Some characterizations for Legendre curves in the 3-Dimensional Sasakian space

Size: px
Start display at page:

Download "Some characterizations for Legendre curves in the 3-Dimensional Sasakian space"

Transcription

1 IJST (05) 9A4: 5-54 Iaia Joual of Sciece & Techology Some chaacteizatio fo Legede cuve i the -Dimeioal Saakia pace H Kocayigit* ad M Ode Depatmet of Mathematic, Faculty of At ad Sciece, Celal Baya Uiveity, Muadiye Campu, Muadiye, Maia 4540, Tukey hueyikocayigit@cbuedut & mehmetode@cbuedut Abtact I thi pape, we give ome chaacteizatio fo Legede pheical, Legede omal ad Legede ectifyig cuve i the -dimeioal Saakia pace Futhemoe, we how that Legede pheical cuve ae alo Legede omal cuve I paticula, we pove that the ivee of cuvatue of a Legede ectifyig cuve i a o-cotat liea fuctio of the aclegth paamete Keywod: Legede cuve; omal cuve; ectifyig cuve; Saakia pace Itoductio eceay ad ufficiet coditio fo a cuve to be a pheical cuve i Euclidea pace E have bee give by Wog (96; 97) The coepodig chaacteizatio fo pheical cuve i the Mikowki -pace have bee tudied by Petović-Togašev ad Šućuović (000; 00) Aalogue to the -dimeioal pheical cuve, the autho have give chaacteizatio fo 4- dimeioal pheical cuve i the Mikowki 4- pace (Camcı et al, 00; Öde ad Kocayiğit 007) Moeove, Camcı et al (008) have coideed the cocept of pheical cuve i the - dimeioal Saakia pace ad have give ome coditio fo the Legede pheical cuve i thi pace I the Euclidea pace E, to each egula uit : IR E, with at leat fou peed cuve cotiuou deivative, it i poible to aociate thee mutually othogoal uit vecto field T, ad B, called the uit taget, the picipal omal ad the biomal vecto field, epectively The plae paed by T,, T, B ad, B ae kow a the oculatig plae, the ectifyig plae ad the omal plae, epectively The cuve : IR E fo which the poitio vecto alway lie i it omal plae i called omal cuve (Che, 00) Theefoe, fo a omal cuve, by defiitio the poitio vecto atifie the equatio ( ) ( ) ( ) ( ) B( ) whee () ad () ae diffeetiable fuctio of aclegth paamete The chaacteizatio fo omal cuve i ome pace uch a Euclidea -pace, Mikowki -pace ad dual Mikowki -pace have bee tudied by ome autho (Che, 00; İlala, 005; Öde, 006) Simila to omal cuve, if the poitio vecto alway lie i it ectifyig plae, the the : IR E i called ectifyig cuve cuve (Che, 00) By thi defiitio, the poitio vecto of a ectifyig cuve atifie the equatio ( ) ( ) T( ) ( ) B( ) fo ome diffeetiable fuctio () ad () Oe of the mot iteetig chaacteitic of ectifyig cuve i that the atio of thei toio ad cuvatue i a ocotat liea fuctio of ac legth paamete Rectifyig cuve lyig fully i the Euclidea pace E ae detemied explicitly by Che (00) I thi pape, fit we give ome chaacteizatio fo a Legede cuve to be a pheical cuve i the - dimeioal Saakia pace Late, we defie Legede omal cuve ad give the chaacteizatio fo thi cuve We how that Legede omal cuve ae pheical cuve Moeove, we give a defiitio ad chaacteizatio of Legede ectifyig cuve I paticula, we pove that the ivee of cuvatue of a Legede ectifyig cuve i a o-cotat liea fuctio of aclegth paamete Alo, we fid ome paametizatio fo Legede ectifyig cuve i the Saakia -pace *Coepodig autho Received: 7 Septembe 04 / Accepted: 4 Jauay 05

