. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

Size: px
Start display at page:

Download ". Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD"

Transcription

1 Ie J Mh & Mh Sci Vol 8 No 2 (1985) ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid USA (Received Mch 3, 1983) ABSTRACT A iio ove fiie field i defied d ech equivlece cl i couced d eeeed by e clled he fudel e If iiive elee i ued o couc he ddiio ble ove hee fudel e he ll ddiio ove he field c be coued The ube of iio i give fo oe fiie field KEY WORDS AND HRASES Fiie field, iiive olyoil 19B0 MATHETICS SUBJECT CLASSIFICATION CODE 12C99 i INTRODUCTION Thoughou,q will be fixed bu biy ie Le E GF() > 1 d defie A A {, +l, +2, =+ (-l)} If B E A, he A A Defie 2A, 3A (-l)a uch h A {x/x A} 1,2,,- I, hu A A DEFINITION * A D 1 =i,,, Noe h if 8 6 Ae, he A AS" A= {x/x DEFINITION A fo 0,i 2 o, A, +I, A ( C ( + (-l)} A Sice fo evey GF() we hve A A Theefoe -U I= he vlue of i he defiiio c be liied o 0,1,2,,-i DEFINITION DEFINITION A, * A (A -l A,A Sice (Z,+,) hu X { 3 +bl Z* b Z d j E Z } LEMMA ii If 8 EX, he X A--B ROOF If 8 6 A he hee exi 6 Z b 6 Z d J Z uch h 8 j + b Thi ilie 8C -1 o A A8" i field d 0 boh

2 374 Y ABBAS AND J J LIANG DEFINITION A will be clled Fudel Se Sice A A fo evey E GF(), hee exi le oiive iege <_ A * uch h A fo oe 6 Z I follow h A *A DEFINITION Le u,8 E GF() We defie he elio i GF() 8 iff A AB THEOREM ii Fo Le ii he elio i equivlece elio Thi equivlece elio will iio he field GF() io equivlece cle A d ech cl i eeeed by fudel e DEFINITION A will be clled Fudel Cl _ i Le 8 be iiive elee i GF() Sice, 8 -I i iiive i Z, he fo evey Z hee exi k whee i < k < - i So, k c be deeied eily If he elee of he fudel e A e exeed owe of 8, he c be exeed fo A owe of 8 So o clcule he ddiio ble of A i i ufficie o hve he ddiio ble of A Theefoe, if AI,A2,,A=, e ll he fudel cle i GF(), i will be eough o bule oly he ddiio ble ove A,,A wih eec o 8 o do ll he clculio ove i GF(), If fo oe GF(), i he le oiive iege uch h + b fo oe Z d b Z he i i ue h will be he lle oiive iege fo evey B uch h B B+ b whee b E Z Thi will be how below DEFINITION Le GF(), if i he le oiive iege uch h + b fo oe Z * b Z he i clled he idex of d i he coefficie of d we y h idex wih coefficie If = Z we y h idex 0 wih coefficie i LEMMA 12 If h idex wih coefficie, he evey 8 A h he e idex d he e coefficie ROOF Le B wih idex d B Z Thee exi E Z 6 Z d j Z uch h 8 J + 6 Thi ilie 8 ( j + 6) ( + b) j c whee c Z Theefoe _< Bu fo Le ii we hve A A 8 Hece A Theefoe <, which ilie 8 h idex wih coefficie DEFINITION The fudel e A h idex wih coefficie if d oly if i he le oiive iege uch h A A THEOREM 12 If h idex wih coefficie he A h idex wih coefficie d ech fudel e A C h he e idex wih he e 8 A coefficie ROOF Follow fo Le 12 Fo he bove heoe we c defie he idex A o be he idex of y elee o y fudel e icluded i A Now, we w o dicu oe oeie of he idex d he coefficie of he fudel e -i

3 FUNDAMENTAL SETS OVER A FINITE FILED 375 THEOREM 13 I GF(), if A h idex d coefficie he dfvlde d / I ROOF Le +, 0 < < Sice + b, fo oe be Z we hve -2 -i -2 () + ( -I + ++ l)b d ( ) - + ( l)b So A A which ilie 0 d / i THEOREM 14 Le A be fudel e wih idex d coefficie If * / A ba, b E Z he divide d b ROOF Sice i he idex of A, we hve < Le k +, 0 _< < If A, he hee exi 6, 6 Z uch h + 6 d b+ 6 Bu k, b+ 6 ( ) (ko + 6 ) + 6 k + 6" Thi ilie > Theefoe 0 Hece l d b Noe: Sice ll fiie field of he e ode e ioohic, if i E GFI() hvig idex wih coefficie, i he ige of h idex wih coefficie Thee- 2 GF2() ude ioohi o, he 2 foe; GFl() d GF2() elio hve he e iio wih eec o he equivlece EXAMLE: Le F GF(52) d 8 be iiive elee i F uch h 8 ifie he iiive olyoil idexig olyoil], (x) x 2 + 4x + 2 The field F h wo equivlece cle, Z d A 5 8 {8, 8 + i Sice 86 2, he d So, we hve / Theefoe, 2A 8 { = } 3A 0 { i 0 I A 8 {813, , , , I 85 5 d A 4A SOLUTIONS OF EQUAl IONS OF THE FORM A A To udy he fudel e i GF() wih idex <, we hve o udy he, x * x oluio of: () x + 6; Z # i, 6 E Z d (b) x + 6; 6 Z i GF() Noe: If 6 0 i (b), he ll he elee of he ubfield GF() will ify (b) We will ow coide he oluio of x x + 6 (21), whee 6 Z, # 1 d 6 Z LEMMA 2 i Equio (2 i) h oluio e Z wih idex oly if divide d i The oof i diec licio of Theoe 13 d Theoe 14 LEMMA 22 I equio (21), fo y x + -1 we hve y y ROOF )=x y (x + + x y -i (y- _l + -i

