch that E a i the ube of fixed oit of T. Thi geealize Aia de Reya eult fo Eule ube. I Sectio we etablih oe coguece fo E a odulo a ie. Fo exale, fo a ie > we have E / 0,h 4 o h od accodig a 5 od, od o od 4. Let Z ad N be the et of itege ad oitive itege, eectively. I Sectio we etablih oe geeal coguece fo E a +b odulo, whee a Z,,, N ad b {0,,,...}. Fo exale, we deteie E a +b od +4+t, whee t i the oegative itege give by t a ad t+ a. I the cae a, the coguece wa give i []. The coguece ca be viewed a a geealizatio of the Ste coguece [8,6] E +b E b od + fo eve b. Fo N let Z be the et of atioal ube whoe deoiato i coie to. Fo a ie, i [0] the autho itoduced the otio of -egula fuctio.

3 If f Z fo 0,,,... ad f 0 od fo all N, the f i called a -egula fuctio. If f ad g ae -egula fuctio, fo [0, Theoe.] we ow that f g i alo a -egula fuctio. Let be a odd ie, ad let b be a oegative itege. I Sectio 4 b+[ 4 ] +b E +b ad f +b ae -egula fuctio, whee a i the Ja- Uig the oetie of -egula fuctio i [0,], we deduce od. Fo exale, fo, N we have E ϕ +b b+[ 4 ] b E b od, whee ϕ i Eule totiet fuctio. I additio to the above otatio, we alo ue thoughout thi ae the followig we how that f b+ +b E [ + ] 6 cobi ybol. ay coguece fo E ad E otatio: {x} the factioal at of x, od the oegative itege α uch that α but α+ that i α, µ the Möbiu fuctio.. Coguece fo E a odulo a ie Defiitio.. Fo a 0 we defie {E a } by [/] a E a a 0,,,... By the defiitio we have E a Z fo a Z ad E E. The fit few Eule ube ae how below: E 0, E, E 4 5, E 6 6, E 8 85, E 0 505, E 70765, E , E The fit few value of E ad E ae give below: E 0, E, E, E, E 4 57, E 5 6, E 6 76, E 7 46, E , E , E ; E 0, E, E 5, E 46, E 4 05, E 5 6, E 6 65, E , E , E The Beoulli ube {B } ad Beoulli olyoial {B x} ae defied by B 0, B 0 ad B x B x 0.

4 It i well ow that ee [6]. E x x E x B + x + B + + I aticula,. E E It i alo ow that ee [6] + + B + x + ad E 0 + B +. + x B +.. B + 0, B x B x ad E x E x. Thu, Theoe.. Let be a oegative itege ad a 0. The E a a E a Poof. By Defiitio. we have e at 0 [/] a a E + + B + + a. a t! 0 t a! 0 [/] E a a E a t! t eat + e at! 0 E a t.!.4 0 E a t! e at e at + e at / et e at +. Fo. we ow that 0 E a at we deduce E a a E a By. ad. we have + B + at 0 +!! et e at + a a E 4 0. Hece, fo the above ad. [/] a a E. E 0 at! e at +.

5 Thu 0 E a t! et e at + t 0! + + a B + t +! + + a B + t +! 0 ad o E a + + a B + +. The oof i ow colete. Coollay.. Let a 0 ad N. The E a { 0 if, + + a B + + if. Poof. By Theoe. ad the bioial iveio foula we have E a + + a B + +. Notig that B + 0 fo eve we deduce the eult. Lea.. Fo N we have E + E. Poof. Uig.,. ad.4 we ee that E 0 t! 0 E t + t et! e 6t + + e t e 6t + et + e 5t e 6t + et e t + + et e 6t + + t E 0! + t E 0!. So the eult follow. I [], Evall howed that fo a ie od 4,.5 E / h 4 od ad o E /. I [] the autho defied {S } by S S 0 ad howed that S 4 E 4. Thu, by Theoe. we have S E. Fo [, Theoe. ad Coollay.] we ow that fo ay odd ie,.6 h 8 E / od ad hece E /. Now we tate the iila coguece fo E / od. Theoe.. Let be a ie geate tha. The 0 od if 5 od, E E / h 4 od if od, h od if od 4. 5

6 Poof. If od 4, by Lea. ad.5 we have E + E + E { 0 od if 5 od, E h 4 od if od. Now aue od 4. It i ow that ee [6] B 6 B. Thu, B + 6 B + { 0 od if 7,, od 4, B + od if 9 od 4. Hece, by Theoe. ad. we have E 6 E B + 8B + 8B + B B + B + + / B + B + 6 od if 7 od 4, od if, od 4, + 8B + od if 9 od 4. Now alyig [, Theoe.ii] we obtai E theoe i oved. / h od. So the Rea. I a iila way, oe ca how that fo ay ie,9 od 0, h 5 E 5 od. Coollay.. Let be a odd ie with 5 od. The E /. Poof. Fo od 4, it i well ow that [5,.-5] h <. So the eult follow fo Theoe. ad.5. Theoe.. Let be a odd ie, {,,4,...} ad ± od. The <i< i i [ ] E/ od 6