2 IJST (05) 9A4: Pelimiaie Let M be a mooth maifold A cotact fom o M i a -fom uch that d( ) 0 o M A maifold M togethe with a cotact fom i called a cotact maifold The ditibutio D defied by the Phaffia equatio 0 i called the cotact tuctue detemied by That i, D = {X x(m) η: x(m) C (M, η), η(x) = 0} The maximum dimeio of itegal ubmaifold of D i called a Legede ubmaifold of ( M, ) The eel vecto field (killig vecto field) i defied by ( ), d(, X) 0 (Yao ad Ko, 98; Belkelfa ad et al 00) O a cotact maifold ( M, ), thee exit a edomophim field ad a metic g atifyig X ( X), g( X, Y) g( X, Y) ( X) ( Y), d( X, Y) g( X, Y) fo all vecto field X ad Y o M whee g(, ) Whe ad, the g i Riemaia ad Loetzia metic, epectively The tuctue teo (,, g) ae called the aociated almot cotact tuctue of (Belkelfa et al 00) A cotact maifold ( M, ;,, g, ) i aid to be a Saaki maifold if M atifie ( X) Y g( X, Y) ( Y) X, X, Y ( M) (Yao ad Ko, 98; Belkelfa ad et al 00) ow let M ( M,,,, g, ) be a cotact -maifold with a aociated metic g A cuve ( ): I M paameteized by aclegth paamete i aid to be a Legede cuve if i taget to cotact ditibutio D of M It i obviou that i a Legede cuve if ad oly if ( ) 0 Let be a Legede cuve i Feet fame of i give by T, B T, ( ) ad B M The the, whee The, the Feet fomulae of ae give explicitly by TT T 0 0 T T 0 T B B 0 0 B whee the fuctio i the cuvatue of amely, evey Legede cuve ha cotat toio (Baikoui ad Blai, 994; Belkelfa et al 00) I a -dimeioal Saakia pace M, the phee i defied by H S whee H PM : g( P, P) ad S PM : g( P, P) (Camci et al 008) Legede Spheical Cuve I thi ectio we give the chaacteizatio fo Legede pheical cuve i the -dimeioal Saakia pace Theoem Let be a Legede cuve with cuvatue 0 i the -dimeioal Saakia pace The i a Legede pheical cuve if ad oly if, () hold, whee i the adiu of the phee Poof: Let m be the cete of phee o which lie The, we have g( m, m) () If we deive thi equatio with epect to, the ac-legth of, the we have g( m, T) 0, () whee T i uit taget vecto of If we epeat the deivatio we get g( m, ), (4) ad the deivatio of the lat equality give u

3 55 IJST (05) 9A4: 5-54 g( m, B) (5) The, fom (4) ad (5) we ca wite m B (6) Sice we have that the adiu of the phee i g( m, m), we obtai that which complete the poof Coveely, aume that () hold If we defie the vecto m B, (7) ad coide (), we have that m 0, ie, m i a cotat Moeove (7) give that g( m, m) ad fom hypothei,, (8) g( m, m) cotat, (9) we get that the Legede cuve lie o the phee whoe cete i m ad adiu i Let ow give the itegal chaacteizatio fo Legede pheical cuve i the -dimeioal Saakia pace Theoem I -dimeioal Saakia pace, a uit peed Legede cuve () with cuvatue 0 i a pheical cuve if ad oly if thee ae cotat A, B IR uch that A( ) B( ) (0) whee ( ) i( ), ( ) co( ) if ; ad ( ) ih( ), ( ) coh( ) if Poof: Aume that the Legede cuve lie o the phee with cete m ad adiu The, fom Theoem we have If we take y i () we get () y ( y) () The we ca wite that d d y ad y Thee diffeetial equatio ca be put ito thei vaiable, o we ca wite d, y y d, () epectively If, fom the lat equalitie we get (4) d, y y d By itegatig the equatio i (4), we have 0 0 y y 0 0 d, d, (5) ad the the paticula olutio of thee equalitie ae y i, y co, (6) epectively So, the geeal olutio of diffeetial equatio () with i y c y c y c i c co, (7) whee c, c c B IR If we wite y, c A,, the itegatio of () will be i the fom