4 376 Y ABBAS AND J J LIANG y Theefoe, o udy he oluio of (21), i i ufficie o udy he oluio of y LEMMA 23 x i - oluio of equio (21) If 0 i iiive elee i GF(), he he followig ee e ue: -i () 0 -I Z -I k * 1 (b) Fo evey Z hee exi iege k uch h 0 whee 0 < k < -i If i, k # 0 LEMMA 24 Fo evey uch h divide d i i i iege, k ROOF Le k So, l(od k) d -i -i -i, he I / 1 k-2-1 (o) -I (o)k- + (o) + I Sice -= l(od k), we hve J l(od k) fo j 1,2 Theefoe, k-i ()j 0(od k) Hece _ i j=o 1 I LEMMA 25 If / i, 1 d ROOF Bu, fo Le 24 -! -k / - i 0 k _ -i -i -i -i i i / 1 _(/) k / I k -1 he -i i iege -i -i -l_k i iege Alo, 0 - i ilie i Theefoe, -I k 0 od(-l) So -i k -i THEOREM 21 Give x x (22) whee, i d 0() he () Equio (22) h oluio i GF() d Z O (b) If i oluio of (2 2) whee O i iiive i GF(), he k 1 (od -!) -1 -I -I (c) x 0 i he oly oluio of (22) i Z ROOF () If x Z he x x x Theefoe x O (b) Sice x x d # i, he x _GF() (c) If O i oluio of (22) he (o) -I -i k == 8 -i Thu, i (- i) =- k (od I) -i which ilie k _ 1) 1 (od -i -i -i I follow fo Le 25 h he bove coguece i eigful

5 (22) THEOREM 22 FUNDAMENTAL SETS OVER A FINITE FIELD 377 Fo evey k i k -i _ i) (od O i oluio of I -I -i ROOF Le -i + j j 0,1,2, he -I -i -I _l _ i -k (S) o -I (8-l)j I So, (O) O Now coide he oluio of x x + 6 (23) whee # i, Z 6 Z, l d 0() Fo Le 22, Theoe 21 d Theoe 22, we hve O i oluio of (23), whee k -I (od d i he oly oluio i Z -i -i "-i THEOREM 23 Le A be fudel e i GF() wih idex d coefficie d i If A i o icluded i y oe ubfield of GF(), he O() l(- i) ROOF Le 0() d d u A I follow dl d h idex wih coefficie Thu, + fo oe 6 6 Z Hece d d + (ed-1 + d )6 Theefoe 6GF(di), which ilie GF(d) GF() d d COROLLARY 21 Le X X + 6 (24) uch h i, 6 Z l, 1 d O(), he equio (24) h oluio i GF() d ll he oluio e icluded i GF() ROOF GF() i ubfield of GF() Equio (24) ifie he codiio of Theoe 21 ove GF() d if u i oluio, he u -1-2 GF() u + ( )6 + O Theefoe -1 Noe: If 8 i iiive elee i GF(), he y 0 -i i iiive elee i GF() Theefoe, he oluio of equio (24) e of he fo: k y + whee 1 (od k d 7 1 Sice -1 -I k -1 -i -I -i -I,we hve 8 (8 O -I k -I k -l k So, k k Theefoe, he oluio of (24) ove GF() e of he fo 8 + i_-, whee k!) -I -1 -l- (od -i -i -i

6 _ 378 Y ABBAS AND J J LIANG LEMMA 26 Equio (24) h oluio i GF() ROOF Coolly 21 iue h equio (24) h oluio i GF() -I -i Fo he eviou oe, Theoe 21 d Theoe 22 we hve d 0 + i oluio d if H {0 B + lgf()} he i oluio of (24) I i cle h H h elee O()[ THEOREM 24 Fo evey divide d evey E Z 1 uch h hee exi fudel e i GF() wih idex d coefficie ROOF By Le 26, x x h oluio i GF() If e i _ -1 ok iiive elee i 6F() he 0-1 i oluio We cli h h idex wih coefficie To ove hi, we ue h idex wih coefficie b, heefoe by Theoe 14 d Theoe 22 we coclude h i oluio of x bx d i i of he fo e whee So, hee exi j whee j > 0 uch h: _ od 1) -I -I -I -i k he 0 _< j o_ ll_ 1 Sice _ i_ > k < - 1 d i _< we will hve -i d hi i codicio 0 <_ J < _-- Hece A--A i fudel e wih idex d coefficie COROLLARY 22 The iiu ubfield which coi ll he oluio of equio (24) i GF() ROOF The oof i diec licio of Theoe 13 d Theoe 24 he We will ow eview oe kow fc bou he oluio of x x + b i field GF() Le x x + b, whee b EGF() (25) d d gcd (, ) d The followig heoe wee give i [i] LEMMA 27 If x 0 i oluio of (25) i GF(), he fo evey d 8 -i j i, 2,, -i, x 0 + i oluio of (25) whee 8 i iiive elee i GF()