7 ad [/] i i [/] i E/ od fo,4,...,. Poof. Let {} {,4,..., }. Puttig ad ubtitutig by i [, Coollay.] we ee that { E 0 [ } ] E [/] [/] i i i od. i i It i well ow that [5] B od. Thu, i view of. ad. we have E 0 B 0 od if, B od if. Uig. ad Theoe. we ee that { } E E E / Fo the above we deduce [/] i i E / od if, E E E/ od if +. i i ± [/] E/ od. Taig we have the ow eult [/] i i i od. Hece <i< i [/] i i [/] i i i [/] E/ od. i Fo {,4,..., }, uig. ad Theoe. we ee that E { i } E E / E / od. Now uttig all the above togethe we deduce the eult. 7

8 . Coguece fo E a odulo I [] the autho etablihed ay coguece fo E od, whee, N. I the ectio we exted uch coguece to E a +b od, whee a i a ozeo itege ad b {0,,,...}. Lea.. Let ad be oegative itege. The i if, 0 if <. ii if, + 0 if <. Poof. i ca be foud i [4,.64]. We ow ue i to deduce ii. By i we have if +, if, if <. Thi ove ii. Theoe..Let a be a ozeo itege, N ad let b be a oegative itege. Suoe that α N i give by α < α. i If i a odd ie divio of a, the ii We have { E a 0 od od a +b if, 0 od +oda if. { E a 0 od +od a α +od + if, 0 od od a+ α if 8

9 ad iii We have { E a 0 od +od a+ + if, 0 od od a+ od + if. Moeove, if ad b, the ad E a +b 0 od +od a α. E a +b 0 od +od a+ α. Poof. Uig Theoe., Lea. ad. we ee that E a 0 E a a + B a + B a + B a + B a + B Fo Coollay. we ee that fo odd,. + + B a + B a + B + + a + B E Z. + +.

10 Thu, if i a odd ie with a, the + a + B od oda. Now, fo the above we deduce that fo i 0,,. E a +i { 0 od od a if, 0 od +od a if. Fo [0,.5] we ow that fo ay fuctio f,. f Thu,.4 E a +b [b/] f. E a +[ b ]+b [ b ] [ b ] + + E a +b [ b ]. Now alyig. we deduce i. Suoe {, +,..., } ad. If, the ad o 0 od od. Sice B + od ad od+ + < α+, we ee that od + α ad o If, we ee that Theefoe, od a + B + + od a + B + + E a Sice B + od fo odd we alo have E a + + od a α + od + od a α + od. a od od a α. + a + B + + { 0 od +od a α +od + if, 0 od od a+ α if. + + a + B + + { 0 od +od a+ if, 0 od od a+ od + if. 0

11 So ii hold. Sice od+ + α we ee that od + α. Thu, fo ii we deduce.5 E a +i 0 od +od a α fo i 0,. A α + α o α +, we ee that + α + α ad hece α α fo. Fo 0, by.5 we have + + E a +b [ b ] 0 od + α +++od a. Sice + α + α, we ut have + + Cobiig thi with.4 we obtai E a +b [ b ] 0 od α +od a. E a +b 0 od +od a α ad o Now we aue ad b. Fo, N we have + > 7 5 < 6. Hece log + + log + log < 4 ad o + + od a log + + > + + od a log +. Sice od ad + α we ee that od + + log + + ad log + α. Thu, fo odd we have + + od a od od a log + + ad o by ii od a log od a log od a α E a + 0 od ++od a α.

12 Fo eve, uig ii ad the fact + + od a od a od a α we ee that.6 i alo tue. Thu alyig.4 we deduce that E a +b 0 od ++od a α. Thi colete the oof. Coollay.. Let a be a ozeo itege ad b {0,,,...}. The f E a +b i a egula fuctio. Poof. Let α N be give by α < α. A >, we ee that α ad o α. Now alyig Theoe.iii we obtai the eult. Theoe.. Suoe that a i a ozeo itege,,,,t N ad b {0,,,...}. Fo N let α N be give by α < α ad let e a,b E a ]. The E a t+b Moeove, E a t+b +b [ b E a t+b od ++od a α. E a t+b + t e a,b od ++od a+ α +. I aticula, whe ad b, we have E a t+b E a t+b od ++od a+ α +. Poof. Fo N et A a,b 0 E a +b. A α, uig Theoe.iii we ee that A a,b Z ad { 0 od +od a α ++od a if ad b,.7 A a,b 0 od +od a α othewie. By [9, Lea.] we have.8 E a t+b E a t+b. 0 E a t+b

13 Fo Coollay. ad the oof of [, Theoe 4.] we ow that E a t+b.9 0 A a,bt t + A a,b t + + j+ j, j j! j! whee {,} ad {S,} ae Stilig ube give by ad xx x + x,x S,xx x +. By [, Lea 4.], fo + j we have.0, j j! j,! S j,! j! j Z ad,!!,!! S j,! j t j, j! od. A α + α + we have + α + α ad hece α α fo. Theefoe, by.7 we have +od a++ α + A a,b fo +. Hece, uig.9 we get. E a t+b t A a,b od ++od a+ α +. Fo.7 we have +od a α A a,b. Sice α + α o α + we ee that od a α od a α. Hece, by. we get. E a t+b 0 od ++od a α. Fo + we have α + α + ad o + + od a α + od a α +. Thu, uig. we ee that fo +,. E a t+b 0 od +++od a+ α +.