4 IJST (05) 9A4: Ai( ) Bco( ), (8) that fiihe the poof If, the fom () we have 0 0 y y 0 0 d, d (9) The we obtai the paticula olutio of thee equalitie a follow y ih, y coh (0) So, the geeal olutio of diffeetial equatio () with i y c y c y c ih c coh, () whee c, c IR If we wite y, c A, c B, the itegatio of () will be i the fom Aih( ) Bcoh( ) () Uig (8) ad () we ca wite A( ) B( ) () whee ( ) i( ), ( ) co( ) if ; ad ( ) ih( ), ( ) coh( ) if ad A, B IR Coveely, if () hold fo the Legede cuve, we have () The, fom Theoem, we ay that the cuve () i a Legede pheical cuve i - dimeioal Saakia pace 4 The Legede omal Cuve I thi ectio, we give the defiitio ad the chaacteizatio of Legede omal cuve ad how that Legede omal cuve ae alo Legede pheical cuve i the -dimeioal Saakia pace Defiitio 4 Let () be a uit peed Legede cuve i the -dimeioal Saakia pace with Feet fame T,, B ad cuvatue 0 The cuve () i called Legede omal cuve if the poitio vecto alway lie o the omal plae of the Legede cuve () By defiitio, fo a Legede omal cuve the poitio vecto atifie the equatio ( ) ( ) ( ) ( ) B( ) fo ome diffeetiable fuctio () ad () The, we ca give the followig chaacteizatio Theoem 4 Let () be a uit peed Legede omal cuve with cuvatue ( ) 0 i the - dimeioal Saakia pace The the followig tatemet hold: i) The cuvatue () atifie the followig equality d ( ) d ( ), (4) whee ( ) i( ), ( ) co( ) if ; ad ( ) ih( ), ( ) coh( ) if ad d, d IR ii) The picipal omal ad biomal compoet of the poitio vecto of the Legede cuve () ae give by g( ( ), ) d( ) d ( ), g( ( ), B) d ( ) d( ), epectively (5) Poof: Suppoe that () i a uit peed Legede omal cuve The by Defiitio 4, we have ( ) ( ) ( ) ( ) B( ) (6) Diffeetiatig (6) with epect to ad uig the Feet equatio, we fid

5 57 IJST (05) 9A4: 5-54 ( ) ( ), ( ) ( ) 0, ( ) ( ) 0 (7) Fom the fit ad ecod equatio of (7) we get, (8) Thu, B (9) Futhe, fom the thid equatio i (7) ad uig (8) we fid the followig diffeetial equatio 0 a Puttig y () (0), equatio (0) ca be witte y y 0 () The olutio of () i d ( ) d ( ), () whee ( ) i( ), ( ) co( ) if ; ad ( ) ih( ), ( ) coh( ) if ad d, d IR Thu we have poved tatemet (i) By Theoem, we ee that the Legede omal cuve () i a pheical cuve So we ca give the followig coollay Coollay 4 Evey Legede omal cuve () i alo a Legede pheical cuve i the - dimeioal Saakia pace Futhemoe, Camcı et al (008) have how that thee ae o Legede pheical cuve i the - IR ( ) The, by dimeioal Saakia pace coideig Coollay 4, we ca give the followig coollay Coollay 4 Thee ae o Legede omal cuve () i the -dimeioal Saakia pace IR ( ) Let u ow pove tatemet (ii) Subtitutig () ito (8) ad (9), we get ( ) d ( ) d ( ), () ( ) d( ) d ( ), (4) d ( ) d ( ) ( ) d( ) d ( ) B( ) (5) Theefoe, ice g( B, B), fom (5) we eaily fid that g(, ) d d, (6) g( ( ), ) d ( ) d ( ), (7) g( ( ), B) d( ) d ( ) (8) Coequetly we have poved (ii) Coveely, uppoe that tatemet (i) hold The we have d ( ) d ( ), (9) whee ( ) i( ), ( ) co( ) if ; ad ( ) ih( ), ( ) coh( ) if ad d, d IR Sice ( ) ( ) ad ( ) ( ), by diffeetiatig (9) two time with epect to we fid d( ) d ( ) () (40) The fom (9) ad (40) we have 0 Equatio (4) how that (4)