7 FUNDAMENTAL SETS OVER A FINITE FIELD 379 -i ROOF THEOREM 25 THEOREM 26 d d Xo + 8 -i x + (O i _ (x0+b) + e -I Xo + e 1 + b d The ube of oluio of (25) i GF() i ehe 0 o Equio (25) h oluio i GF() if d oly if, If we ue divide d b Z i he equio x x + b he we c coclude he followig: () (b) d g- c- d(), fo evey b E Z we hve E ffio b=--b=o (26) if d oly if divide Now, we c ee he followig heoe: () Theoe 27 Equio (26) h oluio i GF() if d oly if divide (b) Theoe 28 If equio (26)h oluio i GF(), i h oluio, lo if x 0 i oluio he x j 0,1,, -i i oluio whee 0 i iiive i GF() THEOREM 29 If (26) h oluio i GF(),he, he iiu ubfield h coi ll he oluio i GF() ROOF Sice equio (26) h oluio d divide he by Theoe 27 divide heefoe GF(o) i ubfield of GF() If i oluio of (26), he we hve + b, which ilie = + b = o = GF(o) d GF()[b#0] Le GF( Z) be he iiu ubfield which coi ll he oluio of (26) heefoe GF() C GF() d # Thi ilie [ Bu ice equio (26) h oluio i GF() d by Theoe 25 d Theoe 26, g c d(,) Hece, Theefoe, LEMMA 28 If i oluio of (26) i GF() whee h idex wih coefficie he divide d i

8 380 Y ABBAS AND J J LIANG ROOF Theoe 1 4 ilie SIR Le _ Aue # 1 d + 6 fo SORe E Z heefoe + -i i) -i -2, e + b Hece 1 d which ilie b 0, bu hl codic he codiio b 0 of equio (26) COROLLARY 23 I GF(), fo evey divide d divide hee exi (-l) elee e whee 6 A uch h A A d A GF() * ROOF Equio (26) h oluio ove GF() fo fixed b Z d hee e -i diffee vlue fo b COROLLARY 24 I GF(), if i ie, he ll oluio of (26) hve idex wih coefficie i ROOF Thi i diec coequece of Le 28 THEOREM 210 I equio (26) if divide he hee exi whee i oluio of (26) d h idex wih coefficie i ROOF Sice he (26) h oluio Alo by Le 28, if h idex wih coefficie 1 whee ir, he iie x x + i (27) whee 6 --_ (b), hece l d By Theoe 27 d Theoe 28 equio (27) h oluio Le {Sl, 2, } be he e of ll he idice of he oluio of (26) uch h 1 _< < i j < R fo evey I < j Sice _< whee i he gee iege le h o equl o we hve Sl 2 < < Bu k+l k+l ice < 2k fo k > i d < -I -I 2k + i we hve d hi i codicio R < -i COROLLARY 25 I GF(), fo evey divide, d divide hee exi fudel e wih idex d coefficie I 3 THE TOTAL NUMBER OF FUNDAMENTAL CLASSES IN SOME FINITE FIELDS I hi ecio we will iveige he ol ube of fudel cle fo oe ecil fiie field Fo he eviou udy we coclude h If hee exi fudel e wih idex d coefficie 1 i GF() * I GF(), fo evey divide, d evey Z # 1 whee 1 hee exi fudel e wih idex R d coefficie Sice 1 he he -l) # i g c d( If A i fudel e wih idex he A h (- l) elee

9 FUNDAMENTAL SETS OVER A FINITE FIELD 381 I hi ecio we will ue he followig oio: () 0() Nube of fudel cle i GF() (b) A() Nube of fudel cle i GF() bu o i y oe ubfield of GF() (c) %(,,) Nube of elee i GF() wih idex d coefficie d oe of hee elee belogig o y oe ubfield of GF() (d) E(,) {x x + Z Z d 0 if 1} " (e) SE(,,) i he e of ll oluio of he equio of E(,) i GF() bu o i We hll iveige i he followig he ube of fudel cle i GF( q ), whee q -l, d +l q [q-l] LEMMA 31 If q- l,he q divide i fo evey 0,i,2, ROOF We will ove hi 1e by iducio By Fe Theoe he le, i ue fo O Aue i i ue fo he q [q-l]_ i (qs[q_l]) 1 [ q-i q-2 (q [q-l] 1) (q [q-l]) + (q [q-l]) + + [q [-ll, 11 (q [q-1]) ]--1 q Sice q [q-l] i ood q, he (q [q-l]) E i (od q) fo eve J 0,I q So, (q [q-l]) j=l +l [q_l] [q 1] S +2 q (od q) -= 0 (od q) which ilie q divide +l LEMMA 32 I GF( q whee q-1 d q #, we hve A(+l) q [q [q-l]_l] +l (-l)q, ROOF Sice g c d(q,-l) l,he fo evey 6 Z, I, q I fo evey O, heefoe equio (26) d equio (27) hve o oluio i +l +l h GF( q fo evey q h > 0 Hece evey elee i GF( q bu o i +l +l GF( q h dex q which lie h evey fudel e i GF( q bu o +l i GF( q lo h idex q So: +l A(+l q _q q [_q_ [q-if_ 11 +l +l (-l)q (-l)q Fo Le 31 d g c d(-l,q) 1 we hve A( +l) i iege COROLLARY 31 I GF( q) whee g-l, q we hve: I] O(q) i = i + (- l)q (q-l_ I) (-l)q (31)