14 Whe ad b, by Theoe.iii ad the fact α + α we have od A a,b + od a + α + + od a + α +. Thu, it follow fo. that.4 By.4 we have.5 A a,b [b/] Fo Theoe.iii we ow that E a +b 0 od ++od a+ α +. [b/] E a +b [ b ]. E a +b [ b ] 0 od +od a+ α +. Fo N we have + od a + α + + od a α +. Thu, fo the above we deduce that.6 A a,b e a,b od +od a++ α +. Now cobiig.-.4,.6 with.8 we deive the eult. Theoe.. Let a be a ozeo itege,, N, ad b {0,,,...}. The E a +b Ea b a b + 5 a + a b od +4+oda if a, ab b + od +4 if a ad b, a od +4 if ab. Poof. Fo N let α Z be give by α < α, ad let A a,b E a +b ad e a,b E a +b [ b ]. Sice,! ad S j,, taig ad t i.9 we ee that.7 { E a b E a +b A a,b + j A a,b j, j j! j j j j }.! j! 4

15 Fo j it i eaily ee that j j! j 0 od 4. By Theoe.iii we have +od a α A a,b. Thu, fo 5 we have od A a,b + od a α 5od a + 5 α 5 + 5od a. Set H Fo the defiitio of Stilig ube we ow that,!h fo. Thu, fo,,! H.!! Hece, fo the above we deduce that E a +b Ea b Set A a,b + A a,b H od +4+oda. f H α H α. Sice α H Z we ee that f 0 od 4 fo 5. It i eaily ee that f, f ad f 4. Hece, fo the above we deduce that.8 { } E a +b Ea b + A a,b + A a,b 0 od +4+oda if ad, { 4 A a,b + A 4 a,b} od +4+oda if > o >. Fo.6 we ee that.9 A 4 a,b e 4 a,b od +5oda ad A a,b e a,b od +4oda. If b, by Theoe.iii we have A 4 a,b 4 4 Fo Theoe. we have 4 E a +b 0 od +5od a..0 E a 0, E a a, E a a, E a a + a, E a 4 4a + 8a, E a 5 5a + 0a 6a 5, E a 6 6a + 40a 96a 5, E a 7 7a + 70a 6a 5 + 7a 7, E a 8 8a + a 896a a 7. 5

16 Hece, if b, fo.9 ad.0 we deduce that A 4 a,b e 4 a,b E a 0 4E a + 6E a 4 4E a 6 + E a 8 6 8a 5 7a 4 0 od +5oda. Theefoe, we alway have A 4 a,b 0 od +5oda. Fo.0 we ee that. e a,b 8 Ea 0 E a + E a 4 E a 6 a 6a if b, E a + E a 5 E a 7 a 7a 4 + 8a if b. 8 Ea Thu, alyig.9 we get A a,b e a,b + ab a od +od a. Theefoe, 4 A a,b 4 + ab a 4a + ab + od 4+od a. Hece, by the above ad.8 we obtai. { E a +b Ea b A a,b + A a,b } 4a + ab + od +4+oda. Fo Theoe.ii we ee that. 0 E a +b [ b ] 0 od 7+5od a fo 4. Thu, by.5 we have A a,b [b/] [b/] E a 0 [ b +b [ b ] 4e a,b [ b 4 Fo.0 we ow that.4 e a,b 4 E a +b [ b ] ] 0 ] 8e a,b e a,b [ b E a +b [ b ] ] e a,b od 4+od a. { a E b [ b ] Ea + a if b, +b [ b ] Ea 4+b [ b ] 4a a if b. Thi togethe with. yield e a,b [ b] e a,b a b a 6a a + b 6a b if b, 4a a b a 7a 4 + 8a a 7a 4 b + 6 8ba + b + if b. 6

17 Thu,.5 A a,b e a,b [ b] e a,b a + b od 4+oda if a, a b od 4+oda if a ad b, 0 od 4+oda if ab. By. ad.5 we have A a,b [b/] [b/] + + E a 0 +b [ b ] [b/] + + E a 0 +b [ b ] e a,b [ b] [ b 4e a,b + ] 8e a,b e a,b [ b] e a,b + [ b][b] e a,b od 4+oda. Fo.0 we have.6 e a,b { a E a if b, b [ b ] Ea +b [ b ] a a if b Hece, fo the above we deduce.7 A a,b e a,b [ b] e a,b + [ b][b] e a,b a b a bb + a 6a a a b + 6a 4 bb a a b od 4+oda if b, a a b 4a a + b b a 7a 4 + 8a a a b od 4+oda if a ad b, a a b 4a a + b b a 7a 4 + 8a a od 4+oda if a ad b. Now ubtitutig.5 ad.7 ito. we obtai the eult. Fo a, b ad 4, by Theoe. we have { Eb + 5 od +4 if b 0,6 od 8, E +b E b od +4 if b,4 od 8. 7

18 Thi ha bee give by the autho i []. Coollay.. Let be a oegative itege. The { E 56 + od 5 if 4, od 5 if 4, { E 00 od 5 if 4, od 5 if 4, E 4+ 5 od 5, E od 5. Poof. Taig a ad i Theoe. we deduce the eult fo. Sice E 0, E, E ad E, we ee that the eult i alo tue fo 0. Theoe.4. Let a be a ozeo itege,, N ad b {0,,,...}. The E a +b Ea +b Ea b od ++oda. Poof. Fo N et e a,b E a +b [ b ]. Fo.4 we ow that a e a,b ad o +oda e a,b. Now taig ad t i Theoe. ad the alyig the above we deduce the eult. 4. Coguece fo E +b ad E +b od Let be a odd ie. I [] the autho howed that f +b E +b i a -egula fuctio whe b i eve. I thi ectio we etablih iila eult fo E ad E, ad the ue the to deduce coguece fo E +b ad E +b od. Lea 4.. Let N, {0,,,..., } ad b {0,,,...}. Let be a odd ie ot dividig. The f +b E +b A A E +b +b i a -egula fuctio, whee A {0,,..., } i give by A od. Poof. Fo x Z let x be the leat oegative eidue of x odulo. Fo [0,Theoe.] we ow that B +b+ x B +b+ + b + B +b+ x+ x +b B +b+ + b + 8