6 IJST (05) 9A4: cotat It alo mea that () i a Legede pheical cuve So, fom (6), by applyig Feet equatio we obtai d ( ) ( ) B( ) 0 d ( ) ( ) (4) Coequetly, () i coguet to a Legede omal cuve ext, aume that tatemet (ii) hold The the equatio (6) ad (7) ae atified Diffeetiatig (6) with epect to ad uig (7), we fid g(, T) 0, which mea that () i a Legede omal cuve 5 The Legede Rectifyig Cuve I thi ectio, we give the defiitio ad chaacteizatio of Legede ectifyig cuve i the -dimeioal Saakia pace Defiitio 5 Let () be a uit peed Legede cuve i the -dimeioal Saakia pace with Feet fame T,, B ad cuvatue 0 The cuve () i called Legede pheical cuve if the poitio vecto alway lie o the omal plae of the Legede cuve () By defiitio, fo a Legede omal cuve the poitio vecto atifie the equatio ( ) ( ) T( ) ( ) B( ) fo ome diffeetiable fuctio () ad () Theoem 5 Let () be a uit peed Legede ectifyig cuve i Saakia -pace with cuvatue ( ) 0 The the followig tatemet hold: (i) The ditace fuctio atifie ( ), fo ome, IR (ii) The tagetial compoet of the poitio vecto g(, T), whee of i give by IR (iii) The omal compoet of the poitio vecto of the cuve ha a cotat legth ad the ditace fuctio i o-cotat (iv) The biomal compoet of the poitio vecto of the cuve i cotat, ie, g(, B) i cotat Coveely, if () i a uit peed Legede cuve i the Saakia -pace with cuvatue ( ) 0 ad oe of the tatemet (i), (ii), (iii) ad (iv) hold, the i a ectifyig cuve Poof: Let u uppoe that () i a uit peed Legede ectifyig cuve The the poitio vecto of the cuve atifie the equatio ( ) ( ) T( ) ( ) B( ), (4) whee () ad () ae ome diffeetiable fuctio of aclegth paamete Diffeetiatig (4) with epect to ad applyig the Feet- Seet equatio give, 0, 0 (44) Theefoe, it follow that ( ), ( ), 0,, IR (45) Fom the equatio (4) ad (45), we eailiy fid ( ), ad o (i) hold Futhe, fom (4) we obtai g(, T) which togethe with (45), g(, T) IR ad (ii) hold, whee ext, fom the elatio (4) it follow that the of the poitio vecto i omal compoet give by B Theefoe 0 Thu we poved tatemet (iii) Fially, fom (4) g(, B) cotat ad o we eaily get the tatemet (iv) i poved Coveely, aume that tatemet (i) o tatemet (ii) hold The, thee hold the equatio g(, T), whee IR Diffeetiatig thi equatio with epect to, we get ( ) g ( ), ( ) 0 Sice ( ) 0, it follow that g(, ) 0 Hece i a Legede ectifyig cuve ext, uppoe that tatemet (iii) hold Let u put ( ) m( ) T( ), m( ) IR The we eaily fid that g(, ) C cotat g(, ) g(, T) Diffeetiatig thi equatio with epect to we have

7 59 IJST (05) 9A4: 5-54 g(, ) 0 (46) Sice 0, we have g(, T) 0 Moeove, ice ( ) 0 fom (46) we obtai g(, ) 0, which mea that i a Legede ectifyig cuve Fially, if tatemet (iv) hold, the by applyig Feet equatio, we eaily obtai that the cuve i a Legede ectifyig cuve I the ext theoem, we pove that the ivee of the cuvatue of a Legede ectifyig cuve i a o-cotat liea fuctio of ac legth paamete Theoem 5 Let () be a uit peed Legede ectifyig cuve with cuvatue ( ) 0 i the Saakia -pace The, up to iometie of Saakia -pace, the cuve i a Legede ectifyig cuve if ad oly if 4 hold, whee, 4 () IR Poof: Let u fit uppoe that () i Legede ectifyig cuve By the poof of Theoem 5 ad by elatio (44) ad (45), it follow that (), (47) whee, IR Coequetly, / ( ) 4 whee /, 4 / ae eal cotat Coveely, let u uppoe that / ( ) 4 ad, 4 IR The, we /, / whee Applyig () may chooe 4, IR Hece, the Feet equatio, we eaily fid that d ( ) ( ) T B 0 d, which mea that up to iometie of Saakia pace, the Legede cuve () i a ectifyig cuve Theoem 5 Let () be a uit peed Legede cuve i the Saakia -pace The i a Legede ectifyig cuve if ad oly if, up to a paametizatio, i give by co t ih t ( t) y( t), IR, if ( t) y( t), IR, if (48) whee yt () i a uit peed Legede cuve lyig o the phee H () S () Poof: Let u fit aume that () i a uit peed Legede ectifyig cuve Sice g( T, T), g( B, B), by the poof of Theoem 5, it follow that ( ),, IR IR We may chooe Alo, we may apply a talatio with epect to, uch that ext, we defie a cuve by y () () () (49) ad aume that the cuve y i lyig o the phee H () S () The we have ( ) y( ) (50) Diffeetiatig (50) with epect to, we get T( ) y( ) y( ) (5) Sice g( y, y), it follow that g( y, y) 0 Fom (5) we obtai g( T, T) g( y, y)( ) ad hece g( y, y) ( ) Fom (5), we get 0 (5) y( ) / ( ) Let t y() u du be the aclegth paamete of the cuve y The we have