10 382 Y ABBAS AND J J LIANG +l +l Sice O( q O( q + A( q we coclude h: -1 +l O( q 1 + A( q --O -i q i + [q [q-l] =0 (-l)q+l whee q-i, q # We hll ow udy he ube of fudel cle i GF( ) By Theoe 27, Theoe 28 d Theoe 29, he equio, whee b Z d < h +l GF( ) oluio d ll oluio e icluded i LEMMA 33 All he oluio of (32) hve idex ROOF Le be oluio of (32) d h idex We hve k fo oe k x x + b (32) k < d + c fo oe c o oluio of (32) +l COROLLARY 32 I GF( bu o i GF( ), hee e (-l) elee +l wih idex So x( I) (-l), ROOF Fo fixed b E Z equio (32) h oluio d we hve (-l), elee i Z +l +l COROLLARY 33 If e E GF( bu GF( ) he h idex o whee > I COROLLARY 34 Fo > i; A ( +l) (_l) + (-l) (_l) +l +l (-l) (-l) +l + --i (-I)-I-I --I [ (-I)-I_I (-l) + i (33) ] I GF(), he equio x x + b, (34) whee b 6 Z h oluio d ech oluio h idex Theefoe hee e (-l) elee i GF()-z wlh idex Thi ilie: LEMMA 34 O() i + + -(-l)-_ (-l) (-l) (35)

11 FUNDAMENTAL SETS OVER A FINITE FIELD 383 COROLLARY 35 -i +l O( A( (36) l I wh follow we will udy he ube of fudel cle i GF( "q whee q-i, q d, > I Sice q-i he fo eve divide -q d eve E Z wih i, we "q hve i So, Theoe 13 ilie h SE(,, q) fo evey # 1 d evey l q By Theoe 27, Theoe 28 d Theoe 29, we coclude he followig: LEMMA 35 Fo evey d h; 0 < < -i, 0 < h <, SE(qh, I, Sq) h h (-l) "q elee, ll of he e coied i he iiu ubfield +l h h GF( q d SE(qh, i, Sq)N GF( "q LEMMA 36 Fo evey, h uch h 0 < < -i, 0 < h < -i, SE(qh 1 Sq4) i icluded i SE(qh+l 1 Sq) qh ROOF (qh, Sq), Le u q SE I, The u + 6 fo oe q Z h which ilie u "q + I u + [q ], whee [x] i he le oegive eidue of x od Sice [q- ] 0 he SE( h+l q i, Sq) I i cle h if u SE( q h, 1, Sq),he u h idex q fo oe 0 < < h Sice, SE(, i, Sq A) C SE( q, i Sq) C C SE (qh+l, i Sq) we coclude h +l h+l h+l h+l h X( "q q I) (-l) "q +l h+l Theefoe, i GF( q hee e hi qh (_l) "q [q-l] h h _ h h (_l) "q [ "q [q-l]_l ]= "q [ (-I) q "q q [q-l] h+l +l h+l h+l fudel cle wih idex q Fo Le 31 d he fc h + i, he ube give i (38) i iege +l h+l h+l Sice y oe ubfield of GF( "q i ubfield of GF( "q o +l h +l h+l GF( "q ) So, i GF( "q ), he ube of fudel cle wih +l h+l idex "q i equl 6 q _ q _ q + q _(_l) q [-q [q-l] +l h+l h+l +l h h h h +l h+l (-l) q +l h +l h h h Theefoe, we hve he followig q [ q [q-l]_l]_ -q [-q [q-l] h+l (-l) +l q -1]- I: (37) (38) (39)