19 i a -egula fuctio. Hece g B +b+ + B +b+ + b + +b B +b B +b+ + b + + i a -egula fuctio. Let A {0,,..., } be uch that A od. The A ± + od ad A A o A accodig a A < o A. A + + A A ad uig. we ee that B +b A A + B +b+ + b + + A + A if A <, if A, B +b+ A + B +b+ A +b+ E + b + +b A if A <, B +b+ A B +b+ A +b+ E + b + +b A +b+ A A E +b. Alo, by. we have if A. B +b+ + B +b+ +b+ E + b + +b. Thu, fo the above we ee that g +b+ E +b A A E +b +b 9

20 i a -egula fuctio. By Feat little theoe we have +b b 0 od. Thu +b+ +b i a -egula fuctio. Hece, by the oduct theoe fo -egula fuctio [0, Theoe.], f +b+ +b g i a -egula fuctio a aeted. Fo Lea 4. we have the followig eult. Lea 4.. Let be a odd ie, {,,4,...} ad ± od. Let b be a oegative itege ad {,,..., }. The f +b +b E +b if od, + b++ +b +b E +b if od i a -egula fuctio. Poof. Let A {,,..., } be uch that A od. The clealy A o accodig a o od. Sice E x E x, we have E +b +b E +b b E +b. Now alyig the above ad Lea 4. we deduce the eult. Theoe 4.. Let be a odd ie ad let b be a oegative itege. The i f b+[ 4 ] +b E +b i a -egula fuctio. ii f [ + ] 6 b+ +b E +b i a -egula fuctio. Poof. Puttig 4 ad i Lea 4. ad alyig Theoe. we obtai i. Puttig 6 ad i Lea 4. ad alyig Theoe. we obtai ii i the cae >. Fo Theoe.i we ee that ii i alo tue fo. So the theoe i oved. Fo Theoe 4. ad [, Theoe 4. with t ad d 0] we deduce the followig eult. Theoe 4.. Let be a odd ie ad,, N. Let b be a oegative itege. The b+[ 4 ] ϕ +b E ad [ + 6 ] ϕ +b b+ ϕ +b E ϕ +b 0 b+[ 4 ] ϕ +b E ϕ +b od

21 [ + 6 ] b+ ϕ +b E ϕ +b od. I aticula, fo we have E ϕ +b b+[ 4 ] b E b od ad E + ϕ +b [ ] 6 b+ b E b od. Lea 4.. See [0, Theoe.]. Let be a ie, N ad let f be a -egula fuctio. The thee ae itege a 0,a,...,a uch that f a + + a + a 0 od fo 0,,,... Moeove, if, the a 0,a,...,a od ae uiquely deteied ad od! a fo 0,,...,. Fo Theoe 4. ad Lea 4. we deduce the followig eult. Theoe 4.. Let be a odd ie, N ad. Let b be a oegative itege. The thee ae uique itege a 0,a,...,a,c 0,c,...,c {0,±,±,..., ± } uch that fo evey oegative itege, b+[ 4 ] +b E +b a + + a + a 0 od ad [ + 6 ] b+ +b E +b c + + c + c 0 od. Moeove, od! a ad od! c fo 0,,...,. Coollay 4.. Let N. The i E od 7, E od 7; ii E od 5 ; iii E od 5; iv E od 5; v E od 5. Poof. A E 0, E ad E, taig i Theoe 4. we ee that E od 7 ad + + E od 7. Thi yield i. Pat ii-v ca be oved iilaly. Coollay 4.. Let N. The i E 6 + od 7, E + 6 od 7; ii E od 5; iii E od 5; iv E od 5; v E od 5.

22 5. { E a } i ealizable Let {b } be a give equece of itege, ad let {a } be defied by a b ad a b + a b + + a b,,4,... If {a } i alo a equece of itege, followig [] we ay that {b } i a Newto-Eule equece. Lea 5.. See [4, Lea 5.]. Let {b } be a equece of itege. The the followig tateet ae equivalet: i {b } i a Newto-Eule equece. ii d µ d bd 0 od fo evey N. iii Fo ay ie ad α, N with we have b α b α od α. iv Fo ay,t N ad ie with t we have b b od t. v Thee exit a equece {c } of itege uch that b d dc d fo ay N. Poof. Fo [, Theoe ] o [] we ow that i, ii ad iii ae equivalet. Clealy iii i equivalet to iv. Uig Möbiu iveio foula we ee that ii ad v ae equivalet. So the lea i oved. Let {b } be a equece of oegative itege. If thee i a et X ad a a T : X X uch that b i the ube of fixed oit of T, followig [7] ad [] we ay that {b } i ealizable. I [7], Pui ad Wad oved that a equece {b } of oegative itege i ealizable if ad oly if fo ay N, d µ d b d i a oegative itege. Thu, uig Möbiu iveio foula we ee that a equece {b } i ealizable if ad oly if thee exit a equece {c } of oegative itege uch that b d dc d fo ay N. I [] J. Aia de Reya howed that {E } i a Newto-Eule equece ad { E } i ealizable. Lea 5.. See [6,.0]. Fo N ad 0 x we have E x 4! i + πx π π Taig x 4 i Lea 5. ad alyig Theoe. we deduce 5. 0 [ ] + + E π +.! 4 Theoe 5.. Let a, N. The E a > 4+ a! π + a + + > 0