8 IJST (05) 9A4: t du u 0 If, the we get, the we get ta t ad if coth Subtitutig t thee ito (50), epectively, we obtai the paametizatio give i (48) Coveely, aume that i a cuve defied by (48) whee yt () i a uit peed Legede cuve lyig o the phee H S with adiu Diffeetiatig the equatio (48) with epect to, we get ( t) y( t)i t y ( t)co t, if co t ( t) y( t)coh t y( t)ih t, if ih t By aumptio, we have g( y, y), g( y, y) ad coequetly g( y, y) 0 Theefoe, it follow that i t g(, ), g(, ), if 4 (5) co t co t coh t g(, ), g(, ), if 4 ih t ih t ad coequetly ( t) / co t, if ( t) / ih t, if Let u put ( t) m( t) ( t), whee m() t IR ad i omal compoet of the poitio vecto The we eaily fid that, ad theefoe m g(, )/ g(, ) Sice (, ) (, ) (, ) g g g g(, ) g(, ), if co t g(, ), if ih t by uig (5), the lat equatio become g(, ) cotat It follow that cotat ad ice / co t cotat, Theoem 5 implie that i a Legede ectifyig cuve 6 Cocluio I the tu of cotact maifold, Legede cuve have a impotat ole I the cotact maifold, a diffeomophim i a cotact tafomatio if ad oly if ay Legede cuve i a domai of it go to Legede cuve (Baikoui ad Blai, 994) The the tu of pecial Legede cuve i faciatig By coideig the impotace of thi, Legede pheical, Legede omal ad Legede ectifyig cuve i Loetzia Saakia pace have bee itoduced It i how that Legede omal cuve ae alo Legede pheical cuve Refeece Baikoui, C D, & Blai, E (994) O Legede cuve i cotact -maifold Geom Dedicata, 49, 5 4 Belkhelfa, M, Hiica, I E, Roca, R, & Vetlaele, L (00) O Legede cuve i Riemaia ad Loetzia Saaki pace Soochow J Math, 8(), 8 9 Camcı, Ç, İlala, K, & Šućuović, E (00) O Peudohypebolic Cuve i Mikowki pace-time Tuk J Math, 7(), 5 8 Camcı, Ç, Yaylı, Y, & Hacıalihoğlu, H H (008) O the chaacteizatio of pheical cuve i - dimeioal Saakia pace J Math Aal Appl, 4(), 5 59 Che, B Y (00) Whe doe the poitio vecto of a pace cuve alway lie i it ectifyig plae? Ame Math Mothly, 0(), 47 5 İlala, K (005) Spacelike omal cuve i Mikowki pace E Tuk J Math, 9(), 5 6 İlala, K, ešović, E, & Petović-Togašev, M (00) Some Chaacteizatio of Rectifyig Cuve i the Mikowki -Space ovi Sad J Math, (), Öde, M (006) Dual Timelike omal ad Dual Timelike Spheical Cuve i Dual Mikowki Space D SDU Joual of ciece, (-), Öde, M, & Kocayiğit, H (007) O Loetzia pheical timelike ad ull cuve i Mikowki pacetime CBU Joual of Sciece, (), 5 58 Petović-Togašev, M, & Šućuović, E (000) Some chaacteizatio of Loetzia pheical pacelike cuve with the timelike ad ull picipal omal Mathematica Moavica, 4, 8 9 Petović-Togašev, M, & Šućuović, E (000) Some chaacteizatio of cuve lyig o the peudohypebolic pace H 0 i the Mikowki pace E Kagujevac J Math,, 7 8

9 54 IJST (05) 9A4: 5-54 Petović-Togašev, M, & Šućuović, E (00) Some chaacteizatio of the Loetzia pheical timelike ad ull cuve MATEMATИУKИ BECHИK, 5, 7 Wog, Y C (96) A global fomulatio of the coditio fo a cuve to lie i a phee Moatchefte fu Mathematik, 67(4), 6 65 Wog, Y C (97) O a explicit chaacteizatio of pheical cuve Poceedig of the Ameica Math Soc, 4, 9 4 Yao, K, & Ko, M (984) Stuctue o maifold Seie i Pue Mathematic,, Wold Scietific Publihig Co, Sigapoe