12 384 Y ABBAS AND J J LIANG THEOREM 311 I GF( "q ), Fo i follow h +l ( "q +l (38) + (39) +l h+l +l h+l +l h O( "q ( "q + O( "q h+l h + O( "q O( "q (310) We ow udy he geel ce, ie he ube of fudel cle i GF() Fi, le i 2 ql q2 q uch h i # 0 gi-i d qi # fo evey i 1,2 of Le N(,) be he ube of elee i GF( ) bu o i y oe ubfield GF (S) THEOREM 312 The ube N(,) (i)q j whee i he Mblu fucio (See [2]) i-j=, Sice fo evey divide d evey E Z he e SE(,,) I ilie h if EGF (k) whee GF (k) i ubfield of GF() d doe belog o y oe ubfield of GF(k), he = h idex k So, we hve he followig THEOREM 313 If GF(k) C GF() he A(k) N(k,) k (-l) k i 2 Now le ql q2 q uch h k # O, qi # " qi2-i fo evey i 1,2,, # 0 d i l LEMMA 3 7 Fo evey 2 ql q2 q whee 0 < < k-l, 0 _< _< i i i 1,2,, he SE(,l,) h (-l) elee, ll of he e coied i he iiu ubfield GF(o) d SE(,l,) N GF() Sice SE(,l,)C GF(), we hve SE(,l,) SE(,l,) LEMMA 38 Fo evey 1 "ql q whee 0 < < k-i, 0 < < i i fo i 1,2, d fo oe < -i, SE(,l,) i oe ube of SE(q,l,) LEMMA 39 If k divide, d divide he SE(,l,) COROLLARY 36 If SE(ql,l,) # d SE(q2,1;) # fo oe I # 2 he SE,l,) # (ql SE(q 1 ) 2 The oof i iedie licio of Le 37 COROLLARY 37 If divide bu o, he SE(,l,) f SE(,l,) +l The oof i diec licio of Le 37 COROLLARY 38 If fo oe 0 < < k-i l d I bu +l 2 d he whee (e,)= g- c d(,) SE(,l,) SE(,l,) SE((,),l,) The oof i diec licio of Le 37, Coolly 36 d

13 FUNDAMENTAL SETS OVER A FINITE FIELD 385 Coolly 38 We kow fo Theoe 210 if divide d he hee i SE(,l,) uch h h idex We w o fid he ube of elee i ll 12 lh SE(,l,) wih idex Le ql I "q12 q d divide whee 0 _< _< k- i, I # 0 fo l,,h d h < If we ege he q i he fcoizio of uch h ql q fo 1,2,,h, he SE(,1,) h fo evey i 1,2,,h, d i=in SE(--" 1,)qi, SE(ql q2 qh l, ) We hll ue he followig oio fo he eiig of hi ecio: i 2 h "ql q2 qh 1 < d h h I qi 2 i=l qi = qil qi2 h i<j qiqj 1 < i I i 2 < i h d qi q + fo i j=l j j =l l-i 2-1 h-1 If > h he we defie O Theefoe h "ql "q2 qh Fo eviou Le, we coclude he followig If R[SE(,I,)] i he ube of elee i SE(,l,) wih idex he R[SE(,I,)] I (-l) + + (-i) h h Alo, if B GF() d o i y oe ubfield of GF(), he B h idex o Hece we hve he followig THEOREM 3]4 &() R[S(,l,)] (,)-R[S(,l,)] (-l) (-l) (311) (3 12) To deeie he ube of equivlece cle i GF( q whee ql-l, we eed o udy SE(,,q fo ll dividig q d Z * Fo Theoe 27 we hve SE(M,l,q ) fo evey lq Alo we kow h fo evey lq d evey # I,, S/ Z if q i he SE(, qs) h (-l) elee Oe queio we will y o we fi i h fo give, i hee Z # I q/ uch h I d he how y uch i Z c oe fid? Aohe queio i fo fixed d, how y, e hee uch h SE(,,q E(,,q ) LEMMA 310 I Z if qv divide (-l) he hee e q (q-l) elee of v ode q ROOF Le b be iiive elee i Z Aue fo oe k; k I, b k i oluio x q i Thi ilie k-q 0 od(-l) So, k - -!_ fo oe q

14 386 Y ABBAS AND J J LIANG 1,2,,q-l Bu lo if -1 fo evey 1,2,,q-I we hve q -(b) q b -I" I d b # 1 which ilie h i Z we hve (q-l) elee of ode q Le i q h whee he g c d(-l,h) I, he fo evey uch h 0 od(q -v h) d 0 < < qv b qv we hve i oluio of x I, which I qv ilie h i Z hee e qv- elee uch h x i d x 1 Fo v I, v 2 2 we will hve q I- (q-l) q(q-1) 2 elee of ode q The e fo v I, v we will hve q i (q-l-l) q-l(q-l) elee of ode q LEMMA 311 I Z if fo fixed b whee O(b) q d i < < hee exi of ode qv whee _> v > d ifie x qv- b (313) he hee e qv- diic elee i Z * of ode qv ifyig (3]3) ROOF Noe h equio (313) h o eeed oo If i oluio, we cli h, q+l 2q+l (qv--l) q-i e diic oluio of (313) To v iq+l v-u_l ove ou cli, fi ice O() q he fo 1,2 q e q+l qvdiic c,l, i Z Alo ( -q qv- i b b Sice v q+l) v THEOREM 3]5 If b f Z,ch h O(b) q- 0 < v <, v-d v _> v, hee e q e]l of od, d ifyig (3]3) v- v- qv-v x q-l(q-l) diic d of ode q fo which he bove equio i v-i- g c d(qu+ l,q) 1 d O() q we ve O( q fo evey v, v-i v v ROOF I Z we hve q (q-l) el,e of ode q Le c e z d 0(c) q d le c q d o d # 1 d d q i Fuheoe, he ode of d i q By Le 311, we hve q elee ifyig d fo ech d Bu hee e _q q olvble d h i excly he ol ube of elee i Z hvig ode qv q LEMMA 312 If q divide -i, he q divide -i fo evey > 0 ROOF By iducio I GF( q) whee q divide -l, he e SE(l,,q) # if d oly if O() q Sice hee e (q-l) elee of ode q d fo fixed b wih O(b) q, he e SE(I b,q) h (-l) elee, heefoe GF( q) h (-l)(q-l) (q-l) fudel (-l) cle wih idex i So we coclude: Sice -= I od q So, (314) i iege O(q) (q-l) + q--(-l)(q-l)+ I (-l) -q q (q-l) + (--q-l-l) + (-l)q q-2 +q (q-l) + (314) q i + >q- 1 + (q-l) od q 0 od q =2 V THEOREM 316 I GF( q whee q divide (-l), if O() q he fo evey q qs) q +v, whee 0 < < -v we hve SE(,, SE(,,q # d SE(q v+=l,,qv+) S(q,q