23 ad E a E a < 4+ a! π + a Poof. By Theoe. ad Lea 5. we have a E a 4+ a! π + 4+ a! π + 0 a 4a 4! π + i +π a + + < 4+ a! π a! π + + π i a Fo {0,,...,a } we have i +π a Thu, i i +π a π a + a +. i +π a 4a a a + a > 0 ad o + π a 4a > 0. 4a + a E a > 4+ a! π + a + + i π a. It i well ow that ix π x fo 0 x π. Thu i π a a. So the fit iequality i tue. Sice a a < a + π i a 4a a + a a a + 4a < + a +, cobiig the above we obtai the eaiig iequality. Theoe 5.. Let N with. The + E > 0 ad + E > 0. Poof. Fo 0 we ee that

24 Thu, > > [ ] Now alyig 5. we deduce + E > 0. Siilaly, fo 0 we have > Thu, uig Lea 5. ad Theoe. we obtai + + E π + 4 6! E 6 π + 4! + i + π > > 0. Hece, + E > 0. The oof i ow colete. Theoe 5.. Let a be a oitive itege. Fo ay ie divio of N we have E a Ea / od od. Hece {E a } i a Newto-Eule equece. Poof. Suoe ad 0 with 0. Fo Theoe. we ee that E a Ea 0 od fo ad N. It i well ow that E. Thu, uig Theoe. we ee that E a a E 0 + a E od. Hece, E a Ea 0 E a 0 E a od. Now uoe that i a odd ie divio of ad with. If a, by Theoe. ad the fact Z fo we have E a a a + a E a od 4

25 ad / a + E a Sice a, we have a a E a od. a a ϕ + a a od. Thu E a Ea / od. Let u coide the cae a. Suoe that A {0,,...,a } i give by a A. Fo Lea 4. we ow that fo a give oegative itege b, f a +b E +b a A a a +b E +b A a +b i a -egula fuctio. By [0, Coollay.] we have f f 0 od. Thu, uig Theoe. we obtai 5. E a +b Ea b od fo b. A, uig 5. we ee that E a Ea Ea + E a E a / od. Now uttig all the above togethe with Lea 5. we obtai the eult. Theoe 5.4. Let a N. The { E a } i ealizable. Poof. Suoe that i a ie divio of ad t od. Fo Theoe 5. we ow that E a Ea / od t. It i eaily ee that / od t. Thu, E a / E a / od t. Hece, uig Lea 5. we ow that { E a } i a Newto-Eule equece ad o d µ d d E a d Z. By Theoe 5., E a > 0. Now it eai to how that d µ d d E a d 0. Fo.0 we have E a a ad E a 4 4a + 8a. Thu the iequality i tue fo,. Fo ow o we aue. Obeve that + a < a ad + a fo N. Uig Theoe 5. we ee that fo N, 5. Hece a! π + < E a < 4+ a +! π +. µ/d d E a d d 5

26 E a E a + d,d [/] d 6 7 6a π! 4a µ/d d E a d d E a d > a! π + [/] π d 6 7 6a π! { + + 4a 4a d! π π 4a Fo a we have 4a > 4a [ π π ]+ 4a ad π > 7 6 [/] d π 7 6 π 4 4a π /4 6/π 7 6 π 4 4 d+ a d+ d! π d+ π [ ]+ 4a π 4a π 4a /π. Thu, fo the above we deduce d µ d d E a d > 0. Fo a we ee that π > π 6 6 π 4 4 π 4 π [ ]+ 4 π 7 > 4/π 6 ad o d µ d d E a d > 0 by the above. Now uaizig the above we ove the theoe. 4/π > 0 Acowledgeet. The autho tha the efeee fo hi helful coet ad valuable uggetio o iovig Theoe.. Refeece [] J. Aia de Reya, Dyaical zeta fuctio ad Kue coguece, Acta Aith , 9-5. [] B.S. Du, S.S. Huag ad M.C. Li, Geealized Feat, double Feat ad Newto equece, J. Nube Theoy 98 00, 7-8. [] R. Evall A coguece o Eule ube, Ae. Math. Mothly 89 98, 4. [4] H.W. Gould, Cobiatoial Idetitie, A Stadadized Set of Table Litig 500 Bioial Coefficiet Suatio, Rev. Ed., Mogatow Pitig ad Bidig Co., Wet-Vigiia, }.