LOCUS OF THE CENTERS OF MEUSNIER SPHERES IN EUCLIDEAN 3-SPACE. 1. Introduction

LOCUS OF THE CENTERS OF MEUSNIER SPHERES IN EUCLIDEAN 3-SPACE. 1. Introduction LOCUS OF THE CENTERS OF MEUSNIER SPHERES IN EUCLIDEAN -SPACE Beyha UZUNOGLU, Yusuf YAYLI ad Ismail GOK Abstact I this study, we ivestigate the locus of the cetes of the Meusie sphees Just as focal cuve

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN Iteatioal Joual of Mathematical Achive-5(3, 04, 7-75 Available olie though www.ijma.ifo ISSN 9 5046 ON THE OSCILLATOY BEHAVIO FO A CETAIN CLASS OF SECOND ODE DELAY DIFFEENCE EQUATIONS P. Mohakuma ad A.

More information

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation Advace i Mathematic ad Statitical Sciece O Poitive Defiite Solutio of the Noliea * Matix Equatio A A I SANA'A A. ZAREA Mathematical Sciece Depatmet Pice Nouah Bit Abdul Rahma Uiveity B.O.Box 9Riyad 6 SAUDI

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator Iteatioal Joual of Mathematic Reeach. ISSN 0976-5840 Volume 9, Numbe 2 (2017), pp. 135-148 Iteatioal Reeach Publicatio Houe http://www.iphoue.com Uified Mittag-Leffle Fuctio ad Exteded Riema-Liouville

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Joual of Rajastha Academy of Physical Scieces ISSN : 972-636; URL : htt://aos.og.i Vol.5, No.&2, Mach-Jue, 26, 89-96 FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Jiteda Daiya ad Jeta Ram

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Some Properties of the K-Jacobsthal Lucas Sequence

Some Properties of the K-Jacobsthal Lucas Sequence Deepia Jhala et. al. /Iteatioal Joual of Mode Scieces ad Egieeig Techology (IJMSET) ISSN 349-3755; Available at https://www.imset.com Volume Issue 3 04 pp.87-9; Some Popeties of the K-Jacobsthal Lucas

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Bound states solution of Klein-Gordon Equation with type - I equal vector and Scalar Poschl-Teller potential for Arbitray l State

Bound states solution of Klein-Gordon Equation with type - I equal vector and Scalar Poschl-Teller potential for Arbitray l State AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH Sciece Huβ http://www.cihub.og/ajsir ISSN: 5-649X doi:.55/aji...79.8 Boud tate olutio of Klei-Godo Equatio with type - I equal vecto ad Scala Pochl-Telle

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers O the Explicit Detemiats Sigulaities of -ciculat Left -ciculat Matices with Some Famous Numbes ZHAOLIN JIANG Depatmet of Mathematics Liyi Uivesity Shuaglig Road Liyi city CHINA jzh08@siacom JUAN LI Depatmet

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Minimal order perfect functional observers for singular linear systems

Minimal order perfect functional observers for singular linear systems Miimal ode efect fuctioal obseves fo sigula liea systems Tadeusz aczoek Istitute of Cotol Idustial lectoics Wasaw Uivesity of Techology, -66 Waszawa, oszykowa 75, POLAND Abstact. A ew method fo desigig

More information

-statistical convergence in intuitionistic fuzzy normed linear space

-statistical convergence in intuitionistic fuzzy normed linear space Soglaaai J. Sci. Techol. 40 (3), 540-549, Ma - Ju. 2018 Oigial Aticle Geealized I -tatitical covegece i ituitioitic fuzz omed liea pace Nabaita Kowa ad Padip Debath* Depatmet of Mathematic, Noth Eate Regioal

More information

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline OPTIMAL ESTIMATORS FOR THE FIITE POPULATIO PARAMETERS I A SIGLE STAGE SAMPLIG Detailed Outlie ITRODUCTIO Focu o implet poblem: We ae lookig fo a etimato fo the paamete of a fiite populatio i a igle adom

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

SHIFTED HARMONIC SUMS OF ORDER TWO

SHIFTED HARMONIC SUMS OF ORDER TWO Commu Koea Math Soc 9 0, No, pp 39 55 http://dxdoiog/03/ckms0939 SHIFTED HARMONIC SUMS OF ORDER TWO Athoy Sofo Abstact We develop a set of idetities fo Eule type sums I paticula we ivestigate poducts of