15 FUNDAMENTAL SETS OVER A FINITE FIELD 387 ROOF By Coolly 21 we hve,, SE,,q # Theoe 24 d Coolly 22 will ily h X q X + b; b Z h oluio wih idex q d +v-i GF(q ) By Theoe 21 he oluio e of hi equio i H { O + / GF( q d i i cle h H (D GF( q i- NOTE: Thi heoe i o ue i geel I i oible h i oe ce he iiu ubfield h coi ll he oluio of x x + h oe ubfield which coi oe of he oluio Fo Fheoe 3 coclude h i CF( q ), w]ee ql-l, SE(q,b,q ) i - ube of SE(q,,q ) if d oly if + v + v d b q, wlee qv v O(b) O() q -v Alo * v fo fixed Z wih ode q whee v > O, Theoe 315 iue he exiece of excly q elee "b" i Z uch v+l q v h 0(b) q d b Hece, fo fixed wih ode q d fixed " < -v hee e q elee b i Z uch h: SE(q-i,b,q ) SE(q,,q ) o qv v+i Z whee O( i) q d (i+l)q So, we hve SE(q- (i+l) -i ) Theefoe, if we wih 0 Z uch h 0( he hee e i+i, q SE(q,i, q fo evey i 0,1,2,-1 whee - >_ 0 d qv+ (-i) g, Le -1 q h whee g c d(h,q) i The fo evey Z # i d evey >_ i uch h O() qv i < v < E d + v < we hve he followig Le LEMMA 313 I SE(q,,qS), hee e excly (q -1)-( q -1)- g elee wih idex q d coefficie +v Fo hi le, we coclude h i GF( q hee e (q -l)-(q -i (-l) -q -i) q qv-l(q_l fudel cle v d ech cl h idex q d coefficie wih ode q Le 312 iue h (315) h iege vlue We will ue he oio: -I (315) F(,,v) (315), whee + v, 1 < v < d > i I i cle ow h i GF( q whee > i, we hve -i -i (q -q )- (q -i) (q-l) (-l)q (316)

16 388 Y ABBAS AND J J LIANG S fudel cle d ech cl h idex q wih coefficie 1 Theefoe, fo > 2, > 2 we coclude h: O(q) O(q -l) + (316) F( -v v) + (-q v=l -6-1(q (-l)q (317) whee -6-1 i{-l, -l} d 6 x{o,-} If 1 he we hve: -i -I (q -i) (q-l) 0(q ) 0(q + (3 16) + -i (-1)q REFERENCES i LIANG, Joeh J, O he oluio of ioil equio ove Fiie Field Bull Clcu Mh Soc 70(1978), o 6, LONG, Adew F, Fcoizio of ieducible olyoil ove Fiie Field wih he ubiuio xq-x fo X Ac Aih XXV 1973, BERT, AA, Fudlel Coce of Highhe lgeb hoeix Sciece Seie, The Uiveiy of Chicgo e, ALAHEN, JD d KNUTH, Dold E, Tble of Fiie Field Skhy, The Idi Joul of Siic, Seie A, Vol 26, Dec 1964, 4,

17 Advce i Oeio Reech Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Advce i Deciio Sciece Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of Alied Mheic Algeb Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of obbiliy d Siic Volue 2014 The Scieific Wold Joul Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Diffeeil Equio Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014 Subi you uci h://wwwhidwico Ieiol Joul of Advce i Cobioic Hidwi ublihig Cooio h://wwwhidwico Mheicl hyic Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of Colex Alyi Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Mheic d Mheicl Sciece Mheicl oble i Egieeig Joul of Mheic Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Dicee Mheic Joul of Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Dicee Dyic i Nue d Sociey Joul of Fucio Sce Hidwi ublihig Cooio h://wwwhidwico Abc d Alied Alyi Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Joul of Sochic Alyi Oiizio Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam iol oul o L choloy i Eii M & Alid Scic LEMAS Volu V u Fbuy 8 SSN 78-54 v holic Pobl o Si-ii Cicul B Shlu D Bi M. S. Wbh d N. W. Khobd 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