27 [5] K. Ielad ad M. Roe, A Claical Itoductio to Mode Nube Theoy d editio, Sige, New Yo, 990,.,48. [6] W. Magu, F. Obehettige ad R.P. Soi, Foula ad Theoe fo the Secial Fuctio of Matheatical Phyic d editio, Sige, New Yo, 966,. 5-. [7] Y. Pui ad T. Wad, Aithetic ad gowth of eiodic obit, J. Itege Seq. 400, At. 0.., 8. [8] M.A. Ste, Zu Theoie de Euleche Zahle, J. Reie Agew. Math , [9] Z.H. Su, Coguece fo Beoulli ube ad Beoulli olyoial, Dicete Math , 5-6. [0] Z.H. Su, Coguece coceig Beoulli ube ad Beoulli olyoial, Dicete Al. Math , 9-. [] Z.H. Su, O the oetie of Newto-Eule ai, J. Nube Theoy 4005, 88-. [] Z.H. Su, Coguece ivolvig Beoulli olyoial, Dicete Math , 7-. [] Z.H. Su, Eule ube odulo, Bull. Aut. Math. Soc. 8 00, -. [4] Z.H. Su, Idetitie ad coguece fo a ew equece, It. J. Nube Theoy, to aea. [5] J. Ubaowicz ad K.S. Willia, Coguece fo L-Fuctio, Kluwe Acadeic Publihe, Dodecht, Boto, Lodo, 000. [6] S.S. Wagtaff J., Pie divio of the Beoulli ad Eule ube, i: M.A. Beett et al. Ed., Nube Theoy fo the Milleiu, vol. III Ubaa, IL, 000, A K Pete, 00,

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Joual of Rajastha Academy of Physical Scieces ISSN : 972-636; URL : htt://aos.og.i Vol.5, No.&2, Mach-Jue, 26, 89-96 FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Jiteda Daiya ad Jeta Ram

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun It J Numer Theory 05, o8, 9-404 Super cogrueces cocerig Beroulli polyomials Zhi-Hog Su School of Mathematical Scieces Huaiyi Normal Uiversity Huaia, Jiagsu 00, PR Chia zhihogsu@yahoocom http://wwwhytceduc/xsjl/szh

More information

Bernoulli Numbers and a New Binomial Transform Identity

Bernoulli Numbers and a New Binomial Transform Identity 1 2 3 47 6 23 11 Joural of Iteger Sequece, Vol. 17 2014, Article 14.2.2 Beroulli Nuber ad a New Bioial Trafor Idetity H. W. Gould Departet of Matheatic Wet Virgiia Uiverity Morgatow, WV 26506 USA gould@ath.wvu.edu

More information

Generalization of Horadam s Sequence

Generalization of Horadam s Sequence Tuish Joual of Aalysis ad Nube Theoy 6 Vol No 3-7 Available olie at http://pubssciepubco/tjat///5 Sciece ad Educatio Publishig DOI:69/tjat---5 Geealizatio of Hoada s Sequece CN Phadte * YS Valaulia Depatet

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN Iteatioal Joual of Mathematical Achive-5(3, 04, 7-75 Available olie though www.ijma.ifo ISSN 9 5046 ON THE OSCILLATOY BEHAVIO FO A CETAIN CLASS OF SECOND ODE DELAY DIFFEENCE EQUATIONS P. Mohakuma ad A.

More information

On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers

On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers IJST () A: 47-55 Iaia Joual of Sciece & Techology htt://.hiazu.ac.i/e O alot tatitical covegece of e tye of geealized diffeece equece of fuzzy ube B. C. Tiathy A. Bauah M. t 3 * ad M. Gugo 4 Matheatical

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials It. Joual of Math. Aalysis, Vol. 7, 2013, o. 43, 2117-2128 HIKARI Ltd, www.m-hiai.com htt://dx.doi.og/10.12988/ima.2013.36166 -Adic Ivaiat Itegal o Z Associated with the Chaghee s -Beoulli Polyomials J.

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator Iteatioal Joual of Mathematic Reeach. ISSN 0976-5840 Volume 9, Numbe 2 (2017), pp. 135-148 Iteatioal Reeach Publicatio Houe http://www.iphoue.com Uified Mittag-Leffle Fuctio ad Exteded Riema-Liouville

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

On the Circulant Matrices with. Arithmetic Sequence

On the Circulant Matrices with. Arithmetic Sequence It J Cotep Math Scieces Vol 5 o 5 3 - O the Ciculat Matices with Aithetic Sequece Mustafa Bahsi ad Süleya Solak * Depatet of Matheatics Educatio Selçuk Uivesity Mea Yeiyol 499 Koya-Tukey Ftly we have defied

More information

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Faulty of Siees ad Matheatis, Uivesity of Niš, Sebia Available at: http://www.pf.i.a.yu/filoat Filoat 22:2 (28), 59 64 SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Saee Ahad Gupai Abstat. The sequee

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space IJST (05) 9A4: 5-54 Iaia Joual of Sciece & Techology http://ijthiazuaci Some chaacteizatio fo Legede cuve i the -Dimeioal Saakia pace H Kocayigit* ad M Ode Depatmet of Mathematic, Faculty of At ad Sciece,

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation Advace i Mathematic ad Statitical Sciece O Poitive Defiite Solutio of the Noliea * Matix Equatio A A I SANA'A A. ZAREA Mathematical Sciece Depatmet Pice Nouah Bit Abdul Rahma Uiveity B.O.Box 9Riyad 6 SAUDI

More information

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III rerit: October 1, 01 CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III Zhi-Hog Su arxiv:101.v [math.nt] 5 Oct 01 School of Mathematical Scieces, Huaiyi Normal Uiversity, Huaia, Jiagsu 001, PR Chia Email:

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as Math 7409 Hoewok 2 Fall 2010 1. Eueate the equivalece classes of siple gaphs o 5 vetices by usig the patte ivetoy as a guide. The cycle idex of S 5 actig o 5 vetices is 1 x 5 120 1 10 x 3 1 x 2 15 x 1

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

Conjunctive Normal Form & Horn Clauses

Conjunctive Normal Form & Horn Clauses Conjunctive Noal Fo & Hon Claue ok Univeity CSE 3401 Vida Movahedi ok Univeity- CSE 3401- V Movahedi 02-CNF & Hon 1 Oveview Definition of liteal claue and CNF Conveion to CNF- Pooitional logic Reeentation

More information

A New Result On A,p n,δ k -Summabilty

A New Result On A,p n,δ k -Summabilty OSR Joual of Matheatics (OSR-JM) e-ssn: 2278-5728, p-ssn:239-765x. Volue 0, ssue Ve. V. (Feb. 204), PP 56-62 www.iosjouals.og A New Result O A,p,δ -Suabilty Ripeda Kua &Aditya Kua Raghuashi Depatet of

More information

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients Proof of a cojecture of Amdeberha ad Moll o a divisibility property of biomial coefficiets Qua-Hui Yag School of Mathematics ad Statistics Najig Uiversity of Iformatio Sciece ad Techology Najig, PR Chia

More information

SHIFTED HARMONIC SUMS OF ORDER TWO

SHIFTED HARMONIC SUMS OF ORDER TWO Commu Koea Math Soc 9 0, No, pp 39 55 http://dxdoiog/03/ckms0939 SHIFTED HARMONIC SUMS OF ORDER TWO Athoy Sofo Abstact We develop a set of idetities fo Eule type sums I paticula we ivestigate poducts of

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon New proof of the duplicatio ad multiplicatio formulae for the gamma ad the Bare double gamma fuctio Abtract Doal F. Coo dcoo@btopeworld.com 6 March 9 New proof of the duplicatio formulae for the gamma

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product Joual of athematic ad Statitic 6 (3): 294-299, 200 ISSN 549-3644 200 Sciece Publicatio Poof of Aalytic Eteio Theoem fo Zeta Fuctio Uig Abel Tafomatio ad Eule Poduct baitiga Zachaie Deatmet of edia Ifomatio

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro MATHEMATICA MONTISNIGRI Vol XXXVIII (017) MATHEMATICS CERTAIN CONGRUENCES FOR HARMONIC NUMBERS ROMEO METROVIĆ 1 AND MIOMIR ANDJIĆ 1 Maritie Faculty Kotor, Uiversity of Moteegro 85330 Kotor, Moteegro e-ail:

More information

Several new identities involving Euler and Bernoulli polynomials

Several new identities involving Euler and Bernoulli polynomials Bull. Math. Soc. Sci. Math. Roumanie Tome 9107 No. 1, 016, 101 108 Seveal new identitie involving Eule and Benoulli polynomial by Wang Xiaoying and Zhang Wenpeng Abtact The main pupoe of thi pape i uing

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

International Journal of Mathematical Archive-3(5), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(5), 2012, Available online through   ISSN Iteatioal Joual of Matheatical Achive-3(5,, 8-8 Available olie though www.ija.ifo ISSN 9 546 CERTAIN NEW CONTINUED FRACTIONS FOR THE RATIO OF TWO 3 ψ 3 SERIES Maheshwa Pathak* & Pakaj Sivastava** *Depatet

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

Combinatorial Interpretation of Raney Numbers and Tree Enumerations

Combinatorial Interpretation of Raney Numbers and Tree Enumerations Ope Joual of Discete Matheatics, 2015, 5, 1-9 Published Olie Jauay 2015 i SciRes. http://www.scip.og/joual/ojd http://dx.doi.og/10.4236/ojd.2015.51001 Cobiatoial Itepetatio of Raey Nubes ad Tee Eueatios

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers Novembe 4, 2016 Beoulli, oly-beoulli, ad Cauchy olyomials i tems of Stilig ad -Stilig umbes Khisto N. Boyadzhiev Deatmet of Mathematics ad Statistics, Ohio Nothe Uivesity, Ada, OH 45810, USA -boyadzhiev@ou.edu

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

Stability of Quadratic and Cubic Functional Equations in Paranormed Spaces

Stability of Quadratic and Cubic Functional Equations in Paranormed Spaces IOSR Joua o Matheatics IOSR-JM e-issn 8-578, p-issn 9-765. Voue, Issue Ve. IV Ju - Aug. 05, - www.iosouas.og Stabiit o uadatic ad ubic Fuctioa Equatios i aaoed Spaces Muiappa, Raa S Depatet o Matheatics,

More information

REVIEW ARTICLE ABSTRACT. Interpolation of generalized Biaxisymmetric potentials. D. Kumar* G.L. `Reddy**

REVIEW ARTICLE ABSTRACT. Interpolation of generalized Biaxisymmetric potentials. D. Kumar* G.L. `Reddy** Itepolatio of Geealized Biaxisyetic potetials D Kua ad GL Reddy 9 REVIEW ARTICLE Itepolatio of geealized Biaxisyetic potetials D Kua* GL `Reddy** ABSTRACT I this pape we study the chebyshev ad itepolatio