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

A Statistical Integral of Bohner Type. on Banach Space

A Statistical Integral of Bohner Type. on Banach Space Applied Mathematical cieces, Vol. 6, 202, o. 38, 6857-6870 A tatistical Itegal of Bohe Type o Baach pace Aita Caushi aita_caushi@yahoo.com Ago Tato agtato@gmail.com Depatmet of Mathematics Polytechic Uivesity

More information

Congruences for sequences similar to Euler numbers

Congruences for sequences similar to Euler numbers Coguece fo equece iila to Eule ube Zhi-Hog Su School of Matheatical Sciece, Huaiyi Noal Uiveity, Huaia, Jiagu 00, Peole Reublic of Chia Received July 00 Revied 5 Augut 0 Couicated by David Go Abtact a

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

On the Circulant Matrices with. Arithmetic Sequence

On the Circulant Matrices with. Arithmetic Sequence It J Cotep Math Scieces Vol 5 o 5 3 - O the Ciculat Matices with Aithetic Sequece Mustafa Bahsi ad Süleya Solak * Depatet of Matheatics Educatio Selçuk Uivesity Mea Yeiyol 499 Koya-Tukey Ftly we have defied

More information

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India. Steie Hype Wiee Idex A. Babu 1, J. Baska Babujee Depatmet of mathematics, Aa Uivesity MIT Campus, Cheai-44, Idia. Abstact Fo a coected gaph G Hype Wiee Idex is defied as WW G = 1 {u,v} V(G) d u, v + d

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials It. Joual of Math. Aalysis, Vol. 7, 2013, o. 43, 2117-2128 HIKARI Ltd, www.m-hiai.com htt://dx.doi.og/10.12988/ima.2013.36166 -Adic Ivaiat Itegal o Z Associated with the Chaghee s -Beoulli Polyomials J.

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

Weighted Hardy-Sobolev Type Inequality for Generalized Baouendi-Grushin Vector Fields and Its Application

Weighted Hardy-Sobolev Type Inequality for Generalized Baouendi-Grushin Vector Fields and Its Application 44Æ 3 «Vol.44 No.3 05 5 ADVANCES IN MATHEMATICS(CHINA) May 05 doi: 0.845/sxjz.03075b Weighted Hady-Sobolev Type Ieuality fo Geealized Baouedi-Gushi Vecto Fields ad Its Applicatio ZHANG Shutao HAN Yazhou

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4 Optimal Sigal oceig Leo 5 Capte 7 Wiee Filte I ti capte we will ue te model ow below. Te igal ito te eceie i ( ( iga. Nomally, ti igal i ditubed by additie wite oie (. Te ifomatio i i (. Alo, we ofte ued

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

Generalized k-normal Matrices

Generalized k-normal Matrices Iteatioal Joual of Computatioal Sciece ad Mathematics ISSN 0974-389 Volume 3, Numbe 4 (0), pp 4-40 Iteatioal Reseach Publicatio House http://wwwiphousecom Geealized k-omal Matices S Kishamoothy ad R Subash

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8.

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8. Mathematics. Solved Eamples JEE Mai/Boads Eample : Fid the coefficiet of y i c y y Sol: By usig fomula of fidig geeal tem we ca easily get coefficiet of y. I the biomial epasio, ( ) th tem is c T ( y )

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Bayesian and Maximum Likelihood Estimation for Kumaraswamy Distribution Based on Ranked Set Sampling

Bayesian and Maximum Likelihood Estimation for Kumaraswamy Distribution Based on Ranked Set Sampling Ameica Joual of Mathematic ad Statitic 04 4(): 0-7 DOI: 0.59/j.ajm.04040.05 Bayeia ad Maximum Lielihood Etimatio fo Kumaawamy Ditibutio Baed o Raed Set Samplig Mohamed A. Huia Depatmet of Mathematical

More information

Generalized Near Rough Probability. in Topological Spaces

Generalized Near Rough Probability. in Topological Spaces It J Cotemp Math Scieces, Vol 6, 20, o 23, 099-0 Geealized Nea Rough Pobability i Topological Spaces M E Abd El-Mosef a, A M ozae a ad R A Abu-Gdaii b a Depatmet of Mathematics, Faculty of Sciece Tata