On Absolute Indexed Riesz Summability of Orthogonal Series

On Absolute Indexed Riesz Summability of Orthogonal Series Ieriol Jourl of Couiol d Alied Mheics. ISSN 89-4966 Volue 3 Nuer (8). 55-6 eserch Idi Pulicios h:www.riulicio.co O Asolue Ideed iesz Suiliy of Orhogol Series L. D. Je S. K. Piry *. K. Ji 3 d. Sl 4 eserch

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Generalized Fibonacci-Type Sequence and its Properties

Generalized Fibonacci-Type Sequence and its Properties Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 14, 2005 Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

). So the estimators mainly considered here are linear

). So the estimators mainly considered here are linear 6 Ioic Ecooică (4/7 Moe Geel Cedibiliy Models Vigii ATANASIU Dee o Mheics Acdey o Ecooic Sudies e-il: vigii_siu@yhooco This couicio gives soe exesios o he oigil Bühl odel The e is devoed o sei-lie cedibiliy

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Years. Marketing without a plan is like navigating a maze; the solution is unclear. F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRE: Iiol Joul o Rh i Eii d holo I: 39-63 I: 3-738 VRIE OF IME O RERUIME FOR ILE RDE MOWER EM WI DIFFERE EO FOR EXI D WO E OF DEIIO VI WO REOLD IVOLVI WO OMOE. Rvihd. iiv i oo i Mhi R Eii oll RM ROU ih

More information

Example: Two Stochastic Process u~u[0,1]

Example: Two Stochastic Process u~u[0,1] Co o Slo o Coco S Sh EE I Gholo h@h. ll Sochc Slo Dc Slo l h PLL c Mo o coco w h o c o Ic o Co B P o Go E A o o Po o Th h h o q o ol o oc o lco q ccc lco l Bc El: Uo Dbo Ucol Sl Ab bo col l G col G col

More information

Fractional Fourier Series with Applications

Fractional Fourier Series with Applications Aeric Jourl o Couiol d Alied Mheics 4, 4(6): 87-9 DOI: 593/jjc446 Frciol Fourier Series wih Alicios Abu Hd I, Khlil R * Uiversiy o Jord, Jord Absrc I his er, we iroduce coorble rciol Fourier series We

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Fameal Joal of Mahemaic a Mahemaical Sciece Vol. 7 Ie 07 Page 5- Thi pape i aailable olie a hp://.fi.com/ Pblihe olie Jaa 0 07 CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Caolo

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem iol ol o L choloy i Eii M & Alid Scic LEMAS Vol V Fy 8 SSN 78-54 hl S o Si-ii Al B: Dic Pol Viv Fl M. S. Wh d N. W. hod 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi M.S di 3 D o

More information

The Complete Graph: Eigenvalues, Trigonometrical Unit-Equations with associated t-complete-eigen Sequences, Ratios, Sums and Diagrams

The Complete Graph: Eigenvalues, Trigonometrical Unit-Equations with associated t-complete-eigen Sequences, Ratios, Sums and Diagrams The Complee Gph: Eigevlues Tigoomeicl Ui-Equios wih ssocied -Complee-Eige Sequeces Rios Sums d Digms Pul ugus Wie* Col Lye Jessop dfdeemi Je dewusi bsc The complee gph is ofe used o veify cei gph heoeicl

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation OSR ol o Mec OSR-M e-ssn: 78-578 -SSN: 9-765X Vole e Ve M - A 7 PP 95- wwwojolog Nolocl Bo Vle Poble o Nole lve - Sec egoeece Eo Log Ceg Ceg Ho * Yeg He ee o Mec Yb Uve Yj PR C Abc: A oe ole lve egoeece

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

SOLVED EXAMPLES

SOLVED EXAMPLES Prelimiaries Chapter PELIMINAIES Cocept of Divisibility: A o-zero iteger t is said to be a divisor of a iteger s if there is a iteger u such that s tu I this case we write t s (i) 6 as ca be writte as

More information

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1 Lecue su Fes of efeece Ivce ude sfoos oo of H wve fuco: d-fucos Eple: e e - µ µ - Agul oeu s oo geeo Eule gles Geec slos cosevo lws d Noehe s heoe C4 Lecue - Lbb Fes of efeece Cosde fe of efeece O whch

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL UPB Sc B See A Vo 72 I 3 2 ISSN 223-727 MUTIPE -HYBRID APACE TRANSORM AND APPICATIONS TO MUTIDIMENSIONA HYBRID SYSTEMS PART II: DETERMININ THE ORIINA Ve PREPEIŢĂ Te VASIACHE 2 Ace co copeeă oă - pce he

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise Hi ue Hi ue -ay Deecio Pole Coide he ole of decidig which of hyohei i ue aed o oevig a ado vaiale (veco). he efoace cieia we coide i he aveage eo oailiy. ha i he oailiy of decidig ayhig ece hyohei H whe