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Modular Spaces Topology

Modular Spaces Topology Applied Matheatics 23 4 296-3 http://ddoiog/4236/a234975 Published Olie Septebe 23 (http://wwwscipog/joual/a) Modula Spaces Topology Ahed Hajji Laboatoy of Matheatics Coputig ad Applicatio Depatet of Matheatics

More information

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k) THE TWELVEFOLD WAY FOLLOWING GIAN-CARLO ROTA How ay ways ca we distribute objects to recipiets? Equivaletly, we wat to euerate equivalece classes of fuctios f : X Y where X = ad Y = The fuctios are subject

More information

A Class of Delay Integral Inequalities on Time Scales

A Class of Delay Integral Inequalities on Time Scales Intenational Confeence on Iage, Viion and Couting (ICIVC ) IPCSIT vol 5 () () IACSIT Pe, Singaoe DOI: 7763/IPCSITV543 A Cla of Dela Integal Ineualitie on Tie Scale Qinghua Feng + School of Science, Shandong

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I #A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I Miloud Mihoubi 1 Uiversité des Scieces et de la Techologie Houari Bouediee Faculty

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

Minimal order perfect functional observers for singular linear systems

Minimal order perfect functional observers for singular linear systems Miimal ode efect fuctioal obseves fo sigula liea systems Tadeusz aczoek Istitute of Cotol Idustial lectoics Wasaw Uivesity of Techology, -66 Waszawa, oszykowa 75, POLAND Abstact. A ew method fo desigig

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

Global asymptotic stability in a rational dynamic equation on discrete time scales

Global asymptotic stability in a rational dynamic equation on discrete time scales Iteatioal Joual of Egieeig Reseach & Sciece (IJOER) ISSN: [395-699] [Vol-, Issue-, Decebe- 6] Global asyptotic stability i a atioal dyaic euatio o discete tie scales a( t) b( ( t)) ( ( t)), t T c ( ( (

More information

Ma/CS 6a Class 22: Power Series

Ma/CS 6a Class 22: Power Series Ma/CS 6a Class 22: Power Series By Ada Sheffer Power Series Mooial: ax i. Polyoial: a 0 + a 1 x + a 2 x 2 + + a x. Power series: A x = a 0 + a 1 x + a 2 x 2 + Also called foral power series, because we

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

Generalized k-normal Matrices

Generalized k-normal Matrices Iteatioal Joual of Computatioal Sciece ad Mathematics ISSN 0974-389 Volume 3, Numbe 4 (0), pp 4-40 Iteatioal Reseach Publicatio House http://wwwiphousecom Geealized k-omal Matices S Kishamoothy ad R Subash

More information

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

A 2nTH ORDER LINEAR DIFFERENCE EQUATION A 2TH ORDER LINEAR DIFFERENCE EQUATION Doug Aderso Departmet of Mathematics ad Computer Sciece, Cocordia College Moorhead, MN 56562, USA ABSTRACT: We give a formulatio of geeralized zeros ad (, )-discojugacy

More information

On the maximum of r-stirling numbers

On the maximum of r-stirling numbers Advaces i Applied Mathematics 4 2008) 293 306 www.elsevie.com/locate/yaama O the maximum of -Stilig umbes Istvá Mező Depatmet of Algeba ad Numbe Theoy, Istitute of Mathematics, Uivesity of Debece, Hugay

More information

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space It Joural of Math Aalyi, Vol 6, 202, o 3, 50-5 Fractioal Itegral Oerator ad Ole Ieuality i the No-Homogeeou Claic Morrey Sace Mohammad Imam Utoyo Deartmet of Mathematic Airlagga Uiverity, Camu C, Mulyorejo

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES #A37 INTEGERS (20) BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES Derot McCarthy Departet of Matheatics, Texas A&M Uiversity, Texas ccarthy@athtauedu Received: /3/, Accepted:

More information

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n.

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n. Bertrad s Postulate Our goal is to prove the followig Theorem Bertrad s Postulate: For every positive iteger, there is a prime p satisfyig < p We remark that Bertrad s Postulate is true by ispectio for,,

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

Taylor Transformations into G 2

Taylor Transformations into G 2 Iteatioal Mathematical Foum, 5,, o. 43, - 3 Taylo Tasfomatios ito Mulatu Lemma Savaah State Uivesity Savaah, a 344, USA Lemmam@savstate.edu Abstact. Though out this pape, we assume that

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples arxiv:10021383v2 [mathnt] 9 Feb 2010 A aalog of the arithmetic triagle obtaied by replacig the products by the least commo multiples Bair FARHI bairfarhi@gmailcom MSC: 11A05 Keywords: Al-Karaji s triagle;

More information

Applications of the Hurwitz-Lerch zeta-function

Applications of the Hurwitz-Lerch zeta-function Pue ad Applied Mathematic Joual 05; 4(-): 30-35 Publihed olie Decembe 6, 04 (http://www.ciecepublihiggoup.com//pam) doi: 0.648/.pam..050400.6 ISSN: 36-9790 (Pit); ISSN: 36-98 (Olie) Applicatio of the Huwitz-Lech

More information

Math 4400/6400 Homework #7 solutions

Math 4400/6400 Homework #7 solutions MATH 4400 problems. Math 4400/6400 Homewor #7 solutios 1. Let p be a prime umber. Show that the order of 1 + p modulo p 2 is exactly p. Hit: Expad (1 + p) p by the biomial theorem, ad recall from MATH

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information