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

On Locally Convex Topological Vector Space Valued Null Function Space c 0 (S,T, Φ, ξ, u) Defined by Semi Norm and Orlicz Function

On Locally Convex Topological Vector Space Valued Null Function Space c 0 (S,T, Φ, ξ, u) Defined by Semi Norm and Orlicz Function Jounal of Intitute of Science and Technology, 204, 9(): 62-68, Intitute of Science and Technology, T.U. On Locally Convex Topological Vecto Space Valued Null Function Space c 0 (S,T, Φ, ξ, u) Defined by

More information

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ =

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ = Electo states i a peiodic potetial Assume the electos do ot iteact with each othe Solve the sigle electo Schodige equatio: 2 F h 2 + I U ( ) Ψ( ) EΨ( ). 2m HG KJ = whee U(+R)=U(), R is ay Bavais lattice

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

In this simple case, the solution u = ax + b is found by integrating twice. n = 2: u = 2 u

In this simple case, the solution u = ax + b is found by integrating twice. n = 2: u = 2 u The Laplace Equatio Ei Pease I. Itoductio Defiitio. Amog the most impotat ad ubiquitous of all patial diffeetial equatios is Laplace s Equatio: u = 0, whee the Laplacia opeato acts o the fuctio u : R (

More information

Modular Spaces Topology

Modular Spaces Topology Applied Matheatics 23 4 296-3 http://ddoiog/4236/a234975 Published Olie Septebe 23 (http://wwwscipog/joual/a) Modula Spaces Topology Ahed Hajji Laboatoy of Matheatics Coputig ad Applicatio Depatet of Matheatics

More information

Supplemental Material

Supplemental Material Poof of Theoem Sulemetal Mateial Simila to the oof of Theoem, we coide the evet E, E, ad E 3 eaately. By homogeeity ad ymmety, P (E )=P (E 3 ). The aoximatio of P (E ) ad P (E 3 ) ae idetical to thoe obtaied

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

Prove that M is a partially ordered set. 2. (a) Let f: { } C

Prove that M is a partially ordered set. 2. (a) Let f: { } C Nalada Ope Uivesity Aual Eamiatio - BSc Mathematics (Hoous), Pat-I Pape-I Time: Hs Full Maks: 8 Aswe ay five questios, selectig at least o fom each goup Goup 'A' (a) Defie a equivalece elatio Show that

More information

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product Joual of athematic ad Statitic 6 (3): 294-299, 200 ISSN 549-3644 200 Sciece Publicatio Poof of Aalytic Eteio Theoem fo Zeta Fuctio Uig Abel Tafomatio ad Eule Poduct baitiga Zachaie Deatmet of edia Ifomatio

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

Generalizations and analogues of the Nesbitt s inequality

Generalizations and analogues of the Nesbitt s inequality OCTOGON MATHEMATICAL MAGAZINE Vol 17, No1, Apil 2009, pp 215-220 ISSN 1222-5657, ISBN 978-973-88255-5-0, wwwhetfaluo/octogo 215 Geealiatios ad aalogues of the Nesbitt s iequalit Fuhua Wei ad Shahe Wu 19

More information

On the quadratic support of strongly convex functions

On the quadratic support of strongly convex functions Int. J. Nonlinea Anal. Appl. 7 2016 No. 1, 15-20 ISSN: 2008-6822 electonic http://dx.doi.og/10.22075/ijnaa.2015.273 On the quadatic uppot of tongly convex function S. Abbazadeh a,b,, M. Ehaghi Godji a

More information

Solving Fuzzy Differential Equations using Runge-Kutta third order method with modified contra-harmonic mean weights

Solving Fuzzy Differential Equations using Runge-Kutta third order method with modified contra-harmonic mean weights Iteatioal Joual of Egieeig Reseach ad Geeal Sciece Volume 4, Issue 1, Jauay-Febuay, 16 Solvig Fuzzy Diffeetial Equatios usig Ruge-Kutta thid ode method with modified cota-hamoic mea weights D.Paul Dhayabaa,

More information

Lower Bounds for Cover-Free Families

Lower Bounds for Cover-Free Families Loe Bouds fo Cove-Fee Families Ali Z. Abdi Covet of Nazaeth High School Gade, Abas 7, Haifa Nade H. Bshouty Dept. of Compute Sciece Techio, Haifa, 3000 Apil, 05 Abstact Let F be a set of blocks of a t-set

More information