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

A Fermionic ITO Product Formula

A Fermionic ITO Product Formula IJIET - Ieiol Joul of Iovive ciece Egieeig & Techolog Vol. Iue 3 Mch 5..ijie.com A Femioic ITO Poduc Fomul Cii Şeăecu Uivei Poliehic Buche Deme of Mhemic Buche 64 Romi Ac We ove Io oduc fomul fo ochic

More information

Valley Forge Middle School Fencing Project Facilities Committee Meeting February 2016

Valley Forge Middle School Fencing Project Facilities Committee Meeting February 2016 Valley Forge iddle chool Fencing roject Facilities ommittee eeting February 2016 ummer of 2014 Installation of Fencing at all five istrict lementary chools October 2014 Facilities ommittee and

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a Duio Noes Mculy defied he duio of sse i 938. 2 Le he sem of pymes cosiuig he sse be,,..., d le /( + ) deoe he discou fco. he Mculy's defiiio of he duio of he sse is 3 2 D + 2 2 +... + 2 + + + + 2... o

More information

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

More information

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data Avlble ole wwwsceceeccom Physcs Poce 0 475 480 0 Ieol Cofeece o Mecl Physcs Bomecl ee Pmee smo Hyohess es of wo Neve Boml Dsbuo Poulo wh Mss D Zhwe Zho Collee of MhemcsJl Noml UvesyS Ch zhozhwe@6com Absc

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as Math 7409 Hoewok 2 Fall 2010 1. Eueate the equivalece classes of siple gaphs o 5 vetices by usig the patte ivetoy as a guide. The cycle idex of S 5 actig o 5 vetices is 1 x 5 120 1 10 x 3 1 x 2 15 x 1

More information

CAT. NO /irtl,417~ S- ~ I ';, A RIDER PUBLICATION BY H. A. MIDDLETON

CAT. NO /irtl,417~ S- ~ I ';, A RIDER PUBLICATION BY H. A. MIDDLETON CAT. NO. 139-3 THIRD SUPPLEMENT I /irtl,417~ S- ~ I ';,... 0 f? BY H. A. MIDDLETON.. A RIDER PUBLICATION B36 B65 B152 B309 B319 B329 B719 D63 D77 D152 DA90 DAC32 DAF96 DC70 DC80 DCC90 DD6 DD7 DF62 DF91

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Visit to meet more individuals who benefit from your time

Visit   to meet more individuals who benefit from your time NOURISHINGN G. Vlz S 2009 BR i y ii li i Cl. N i. J l l. Rl. A y l l i i ky. Vii.li.l. iiil i y i &. 71 y l Cl y, i iil k. 28 y, k My W i ily l i. Uil y, y k i i. T j il y. Ty il iy ly y - li G, y Cl.

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem adial diffsio eqaio Febay 4 9 Diffsio Eqaios i ylidical oodiaes ay aeo Mechaical Egieeig 5B Seia i Egieeig Aalysis Febay 4, 9 Olie eview las class Gadie ad covecio boday codiio Diffsio eqaio i adial coodiaes

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

. :'=: t',.4 :; :::-':7'- --,r. c: --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'. = 47 \ \ L 3L f \ / \ L \ \ j \ \ 6! \ j \ / w j / \ \ 4 / N L5 Dm94 O6zq 9 qmn j!!! j 3DLLE N f 3LLE Of ADL!N RALROAD ORAL OR AL AOAON N 5 5 D D 9 94 4 E ROL 2LL RLLAY RL AY 3 ER OLLL 832 876 8 76 L A

More information

Congruences for sequences similar to Euler numbers

Congruences for sequences similar to Euler numbers Coguece fo equece iila to Eule ube Zhi-Hog Su School of Matheatical Sciece, Huaiyi Noal Uiveity, Huaia, Jiagu 00, Peole Reublic of Chia Received July 00 Revied 5 Augut 0 Couicated by David Go Abtact a

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

On Some Integral Inequalities of Hardy-Type Operators

On Some Integral Inequalities of Hardy-Type Operators Advces i Pue Mhemics, 3, 3, 69-64 h://d.doi.og/.436/m.3.3778 Pulished Olie Ocoe 3 (h://www.sci.og/joul/m) O Some Iegl Ieuliies of Hdy-Tye Oeos Ruf Kmilu, Omolehi Joseh Olouju, Susi Oloye Akeem Deme of

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone. OUL O GR SODRY DUTO, ODS,RT,SMTUR,USWR.l ntuctin f cnuct f Kbi ( y/gil)tunent f 2L-Lg t. 2.. 4.. 6. Mtche hll be lye e K ule f ene f tie t tie Dutin f ech tch hll be - +0 (Rece)+ = M The ticint f ech Te

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

UNITARY HARMONIC NUMBERS. CHARLES R. WALL Trident Technical College, Charleston, SC (Submitted October 1981) 1. INTRODUCTION

UNITARY HARMONIC NUMBERS. CHARLES R. WALL Trident Technical College, Charleston, SC (Submitted October 1981) 1. INTRODUCTION CHARLES R. WALL Tridet Techical College, Charlesto, SC 911 (Submitted October 1981) 1. INTRODUCTION Ore [] ivestigated the harmoic mea H() of the divisors of ad showed that H() x () I'o(), where,

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information